Проґрес у механічних випробуваннях тонких плівок

БУРЛАКОВ В.О., ФІЛАТОВ О.В.

Інститут металофізики ім. Г.В. Курдюмова НАН України, бульв. Академіка Вернадського, 36; 03142 Київ, Україна

Отримано / остаточна версія: 05.06.2025 / 30.09.2025 Завантажити PDF logo PDF

Анотація
Представлено огляд сучасних методів визначення механічних характеристик тонких плівок товщиною від моноатомових шарів до мікрометра. Особливість міряння властивостей тонких плівок полягає в тому, що традиційні методи, які використовуються для досліджень масивних матеріялів, не є в змозі належним чином помітити поверхневі ефекти та позбавитися впливу підкладинки на результат дослідження. Тому міряння таких параметрів, як модуль Юнґа, Пуассонів коефіцієнт, мікротвердість, межа плинности, міцність на розрив і залишкове напруження тонких плівок потребує спеціяльних підходів або технологічних впроваджень. Упродовж останнього десятиліття в даній області помітно значний проґрес із запровадженням фрезерування сфокусованим йонним променем, атомно-силової мікроскопії, методів комп’ютерного моделювання та сучасних можливостей рентґенівської дифракції. Ці інструменти разом із методами випробування на вдавлення, вигин, подряпини та розтяг утворюють універсальний набір для дослідження механічних властивостей тонких плівок. У даному огляді детально описано фізичні принципи, переваги й обмеження, схеми й особливості процесу міряння, передові досягнення кожного із методів, в тому числі запропонованих в останні роки. Розглянуто вплив товщини на механічні властивості плівки. Запропоновано структуровану методологію вибору методу дослідження в залежності від товщини плівки, вимірюваних механічних параметрів та експериментальних обмежень.

Ключові слова: механічні властивості, тонкі плівки, наноіндентування, розтяг, мікростиснення, модуль Юнґа.

DOI: https://doi.org/10.15407/ufm.26.04.***

Citation: V.O. Burlakov and O.V. Filatov, Advances in Mechanical Testing of Thin Films, Progress in Physics of Metals, 26, No. 4: ***–*** (2025)


Цитована література   
  1. L.M. Barker and F.I. Baratta, Comparisons of fracture toughness measurements by the short rod and ASTM standard method of test for plane-strain fracture toughness of metallic materials (E 399-78), J. Test. Eval., 8, No. 3: 97 (1980); https://doi.org/10.1520/JTE10604J
  2. G.P. Cherepanov, Mechanics of Brittle Fracture (Mcgraw-Hill: 1979).
  3. D.K. Leung, M.Y. He, and A.G. Evans, The cracking resistance of nanoscale layers and films, J. Mater. Res., 10: 1693 (1995); https://doi.org/10.1557/JMR.1995.1693
  4. D.A. Hardwick, The mechanical properties of thin films: a review, Thin Solid Films, 154, Nos. 1–2: 109 (1987); https://doi.org/10.1016/0040-6090(87)90357-9
  5. P.S. Alexopoulos and T.C. O’Sullivan, Mechanical properties of thin films, Annu. Rev. Mater. Sci., 20, No. 1: 391 (1990); https://doi.org/10.1146/annurev.ms.20.080190.002135
  6. F.R. Brotzen, Mechanical testing of thin films, Int. Mater. Rev., 39, No. 1: 24 (1994); https://doi.org/10.1179/imr.1994.39.1.24
  7. B. Bhushan and X. Li, Nanomechanical characterisation of solid surfaces and thin films, Int. Mater. Rev., 48, No. 3: 125 (2003); https://doi.org/10.1179/095066003225010227
  8. A. Alderson and K.L. Alderson, Auxetic materials, Proc. Inst. Mech. Eng. G, 221, No. 4: 565 (2007); https://doi.org/10.1243/09544100JAERO185
  9. W.C. Oliver and G.M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, J. Mater. Res., 7, No. 6: 1564 (1992); https://doi.org/10.1557/JMR.1992.1564
  10. A.I. Fedorchenko, A.B. Wang, and H.H. Cheng, Thickness dependence of nanofilm elastic modulus, Appl. Phys. Lett., 94, No. 15: 151904 (2009); https://doi.org/10.1063/1.3120763
  11. G. Balakrishnan, S. Tripura Sundari, R. Ramaseshan, R. Thirumurugesan, E. Mohandas, D. Sastikumar, P. Kuppusami, T.G. Kim, and J.I. Song, Effect of substrate temperature on microstructure and optical properties of nanocrystalline alumina thin films, Ceram. Int., 39, No. 8: 9017 (2013); https://doi.org/10.1016/j.ceramint.2013.04.104
  12. D. Faurie, P.O. Renault, E. Le Bourhis, and P. Goudeau, Study of texture effect on elastic properties of Au thin films by X-ray diffraction and in situ tensile testing, Acta Mater., 54, No. 17: 4503 (2006); https://doi.org/10.1016/j.actamat.2006.05.036
  13. L.B. Freund and S. Suresh, Thin Film Materials: Stress, Defect Formation and Surface Evolution (Cambridge University Press: 2004)
  14. G.N. Greaves, A.L. Greer, R.S. Lakes, and T. Rouxel, Poisson’s ratio and modern materials, Nat. Mater., 10, No. 11: 823 (2011); https://doi.org/10.1038/nmat3134
  15. S.M. Han, R. Saha, and W.D. Nix, Determining hardness of thin films in elastically mismatched film-on-substrate systems using nanoindentation, Acta Mater., 54, No. 6: 1571 (2006); https://doi.org/10.1016/j.actamat.2005.11.026
  16. B. Yang and H. Vehoff, Dependence of nanohardness upon indentation size and grain size — a local examination of the interaction between dislocations and grain boundaries, Acta Mater., 55, No. 3: 849 (2007); https://doi.org/10.1016/j.actamat.2006.09.004
  17. S. Zak, C.O.W. Trost, P. Kreiml, and M. J. Cordill, Accurate measurement of thin film mechanical properties using nanoindentation, J. Mater. Res., 37: 1373 (2022); https://doi.org/10.1557/s43578-022-00541-1
  18. S. Lu, B. Zhang, X. Li, J. Zhao, M. Zaiser, H. Fan, and X. Zhang, Grain boundary effect on nanoindentation: A multiscale discrete dislocation dynamics model, J. Mech. Phys. Solids, 126: 117 (2019); https://doi.org/10.1016/j.jmps.2019.02.003
  19. O. Kraft and C.A. Volkert, Mechanical testing of thin films and small structures, Adv. Eng. Mater., 3, No. 3: 99 (2001); https://doi.org/10.1002/1527-2648(200103)3:3<99::AID-ADEM99>3.0.CO;2-2
  20. E.O. Hall, The deformation and ageing of mild steel: III discussion of results, Proc. Phys. Soc. B, 64, No. 9: 747 (1951); https://doi.org/10.1088/0370-1301/64/9/303
  21. N.J. Petch, The cleavage strength of polycrystals, J. Iron Steel Inst., 174: 25 (1953)
  22. J. Schiøtz, F.D. Di Tolla, and K.W. Jacobsen, Softening of nanocrystalline metals at very small grain sizes, Nature, 391, No. 6667: 561 (1998); https://doi.org/10.1038/35328
  23. J.J. Vlassak and W.D. Nix, A new bulge test technique for the determination of Young’s modulus and Poisson's ratio of thin films, J. Mater. Res., 7, No. 12: 3242 (1992); https://doi.org/10.1557/JMR.1992.3242
  24. L. Schadler and I.C. Noyan, Quantitative measurement of the stress transfer function in nickel/polyimide thin film/copper thin film structures, Appl. Phys. Lett., 66, No. 1: 22 (1995); https://doi.org/10.1063/1.114168
  25. M. Huff, Residual stresses in deposited thin-film material layers for micro- and nano-systems manufacturing, Micromachines, 13, No. 12: 2084 (2022); https://doi.org/10.3390/mi13122084
  26. W. Zhang, J. Li, Y. Xing, X. Nie, F. Lang, S. Yang, X. Hou, and C. Zhao, Experimental study on the thickness-dependent hardness of SiO2 thin films using nanoindentation, Coatings, 11, No. 1: 23 (2020); https://doi.org/10.3390/coatings11010023
  27. I.C. Noyan and J.B. Cohen, Residual stress: measurement by diffraction and interpretation, Springer (2013);
  28. R. He, S. Gahlawat, C. Guo, S. Chen, T. Dahal, H. Zhang, W. Liu, Q. Zhang, E. Chere, K. White and Z. Ren, Studies on mechanical properties of thermoelectric materials by nanoindentation, Phys. Status Solidi A, 212, No. 10: 2191 (2015); https://doi.org/10.1002/pssa.201532045
  29. H. Wörgötter, D. Kiener, J.M. Purswani, D. Gall, and G. Dehm, Testing Thin Films by Microcompression: Benefits and Limits, Berg Huettenmaenn Monatsh, 153, No. 3: 257 (2008); https://doi.org/10.1007/s00501-008-0386-1
  30. W.C. Oliver and G.M. Pharr, Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology, J. Mater. Res., 19: 3 (2004); https://doi.org/10.1557/jmr.2004.19.1.3
  31. D.D.D. Ma, C.S. Lee, F.C.K. Au, S.Y. Tong, and S.T. Lee, Small-Diameter Silicon Nanowire Surfaces, Science, 299: 1874 (2003); https://doi.org/10.1126/science.1080313
  32. A.C. Fischer-Cripps, A simple phenomenological approach to nanoindentation creep, Mater. Sci. Eng. A, 385, Nos. 1–2: 74 (2004); https://doi.org/10.1016/j.msea.2004.04.070
  33. M.L. Oyen and R.F. Cook, Load–displacement behavior during sharp indentation of viscous–elastic–plastic materials, J. Mater. Res., 18: 139 (2003); https://doi.org/10.1557/jmr.2003.0020
  34. B. Storåkers and P.-L. Larsson, On brinell and boussinesq indentation of creeping solids, J. Mech. Phys. Solids, 42, No. 2: 307–332 (1994); https://doi.org/10.1016/0022-5096(94)90012-4
  35. N. Gupta, S. Dutta, A. Pandey, S. R. K. Vanjari, and D. Kaur, Effect of growth and residual stress in AlN (0002) Thin films on mems accelerometer design, J. Mater. Sci.: Mater. Electron., 31: 17281 (2020); https://doi.org/10.1007/s10854-020-04282-x
  36. J.G. Swadener, B. Taljat, and G. M. Pharr, Measurement of residual stress by load and depth sensing indentation with spherical indenters, J. Mater. Res., 16, No. 7: 2091 (2001); https://doi.org/10.1557/JMR.2001.0286
  37. W.J. Poole, M.F. Ashby and N.A. Fleck, Micro-hardness of annealed and work-hardened copper polycrystals, Scr. Mater., 34, No. 4: 559 (1996).
  38. W.D. Nix and H. Gao, Indentation size effects in crystalline materials: A law for strain gradient plasticity, J. Mech. Phys. Solids, 46, No. 3: 411 (1998); https://doi.org/10.1016/s0022-5096(97)00086-0
  39. C. A. Schuh, Nanoindentation Studies of Materials, Mater. Today, 9: 32 (2006); https://doi.org/10.1016/s1369-7021(06)71495-x
  40. A. Kathalingam, K.P. Marimuthu, K. Karuppasamy, Y.-S. Chae, H. Lee, H.-C. Park and H.-S. Kim, Structural and Mechanical Characterization of Platinum Thin Films Prepared Electrochemically on ITO/Glass Substrate, Met. Mater. Int., 27: 1554 (2021); https://doi.org/10.1007/s12540-019-00527-5
  41. W.W. Gerberich, S.K. Venkataraman, H. Huang, S.E. Harvey, and D.L. Kohlstedt, The injection of plasticity by millinewton contacts, Acta Metall. Mater., 43, No. 4: 1569 (1995); https://doi.org/10.1016/0956-7151(94)00351-h
  42. T.F. Page, W.C. Oliver, and C.J. McHargue, The deformation behavior of ceramic crystals subjected to very low load (nano)indentations, J. Mater. Res., 7, No. 2: 450 (1992); https://doi.org/10.1557/JMR.1992.0450
  43. K. Durst, B. Backes, O. Franke, and M. Göken, Indentation size effect in metallic materials: modeling strength from pop-in to macroscopic hardness using geometrically necessary dislocations, Acta Mater., 54, No. 9: 2547 (2006); https://doi.org/10.1016/j.actamat.2006.01.036
  44. A. Jelinek, S. Zak, M. Alfreider, and D. Kiener, High‐throughput micromechanical testing enabled by optimized direct laser writing, Adv. Eng. Mater., 25, No. 7: 2200288 (2023); https://doi.org/10.1002/adem.202200288
  45. D.S. Gianola, N.M. Della Ventura, G.H. Balbus, P. Ziemke, M.P. Echlin, and M.R. Begley, Advances and opportunities in high-throughput small-scale mechanical testing, Curr. Opin. Solid State Mater. Sci., 27, No. 4: 101090 (2023); https://doi.org/10.1016/j.cossms.2023.101090
  46. S. Vranjes-Wessely, D. Misch, D. Kiener, M. J. Cordill, N. Frese, A. Beyer, B. Horsfeld, C. Wang, and R. F. Sachsenhofer, High-Speed Nanoindentation Mapping of Organic Matter-Rich Rocks: A Critical Evaluation by Correlative Imaging and Machine Learning Data Analysis, Int. J. Coal Geol., 247: 103847 (2021); https://doi.org/10.1016/j.coal.2021.103847
  47. J.M. Wheeler, B. Gan, and R. Spolenak, combinatorial investigation of the ni–ta system via correlated high‐speed nanoindentation and EDX Mapping, Small Methods, 6, No. 2: 2101084 (2022); https://doi.org/10.1002/smtd.202101084
  48. G.M. Pharr, Measurement of mechanical properties by ultra-low load indentation, Mater. Sci. Eng. A, 253, Nos. 1–2: 151 (1998); https://doi.org/10.1016/S0921-5093(98)00724-2
  49. T.Y. Tsui, J. Vlassak, and W.D. Nix, Indentation plastic displacement field: Part I. The case of soft films on hard substrates, J. Mater. Res., 14, No. 6: 2196 (1999); https://doi.org/10.1557/JMR.1999.0295
  50. T.Y. Tsui, J. Vlassak, and W.D. Nix, Indentation plastic displacement field: Part II. The case of hard films on soft substrates, J. Mater. Res., 14, No. 6: 2204 (1999); https://doi.org/10.1557/JMR.1999.0296
  51. T.Y. Tsui and Y.C. Joo, A new technique to measure through film thickness fracture toughness, Thin Solid Films, 401, Nos. 1–2: 203 (2001); https://doi.org/10.1016/S0040-6090(01)01613-3
  52. T.W. Scharf, H. Deng, and J.A. Barnard, Mechanical and fracture toughness studies of amorphous SiC–N hard coatings using nanoindentation, J. Vac. Sci. Technol. A, 15, No. 3: 963 (1997); https://doi.org/10.1116/1.580788
  53. Z. Xia, W.A. Curtin, and B.W. Sheldon, A new method to evaluate the fracture toughness of thin films, Acta Mater., 52, No. 12: 3507 (2004); https://doi.org/10.1016/j.actamat.2004.04.004
  54. A.A. Wells, Application of fracture mechanics at and beyond general yielding, Br. Weld. J., 10: (1963).
  55. J. Malzbender and G. De With, The use of the indentation loading curve to detect fracture of coatings, Surf. Coat. Technol., 137, No. 1: 72 (2001); https://doi.org/10.1016/S0257-8972(00)01091-4
  56. J. Malzbender and G. De With, The use of the loading curve to assess soft coatings, Surf. Coat. Technol., 127, No. 2-3: 265 (2000); https://doi.org/10.1016/S0257-8972(00)00640-X
  57. M.R. McGurk and T.F. Page, Using the P-δ2 analysis to deconvolute the nanoindentation response of hard-coated systems, J. Mater. Res., 14, No. 6: 2283 (1999); https://doi.org/10.1557/JMR.1999.0305
  58. B.R. Lawn, Fracture of Brittle Solids (Cambridge University Press: 1993), Ch. 8.
  59. X. Li and B. Bhushan, Measurement of fracture toughness of ultra-thin amorphous carbon films, Thin Solid Films, 315, Nos. 1–2: 214 (1998); https://doi.org/10.1016/S0040-6090(97)00788-8
  60. B. Bhushan, Chemical, mechanical and tribological characterization of ultra-thin and hard amorphous carbon coatings as thin as 3.5 nm: recent developments, Diamond Relat. Mater., 8, No. 11: 1985 (1999); https://doi.org/10.1016/S0925-9635(99)00158-2
  61. J. Den Toonder, J. Malzbender, and R. Balkenende, Fracture toughness and adhesion energy of sol-gel coatings on glass, J. Mater. Res., 17, No. 1: 224 (2002); https://doi.org/10.1557/JMR.2002.0032
  62. J. Malzbender and G. De With, Energy dissipation, fracture toughness and the indentation load–displacement curve of coated materials, Surf. Coat. Technol., 135, No. 1: 60 (2000); https://doi.org/10.1016/S0257-8972(00)00906-3
  63. J.M.J. Malzbender, J.M.J. Den Toonder, A.R. Balkenende, and G. De With, Measuring mechanical properties of coatings: a methodology applied to nano-particle-filled sol–gel coatings on glass, Mater. Sci. Eng. R, 36, Nos. 2–3: 47 (2002); https://doi.org/10.1016/S0927-796X(01)00040-7
  64. J. Ding, Y. Meng, and S. Wen, Mechanical properties and fracture toughness of multilayer hard coatings using nanoindentation, Thin Solid Films, 371, Nos. 1–2: 178 (2000); https://doi.org/10.1016/S0040-6090(00)01004-X
  65. S. Neralla, D. Kumar, S. Yarmolenko, and J. Sankar, Mechanical properties of nanocomposite metal–ceramic thin films, Compos. B Eng., 35, No. 2: 157 (2004); https://doi.org/10.1016/j.compositesb.2003.08.005
  66. X. Li and B. Bhushan, Evaluation of fracture toughness of ultra-thin amorphous carbon coatings deposited by different deposition techniques, Thin Solid Films, 355: 330 (1999); https://doi.org/10.1016/S0040-6090(99)00446-0
  67. S. Zhang and X. Zhang, Toughness evaluation of hard coatings and thin films, Thin Solid Films, 520, No. 7: 2375 (2012); https://doi.org/10.1016/j.tsf.2011.09.036
  68. X. Li, D. Diao, and B. Bhushan, Fracture mechanisms of thin amorphous carbon films in nanoindentation, Acta Mater., 45, No. 11: 4453 (1997); https://doi.org/10.1016/S1359-6454(97)00143-2
  69. M.D. Michel, L.V. Muhlen, C.A. Achete, and C.M. Lepienski, Fracture toughness, hardness and elastic modulus of hydrogenated amorphous carbon films deposited by chemical vapor deposition, Thin Solid Films, 496, No. 2: 481 (2006); https://doi.org/10.1016/j.tsf.2005.08.342
  70. J. Chen and S.J. Bull, Assessment of the toughness of thin coatings using nanoindentation under displacement control, Thin Solid Films, 494, Nos. 1–2: 1 (2006); https://doi.org/10.1016/j.tsf.2005.08.176
  71. J. Chen and S.J. Bull, Indentation fracture and toughness assessment for thin optical coatings on glass, J. Phys. D Appl. Phys., 40, No. 18: 5401 (2007); https://doi.org/10.1088/0022-3727/40/18/S01
  72. J. Den Toonder, J. Malzbender, and R. Balkenende, Fracture toughness and adhesion energy of sol-gel coatings on glass, J. Mater. Res., 17, No. 1: 224 (2002); https://doi.org/10.1557/JMR.2002.0032
  73. J. Malzbender, Comparison of surface and cross-sectional indentation in a coating, Surf. Coat. Technol., 201, No. 6: 3797 (2006); https://doi.org/10.1016/j.surfcoat.2006.05.040
  74. J. Malzbender and G. De With, Energy dissipation, fracture toughness and the indentation load–displacement curve of coated materials, Surf. Coat. Technol., 135, No. 1: 60 (2000); https://doi.org/10.1016/S0257-8972(00)00906-3
  75. M.D. Uchic and D.M. Dimiduk, A methodology to investigate size scale effects in crystalline plasticity using uniaxial compression testing, Mater. Sci. Eng. A, 400: 268 (2005); https://doi.org/10.1016/j.msea.2005.03.082
  76. M.D. Uchic, D.M. Dimiduk, J.N. Florando, and W.D. Nix, Sample dimensions influence strength and crystal plasticity, Science, 305, No. 5686: 986 (2004); https://doi.org/10.1126/science.1098993
  77. W.D. Nix, J.R. Greer, G. Feng, and E.T. Lilleodden, Deformation at the nanometer and micrometer length scales: Effects of strain gradients and dislocation starvation, Thin Solid Films, 51, No. 6: 3152 (2007); https://doi.org/10.1016/j.tsf.2006.01.030
  78. D.M. Dimiduk, M.D. Uchic, and T.A. Parthasarathy, Size-affected single-slip behavior of pure nickel microcrystals, Acta Mater., 53, No. 15: 4065 (2005); https://doi.org/10.1016/j.actamat.2005.05.023
  79. D. Kiener, C. Motz, and G. Dehm, Micro-compression testing: A critical discussion of experimental constraints, Mater. Sci. Eng. A, 505, Nos. 1–2: 79 (2009); https://doi.org/10.1016/j.msea.2009.01.005
  80. H. Wörgötter, D. Kiener, J.M. Purswani, D. Gall, and G. Dehm, Testing Thin Films by Microcompression: Benefits and Limits, BHM Berg. Hüttenmänn. Monatsh., 153, No. 7: 257 (2008); https://doi.org/10.1007/s00501-008-0386-1
  81. S. Korte and W.J. Clegg, Micropillar compression of ceramics at elevated temperatures, Scripta Mater., 60, No. 9: 807 (2009); https://doi.org/10.1016/j.scriptamat.2009.01.029
  82. S. Korte, R.J. Stearn, J.M. Wheeler, and W.J. Clegg, High temperature microcompression and nanoindentation in vacuum, J. Mater. Res., 27, No. 1: 167(2012); https://doi.org/10.1557/jmr.2011.268
  83. S. Korte and W.J. Clegg, Onset of plasticity in InxGa1xAs multilayers, Acta Mater., 58, No. 1: 59 (2010); https://doi.org/10.1016/j.actamat.2009.08.056
  84. ASTM, Standard test methods for tension testing of metallic materials, Annual Book ASTM Stand., E.9. (2001).
  85. W.N. Sharpe Jr, An interferometric strain-displacement measurement system, No. NASA-TM-101638: (1989).
  86. H. Huang and F. Spaepen, Tensile testing of free-standing Cu, Ag and Al thin films and Ag/Cu multilayers, Acta Mater., 48, No. 12: 3261 (2000); https://doi.org/10.1016/S1359-6454(00)00128-2
  87. K.J. Hemker, B.G. Mendis, and C. Eberl, Characterizing the microstructure and mechanical behavior of a two-phase NiCoCrAlY bond coat for thermal barrier systems, Mater. Sci. Eng. A, 483: 727 (2008); https://doi.org/10.1016/j.msea.2006.12.169
  88. I. Chasiotis and W.G. Knauss, A new microtensile tester for the study of MEMS materials with the aid of atomic force microscopy, Exp. Mech., 42: 51 (2002); https://doi.org/10.1007/BF02411051
  89. W.N. Sharpe, J. Pulskamp, D.S. Gianola, C. Eberl, R.G. Polcawich, and R.J. Thompson, Strain measurements of silicon dioxide microspecimens by digital imaging processing, Exp. Mech., 47: 649 (2007); https://doi.org/10.1007/s11340-006-9010-z
  90. S. Orso, U.G. Wegst, C. Eberl, and E. Arzt, Micrometer‐scale tensile testing of biological attachment devices, Adv. Mater., 18, No. 7: 874 (2006); https://doi.org/10.1002/adma.200501807
  91. D.S. Gianola, C. Eberl, X.M. Cheng, and K.J. Hemker, Stress‐driven surface topography evolution in nanocrystalline Al thin films, Adv. Mater., 20, No. 2: 303 (2008); https://doi.org/10.1002/adma.200701607
  92. W.N. Sharpe, K.M. Jackson, K.J. Hemker, and Z. Xie, Effect of specimen size on Young's modulus and fracture strength of polysilicon, J. Microelectromech. Syst., 10, No. 3: 317 (2001); https://doi.org/10.1109/84.946774
  93. N. Biery, M. De Graef, and T.M. Pollock, A method for measuring microstructural-scale strains using a scanning electron microscope: applications to γ-titanium aluminides, Metall. Mater. Trans. A, 34: 2301 (2003); https://doi.org/10.1007/s11661-003-0294-7
  94. D. Kiener, W. Grosinger, and G. Dehm, On the importance of sample compliance in uniaxial microtesting, Scripta Mater., 60, No. 3: 148 (2009); https://doi.org/10.1016/j.scriptamat.2008.09.024
  95. D. Kiener, W. Grosinger, G. Dehm, and R. Pippan, A further step towards an understanding of size-dependent crystal plasticity: In situ tension experiments of miniaturized single-crystal copper samples, Acta Mater., 56, No. 3: 580 (2008); https://doi.org/10.1016/j.actamat.2007.10.015
  96. M. Ando, H. Tanigawa, H. Kurotaki, and Y. Katoh, Mechanical properties of neutron irradiated F82H using micro-tensile testing, Nucl. Mater. Energy, 16: 258 (2018); https://doi.org/10.1016/j.nme.2018.07.008
  97. D.S. Gianola and C. Eberl, Micro- and nanoscale tensile testing of materials, JOM, 61: 24 (2009); https://doi.org/10.1007/s11837-009-0037-3
  98. M. Legros, B.R. Elliott, M.N. Rittner, J.R. Weertman, and K.J. Hemker, Microsample tensile testing of nanocrystalline metals, Philos. Mag. A, 80, No. 4: 1017 (2000); https://doi.org/10.1080/01418610008212096
  99. Z. Budrovic, H. Van Swygenhoven, P.M. Derlet, S. Van Petegem, and B. Schmitt, Plastic deformation with reversible peak broadening in nanocrystalline nickel, Science, 304, No. 5668: 273 (2004); https://doi.org/10.1126/science.1095071
  100. D.S. Gianola, S. Van Petegem, M. Legros, S. Brandstetter, H. Van Swygenhoven, and K.J. Hemker, Stress-assisted discontinuous grain growth and its effect on the deformation behavior of nanocrystalline aluminum thin films, Acta Mater., 54, No. 8: 2253 (2006); https://doi.org/10.1016/j.actamat.2006.01.023
  101. D.S. Gianola, D.H. Warner, J.F. Molinari, and K.J. Hemker, Increased strain rate sensitivity due to stress-coupled grain growth in nanocrystalline Al, Scripta Mater., 55, No. 7: 649 (2006); https://doi.org/10.1016/j.scriptamat.2006.06.002
  102. M.D. Uchic and D.M. Dimiduk, A methodology to investigate size scale effects in crystalline plasticity using uniaxial compression testing, Mater. Sci. Eng. A, 400: 268 (2005); https://doi.org/10.1016/j.msea.2005.03.082
  103. T.P. Weihs, S. Hong, and J.C. Bravman, Mechanical deflection of cantilever microbeams: A new technique for testing the mechanical properties of thin films, J. Mater. Res., 3: 931 (1988); https://doi.org/10.1557/JMR.1988.0931
  104. J.N. Florando and W.D. Nix, A microbeam bending method for studying stress–strain relations for metal thin films on silicon substrates, J. Mech. Phys. Solids, 53, No. 3: 619 (2005); https://doi.org/10.1016/j.jmps.2004.08.007
  105. T.-Y. Zhang, Y.-J. Su, C.-E. Qian, M.-H. Zhao, and L.-Q. Chen, Microbridge testing of silicon nitride thin films deposited on silicon wafers, Acta Mater., 48, No. 11: 2843 (2000) https://doi.org/10.1016/S1359-6454(00)00088-4
  106. S.P. Baker and W.D. Nix, Mechanical properties of compositionally modulated Au–Ni thin films: nanoindentation and microcantilever deflection experiments, J. Mater. Res., 9, No. 12: 3131 (1994); https://doi.org/10.1557/JMR.1994.3131
  107. C.J. Wilson, A. Ormeggi, and M. Narbutovskih, Fracture testing of silicon microcantilever beams, J. Appl. Phys., 79, No. 5: 2386 (1996); https://doi.org/10.1063/1.361102
  108. T.P. Weihs, S. Hong, J.C. Bravman, and W.D. Nix, Mechanical deflection of cantilever microbeams: A new technique for testing the mechanical properties of thin films, J. Mater. Res., 3, No. 5: 931 (1988); https://doi.org/10.1557/JMR.1988.0931
  109. T.P. Weihs, S. Hong, J.C. Bravman, and W.D. Nix, Measuring the strength and stiffness of thin film materials by mechanically deflecting cantilever microbeams, MRS Online Proc. Libr., 130: 87 (1988); https://doi.org/10.1557/PROC-130-87
  110. S. Hong, T.P. Weihs, J.C. Bravman, and W.D. Nix, Measuring stiffnesses and residual stresses of silicon nitride thin films, J. Electron. Mater., 19: 903 (1990); https://doi.org/10.1007/BF02652915
  111. S. Johansson, J.Å. Schweitz, L. Tenerz, and J. Tirén, Fracture testing of silicon microelements in situ in a scanning electron microscope, J. Appl. Phys., 63, No. 10: 4799 (1988); https://doi.org/10.1063/1.340471
  112. H. Ljungcrantz, L. Hultman, J.E. Sundgren, S. Johansson, N. Kristensen, J.Å. Schweitz, and C.J. Shute, Residual stresses and fracture properties of magnetron sputtered Ti films on Si microelements, J. Vac. Sci. Technol. A, 11, No. 3: 543 (1993); https://doi.org/10.1116/1.578770
  113. T.G. Kuznetsova, M.N. Starodubtseva, N.I. Yegorenkov, S.A. Chizhik, and R.I. Zhdanov, Atomic force microscopy probing of cell elasticity, Micron, 38, No. 8: 824 (2007); https://doi.org/10.1016/j.micron.2007.06.011
  114. L. Ceballos-Laita, C. Marcuello, A. Lostao, L. Calvo-Begueria, A. Velázquez-Campoy, M.T. Bes, M.F. Fillat, and M.-L. Peleato, Microcystin-LR binds iron, and iron promotes self-assembly, Environ. Sci. Technol., 51, No. 9: 4841 (2017); https://doi.org/10.1021/acs.est.6b05939
  115. B.E. Bammes, J. Jakana, M.F. Schmid, and W. Chiu, Radiation damage effects at four specimen temperatures from 4 to 100 K, J. Struct. Biol., 169, No. 3: 331 (2010); https://doi.org/10.1016/j.jsb.2009.11.001
  116. J.R. Harris and R.W. Horne, Negative staining: a brief assessment of current technical benefits, limitations and future possibilities, Micron, 25, No. 1: 5 (1994); https://doi.org/10.1016/0968-4328(94)90051-5
  117. H. Schillers, C. Rianna, J. Schäpe, T. Luque, H. Doschke, M. Wälte, J.J. Uriarte, N. Campillo, G.P.A. Michanetzis, J. Bobrowska, A. Dumitru, E.T. Herruzo, S. Bovio, P. Parot, M. Galluzzi, A. Podestà, L. Puricelli, S. Scheuring, Y. Missirlis, R. Garcia, M. Odorico, J.-M. Teulon, F. Lafont, M. Lekka, F. Rico, A. Rigato, J.-L. Pellequer, H. Oberleithner, D. Navajas, and M. Radmacher, Standardized nanomechanical atomic force microscopy procedure (SNAP) for measuring soft and biological samples, Sci. Rep., 7, No. 1: 5117 (2017); https://doi.org/10.1038/s41598-017-05383-0
  118. A. Magazzù and C. Marcuello, Investigation of soft matter nanomechanics by atomic force microscopy and optical tweezers: a comprehensive review, Nanomaterials, 13, No. 6: 963 (2023); https://doi.org/10.3390/nano13060963
  119. A. Jana, A. Raman, B. Dhayal, S.L. Tripp, and R.G. Reifenberger, Microcantilever mechanics in flowing viscous fluids, Appl. Phys. Lett., 90, No. 11: 114110 (2007); https://doi.org/10.1063/1.2713238
  120. E. Finot, T. Thundat, E. Lesniewska, and J.P. Goudonnet, Measuring magnetic susceptibilities of nanogram quantities of materials using microcantilevers, Ultramicroscopy, 86, Nos. 1–2: 175 (2001); https://doi.org/10.1016/s0304-3991(00)00080-2
  121. E. Finot, Local mechanical properties determined by atomic force microscopy, Ann. Chim. Sci. Mater., 29, No. 3: 33 (2004)
  122. E. Bamberg, C.P. Grippo, P. Wanakamol, A.H. Slocum, M.C. Boyce, and E.L. Thomas, A tensile test device for in situ atomic force microscope mechanical testing, Precis. Eng., 30, No. 1: 71 (2006); https://doi.org/10.1016/j.precisioneng.2005.05.001
  123. E. Rudenko, V. Burlakov, I. Korotash, M. Dyakin, D. Polotskiy, and O. Kalenyuk, Effective thermal conductivity of flexible two-layer aluminum nitride/polytetrafluoroethylene structure, Phys. Status Solidi A, 2400860: 2400860 (2024); https://doi.org/10.1002/pssa.202400860
  124. B. Jeon, H.G. Jung, S.W. Lee, G. Lee, J.H. Shim, M.O. Kim, B.J. Kim, S.-H. Kim, H. Lee, S.W. Lee, D.S. Yoon, S.J. Jo, T.H. Choi, and W. Lee, Melanoma detection by AFM indentation of histological specimens, Diagnostics, 12, No. 7: 1736 (2022); https://doi.org/10.3390/diagnostics12071736
  125. X. Chen, R. Hughes, N. Mullin, R.J. Hawkins, I. Holen, N.J. Brown, and J.K. Hobbs, Mechanical heterogeneity in the bone microenvironment as characterized by atomic force microscopy, Biophys. J., 119, No. 3: 502 (2020); https://doi.org/10.1016/j.bpj.2020.06.026
  126. C. Marcuello, L. Foulon, B. Chabbert, V. Aguié-Béghin, and M. Molinari, Atomic force microscopy reveals how relative humidity impacts the Young’s modulus of lignocellulosic polymers and their adhesion with cellulose nanocrystals at the nanoscale, Int. J. Biol. Macromol., 147: 1064 (2020); https://doi.org/10.1016/j.ijbiomac.2019.10.074
  127. F. Berzin, L. Lemkhanter, C. Marcuello, B. Chabbert, V. Aguié-Béghin, M. Molinari, R. Castellani, and B. Vergnes, Influence of the polarity of the matrix on the breakage mechanisms of lignocellulosic fibers during twin‐screw extrusion, Polym. Compos., 41, No. 3: 1106 (2020); https://doi.org/10.1002/pc.25442
  128. R.D. Boyd, J. Verran, M.V. Jones, and M. Bhakoo, Use of the atomic force microscope to determine the effect of substratum surface topography on bacterial adhesion, Langmuir, 18, No. 6: 2343 (2002); https://doi.org/10.1021/la011142p
  129. C.J. Wright and I. Armstrong, The application of atomic force microscopy force measurements to the characterisation of microbial surfaces, Surf. Interface Anal., 38, No. 11: 1419 (2006); https://doi.org/10.1002/sia.2506
  130. G. Sagvolden, I. Giaever, E.O. Pettersen, and J. Feder, Cell adhesion force microscopy, Proc. Natl. Acad. Sci., 96, No. 2: 471 (1999); https://doi.org/10.1073/pnas.96.2.471
  131. H. Liu and B. Bhushan, Nanotribological characterization of digital micromirror devices using an atomic force microscope, Ultramicroscopy, 100, Nos. 3–4: 391 (2004); https://doi.org/10.1016/j.ultramic.2003.11.016
  132. S.-K. Kim, M.-H. Jung, H.-W. Kim, S.-G. Woo, and H. Lee, Measurement of the strength of adhesion of resist patterns using an atomic force microscope, Nanotechnology, 16, No. 10: 2227 (2005); https://doi.org/10.1088/0957-4484/16/10/042
  133. M. Munz, D.C. Cox, and P.J. Cumpson, Nano-scale shear mode testing of the adhesion of nanoparticles to a surface-support, Phys. Status Solidi A, 205, No. 6: 1424 (2008); https://doi.org/10.1002/pssa.200778110
  134. X. Ling, H.-J. Butt, and M. Kappl, Quantitative measurement of friction between single microspheres by friction force microscopy, Langmuir, 23, No. 16: 8392 (2007); https://doi.org/10.1021/la700408v
  135. C. Lee, X. Wei, J.W. Kysar, and J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene, Science, 321, No. 5887: 385 (2008); https://doi.org/10.1126/science.1157996
  136. K.S. Novoselov, D. Jiang, F. Schedin, T.J. Booth, V.V. Khotkevich, S.V. Morozov, and A.K. Geim, Two-dimensional atomic crystals, Proc. Natl. Acad. Sci., 102, No. 30: 10451 (2005); https://doi.org/10.1073/pnas.0502848102
  137. M. Poot and H.S. van der Zant, Nanomechanical properties of few-layer graphene membranes, Appl. Phys. Lett., 92, No. 6: (2008); https://doi.org/10.1063/1.2857472
  138. I.W. Frank, D.M. Tanenbaum, A.M. van der Zande, and P.L. McEuen, Mechanical properties of suspended graphene sheets, J. Vac. Sci. Technol. B, 25, No. 6: 2558 (2007); https://doi.org/10.1116/1.2789446
  139. A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, and A.K. Geim, Raman spectrum of graphene and graphene layers, Phys. Rev. Lett., 97, No. 18: 187401 (2006) https://doi.org/10.1103/PhysRevLett.97.187401
  140. V.O. Burlakov, O.Ye. Pohorelov, and O.V. Filatov, Impact dielectric thickness and contact area on electrical properties of Fe/MgO/Fe System, Metallofiz. Noveishie Tekhnol., 45, No. 2: 157 (2023); https://doi.org/10.15407/mfint.45.02.0157
  141. J.G. Simmons, Generalized formula for the electric tunnel effect between similar electrodes separated by a thin insulating film, J. Appl. Phys., 34, No. 6: 1793 (1963); https://doi.org/10.1063/1.1702682
  142. V. O. Burlakov, O. E. Pogorelov, and O. V. Filatov, Impact of impurity atoms on the electrophysical properties of magnetic tunnel junction, Metallofiz. Noveishie Tekhnol., 42, No. 7: 919 (2020) (in Ukrainian); https://doi.org/10.15407/mfint.42.07.0919
  143. V. O. Burlakov, Ye. I. Bogdanov, O. V. Filatov, O. E. Pogorelov, and S. Ye. Bogdanov, Impact structural-impurity state on the electrophysical properties of Fe/n-Si junction, Metallofiz. Noveishie Tekhnol., 45, No. 12: 1401–1412 (2023) (in Ukrainian); https://doi.org/10.15407/mfint.45.12.1401
  144. J.W. Beams, Mechanical properties of thin films of gold and silver, Structure and Properties of Thin Films (Eds. C.A. Neugebauer, J.B. Newkirk, and D.A. Vermilyea) (John Wiley and Sons, New York: 1959), p. 183.
  145. Y. Xiang, J. McKinnell, W.M. Ang, and J.J. Vlassak, Measuring the fracture toughness of ultra-thin films with application to AlTa coatings, Int. J. Fract., 144: 173 (2007); https://doi.org/10.1007/s10704-007-9095-0
  146. Y. Xiang, X. Chen, and J.J. Vlassak, Plane-strain bulge test for thin films, J. Mater. Res., 20, No. 09: 2360 (2005); https://doi.org/10.1557/jmr.2005.0313
  147. O. Kraft and C.A. Volkert, Mechanical testing of thin films and small structures, Adv. Eng. Mater., 3, No. 3: 99 (2001); https://doi.org/10.1002/1527-2648(200103)3:3<99::AID-ADEM99>3.0.CO;2-2
  148. J.J. Vlassak and W.D. Nix, A new bulge test technique for the determination of Young’s modulus and Poisson’s ratio of thin films, J. Mater. Res., 7, No. 12: 3242 (1992); https://doi.org/10.1557/jmr.1992.324
  149. S. Timoshenko and S. Woinowsky-Krieger, Theory of Plates and Shells (McGraw-Hill: 1959).
  150. H. Youssef, A. Ferrand, P. Calmon, P. Pons, and R. Plana, Methods to improve reliability of bulge test technique to extract mechanical properties of thin films, Microelectron. Reliab., 50, Nos. 9–11: 1888 (2010); https://doi.org/10.1016/j.microrel.2010.07.013
  151. H. Youssef, A. Ferrand, P. Pons, and R. Plana, Iterative algorithm with finite element method for bulge test characterization, 20th MicroMechanics Europe Workshop—MME 2009 (2009).
  152. O. Tabata, K. Kawahata, S. Sugiyama, and I. Igarashi, Mechanical property measurements of thin films using load-deflection of composite rectangular membranes, Sens. Actuators, 20, Nos. 1–2: 135 (1989); https://doi.org/10.1016/0250-6874(89)87111-2
  153. H. Hencky, On the stress state in circular plates with vanishing bending stiffness, Z. Math. Phys., 63, No. 3: 311 (1915) (in German).
  154. J.J. Vlassak, New experimental techniques and analysis methods for the study of the mechanical properties of materials in small volumes (Thesis of Disser. for Ph.D.) (USA: Stanford University: 1994).
  155. S. Lévy, Bending of Rectangular Plates with Large Deflections, Report No. 737 (NACA: 1942).
  156. O.E. Pohorielov, O.V. Filatov, and S.O. Kotrechko, Sposib vyznachennia mekhanichnykh kharakterystyk tverdofaznoi tonkoi plivky [Method for determination of mechanical characteristics of solid-phase thin film]: Patent UA 76290 U. (2012) (in Ukrainian);
  157. A.E. Pogorelov and A.V. Filatov, Method for Characterization of Nano-Films Mechanical Properties, Proc. Int. Conf. Nanomater. Appl. Prop., 1, No. 3: 03PCSI15 (2012).
  158. V. Burlakov, O. Filatov, and O. Pogorelov, Change Character of Conductivity in Metal–Insulator–Metal Thin Films, Phys. Status Solidi B, 258, No. 4: 2000502 (2021); https://doi.org/10.1002/pssb.202000502
  159. J. Lord, D. Cox, A. Ratzke, M. Sebastiani, A. Korsunsky, E. Salvati, M.Z. Mughal, and E. Bemporad, A good practice guide for measuring residual stresses using FIB-DIC, (2018);
  160. A.J.G. Lunt, N. Baimpas, E. Salvati, I. Dolbnya, T. Sui, S. Ying, H. Zhang, A. Kleppe, J. Dluhos, and A.M. Korsunsky, A state-of-the-art review of micron scale spatially resolved residual stress analysis by ring-core milling and other techniques, J. Strain Anal. Eng., 50: 426 (2015); https://doi.org/10.1177/0309324715596700
  161. A.J. Lunt and A.M. Korsunsky, Intragranular residual stress evaluation using the semi-destructive FIB-DIC ring-core drilling method, Adv. Mater. Res., 996: 8 (2014); https://doi.org/10.4028/www.scientific.net/AMR.996.8
  162. N. Baimpas, A.J. Lunt, I.P. Dolbnya, J. Dluhos, and A.M. Korsunsky, Nano-scale mapping of lattice strain and orientation inside carbon core SiC fibres by synchrotron X-ray diffraction, Carbon, 79: 85 (2014); https://doi.org/10.1016/j.carbon.2014.07.045
  163. M. Krottenthaler, C. Schmid, J. Schaufler, K. Durst, and M. Göken, A simple method for residual stress measurements in thin films by means of focused ion beam milling and digital image correlation, Surf. Coat. Technol., 215: 247 (2013); https://doi.org/10.1016/j.surfcoat.2012.08.095
  164. G.S. Schajer, B. Winiarski, and P.J. Withers, Hole-drilling residual stress measurement with artifact correction using full-field DIC, Exp. Mech., 53: 255 (2013); https://doi.org/10.1007/s11340-012-9626-0
  165. M. Sebastiani, C. Eberl, E. Bemporad, and G.M. Pharr, Depth-resolved residual stress analysis of thin coatings by a new FIB–DIC method, Mater. Sci. Eng. A, 528, No. 27: 7901 (2011); https://doi.org/10.1016/j.msea.2011.07.001
  166. M.J. Hÿtch, J.L. Putaux, and J.M. Pénisson, Measurement of the displacement field of dislocations to 0.03 Å by electron microscopy, Nature, 423, No. 6937: 270 (2003); https://doi.org/10.1038/nature01638
  167. D. Wu, H. Xie, X. Dai, and R. Wang, A novel method to fabricate micro-gratings applied for deformation measurement around a crack in a thin film, Meas. Sci. Technol., 25, No. 2: 025012 (2014); https://doi.org/10.1088/0957-0233/25/2/025012
  168. Z.W. Liu, H.M. Xie, C.Z. Gu, and Y.G. Meng, The digital geometric phase technique applied to the deformation evaluation of MEMS devices, J. Micromech. Microeng., 19, No. 1: 015012 (2008); https://doi.org/10.1088/0960-1317/19/1/015012
  169. H.H. Lester and R.H. Aborn, The behavior under stress of the iron crystals in steel: Part I, Army Ordnance, 6, No. 32: 120 (1925);
  170. R. Glocket and E. Osswaldn, Unique determination of the principal stresses with X-rays, Z. Tech. Phys., 161: 237 (1935);
  171. L.S. Schadler and I.C. Noyan, Experimental determination of the strain transfer across a flexible intermediate layer in thin-film structures, J. Mater. Sci. Lett., 11, No. 15: 1067 (1992); https://doi.org/10.1007/BF00729763
  172. L.S. Schadler and I.C. Noyan, Quantitative measurement of the stress transfer function in nickel/polyimide thin film/copper thin film structures, Appl. Phys. Lett., 66, No. 1: 22 (1995); https://doi.org/10.1063/1.114168
  173. U. Welzel, J. Ligot, P. Lamparter, A.C. Vermeulen, and E.J. Mittemeijer, Stress analysis of polycrystalline thin films and surface regions by X-ray diffraction, Appl. Crystallogr., 38, No. 1: 1 (2005); https://doi.org/10.1107/S0021889804029516
  174. D. Delbergue, D. Texier, M. Lévesque, and P. Bocher, Comparison of two X-ray residual stress measurement methods: sin2ψ and cosα, through the determination of a martensitic steel X-ray elastic constant, Mater. Res. Proc., 2: 55 (2017); https://doi.org/10.21741/9781945291173-10
  175. J. Schröder, A. Evans, T. Mishurova, A. Ulbricht, M. Sprengel, I. Serrano-Munoz, T. Fritsch, A. Kromm, T. Kannengießer, and G. Bruno, Diffraction-based residual stress characterization in laser additive manufacturing of metals, Metals, 11: 1830 (2021); https://doi.org/10.3390/met11111830
  176. I.C. Noyan and J.B. Cohen, Residual Stress: Measurement by Diffraction and Interpretation (Springer: 2013).
  177. M. Hommel and O. Kraft, Deformation behavior of thin copper films on deformable substrates, Acta Mater., 49, No. 19: 3935 (2001); https://doi.org/10.1016/s1359-6454(01)00293-2
  178. V.M. Hauk, Stress evaluation on materials having non-linear lattice strain distributions, Adv. X-Ray Anal., 27: 101 (1983); https://doi.org/10.1154/S0376030800017006
  179. C.H. Ma, J.H. Huang, and H. Chen, Residual stress measurement in textured thin film by grazing-incidence X-ray diffraction, Thin Solid Films, 418, No. 2: 73 (2002); https://doi.org/10.1016/S0040-6090(02)00680-6
  180. P.S. Prevéy, X-ray diffraction residual stress technique, Materials Characterization. ASM International (1986); https://doi.org/10.31399/asm.hb.v10.a0001761
  181. C.E. Murray, Invariant x-ray elastic constants and their use in determining hydrostatic stress, J. Appl. Phys., 110, No. 12: 123501 (2011); https://doi.org/10.1063/1.3667294
  182. C.E. Murray, P.R. Besser, E.T. Ryan, and J.L. Jordan-Sweet, Triaxial stress distributions in Cu/low-k interconnect features, Appl. Phys. Lett., 98, No. 6: 061908 (2011); https://doi.org/10.1063/1.3549876
  183. C.E. Murray, K.L. Saenger, O. Kalenci, S.M. Polvino, I.C. Noyan, B. Lai, and Z. Cai, Submicron mapping of silicon-on-insulator strain distributions induced by stressed liner structures, J. Appl. Phys., 104, No. 1: 013530 (2008); https://doi.org/10.1063/1.2952044
  184. Y.C. Tsui and T.W. Clyne, An analytical model for predicting residual stresses in progressively deposited coatings Part 1: Planar geometry, Thin Solid Films, 306, No. 1: 23 (1997); https://doi.org/10.1016/s0040-6090(97)00199-5
  185. Y.C. Tsui and T.W. Clyne, An analytical model for predicting residual stresses in progressively deposited coatings Part 2: Cylindrical geometry, Thin Solid Films, 306, No. 1: 34 (1997); https://doi.org/10.1016/s0040-6090(97)00209-5
  186. W. Li, K. Yang, D. Zhang, and X. Zhou, Residual stress analysis of cold-sprayed copper coatings by numerical simulation, J. Therm. Spray Technol., 25, Nos. 1–2: 131 (2015); https://doi.org/10.1007/s11666-015-0308-1
  187. T.C. Totemeier and J.K. Wright, Residual stress determination in thermally sprayed coatings—a comparison of curvature models and X-ray techniques, Surf. Coat. Technol., 200, Nos. 12–13: 3955 (2006); https://doi.org/10.1016/j.surfcoat.2005.06.003
  188. V. Luzin, K. Spencer, and M.-X. Zhang, Residual stress and thermo-mechanical properties of cold spray metal coatings, Acta Mater., 59, No. 3: 1259 (2011); https://doi.org/10.1016/j.actamat.2010.10.058
  189. Z. Arabgol, H. Assadi, T. Schmidt, F. Gärtner, and T. Klassen, Analysis of thermal history and residual stress in cold-sprayed coatings, J. Therm. Spray Technol., 23: 84 (2014); https://doi.org/10.1007/s11666-013-9976-x
  190. S. Wu, Q. Guo, S. Wu, and C. Zhao, Modified curvature method for residual thermal stress estimation in coatings, Surf. Eng., 30, No. 11: 866 (2014); https://doi.org/10.1179/1743294414Y.0000000343
  191. G. Benenati and R. Lupoi, Development of a deposition strategy in cold spray for additive manufacturing to minimize residual stresses, Procedia CIRP, 55: 101 (2016); https://doi.org/10.1016/j.procir.2016.08.042
  192. X.C. Zhang, B.S. Xu, H.D. Wang, and Y.X. Wu, Modeling of the residual stresses in plasma-spraying functionally graded ZrO2/NiCoCrAlY coatings using finite element method, Mater. Des., 27, No. 4: 308 (2006); https://doi.org/10.1016/j.matdes.2004.10.026
  193. E. Bemporad, M. Sebastiani, F. Casadei, and F. Carassiti, Modelling, production and characterisation of duplex coatings (HVOF and PVD) on Ti–6Al–4V substrate for specific mechanical applications, Surf. Coat. Technol., 201, No. 18: 7652 (2007); https://doi.org/10.1016/j.surfcoat.2007.02.041
  194. S.Y. Hu, Y.L. Li, D. Munz, and Y.Y. Yang, Thermal stresses in coated structures, Surf. Coat. Technol., 99, Nos. 1–2: 125 (1998); https://doi.org/10.1016/S0257-8972(97)00418-0
  195. J. Haider, M. Rahman, B. Corcoran, and M.S.J. Hashmi, Simulation of thermal stress in magnetron sputtered thin coating by finite element analysis, J. Mater. Process. Technol., 168, No. 1: 36 (2005); https://doi.org/10.1016/j.jmatprotec.2004.09.093
  196. E. Bemporad, M. Sebastiani, C. Pecchio, and S. De Rossi, High thickness Ti/TiN multilayer thin coatings for wear resistant applications, Surf. Coat. Technol., 201, No. 6: 2155 (2006); https://doi.org/10.1016/j.surfcoat.2006.03.042
  197. H.C. Zhang, W. Tan, and Y.D. Li, Effect of the transitional gradient of material property on the mechanical behavior of a non-homogeneous interlayer, Comput. Mater. Sci., 42, No. 1: 122 (2008); https://doi.org/10.1016/j.commatsci.2007.06.016
  198. O. Sayman, F. Sen, E. Celik, and Y. Arman, Thermal stress analysis of Wc–Co/Cr–Ni multilayer coatings on 316L steel substrate during cooling process, Mater. Des., 30, No. 3: 770 (2009); https://doi.org/10.1016/j.matdes.2008.06.004
  199. P.M. Osterberg and S.D. Senturia, M-TEST: A test chip for MEMS material property measurement using electrostatically actuated test structures, J. Microelectromech. Syst., 6, No. 2: 107 (1997); https://doi.org/10.1109/84.585788
  200. V.T. Srikar and S.M. Spearing, A critical review of microscale mechanical testing methods used in the design of microelectromechanical systems, Exp. Mech., 43: 238 (2003); https://doi.org/10.1007/BF02410522
  201. V. Leus and D. Elata, On the dynamic response of electrostatic MEMS switches, J. Microelectromech. Syst., 17, No. 1: 236 (2008); https://doi.org/10.1109/JMEMS.2007.908752
  202. E.S. Hung and S.D. Senturia, Generating efficient dynamical models for microelectromechanical systems from a few finite-element simulation runs, J. Microelectromech. Syst., 8, No. 3: 280 (1999); https://doi.org/10.1109/84.788632
  203. R. Legtenberg and H.A. Tilmans, Electrostatically driven vacuum-encapsulated polysilicon resonators. Part I. Design and fabrication, Sens. Actuators A Phys., 45, No. 1: 57 (1994); https://doi.org/10.1016/0924-4247(94)00812-4
  204. M.Z. Ansari and C. Cho, Deflection, frequency, and stress characteristics of rectangular, triangular, and step profile microcantilevers for biosensors, Sensors, 9, No. 8: 6046 (2009); https://doi.org/10.3390/s90806046
  205. G. Rinaldi, M. Packirisamy, and I. Stiharu, Frequency tuning AFM optical levers using a slot, Microsyst. Technol., 14, No. 3: 361 (2008); https://doi.org/10.1007/s00542-007-0456-4
  206. O. Sigmund, Design of multiphysics actuators using topology optimization - Part I: One-material structures, Comput. Methods Appl. Mech. Eng., 190, Nos. 49–50: 6577 (2001); https://doi.org/10.1016/S0045-7825(01)00251-1
  207. B.C. Chen, E.C.N. Silva, and N. Kikuchi, Advances in computational design and optimization with application to MEMS, Int. J. Numer. Methods Eng., 52, Nos. 1–2: 23 (2001); https://doi.org/10.1002/nme.271
  208. M.M. Abdalla, C.K. Reddy, W.F. Faris, and Z. Gürdal, Optimal design of an electrostatically actuated microbeam for maximum pull-in voltage, Comput. Struct., 83, Nos. 15–16: 1320 (2005); https://doi.org/10.1016/j.compstruc.2004.07.010
  209. M.M. Joglekar and D.N. Pawaskar, Shape optimization of electrostatically actuated microbeams for extending static and dynamic operating ranges, Struct. Multidiscip. Optim., 46: 871 (2012); https://doi.org/10.1007/s00158-012-0804-6
  210. C. O’Mahony, M. Hill, R. Duane, and A. Mathewson, Analysis of electromechanical boundary effects on the pull-in of micromachined fixed–fixed beams, J. Micromech. Microeng., 13, No. 4: S75 (2003); https://doi.org/10.1088/0960-1317/13/4/312
  211. M. Lishchynska, N. Cordero, O. Slattery, and C. O’Mahony, Modelling electrostatic behaviour of microcantilevers incorporating residual stress gradient and non-ideal anchors, J. Micromech. Microeng., 15, No. 7: S10 (2005); https://doi.org/10.1088/0960-1317/15/7/002
  212. S. Pamidighantam, R. Puers, K. Baert, and H.A. Tilmans, Pull-in voltage analysis of electrostatically actuated beam structures with fixed–fixed and fixed–free end conditions, J. Micromech. Microeng., 12, No. 4: 458 (2002); https://doi.org/10.1088/0960-1317/12/4/319
  213. J.G. Lee, Computational materials science: an introduction, CRC Press (2016); https://doi.org/10.1201/9781315368429
  214. R.W. Hockney and J.W. Eastwood, Computer simulation using particles (CRC Press: 1988); https://doi.org/10.1201/9780367806934
  215. D.C. Rapaport, The art of molecular dynamics simulation (Cambridge University Press: 2004).
  216. S.D. Kenny, D. Mulliah, C.F. Sanz-Navarro, and R. Smith, Molecular dynamics simulations of nanoindentation and nanotribology, Philos. Trans. R. Soc. A, 363, No. 1833: 1949 (2005); https://doi.org/10.1098/rsta.2005.1621
  217. T.H. Fang and J.H. Wu, Molecular dynamics simulations on nanoindentation mechanisms of multilayered films, Comput. Mater. Sci., 43, No. 4: 785 (2008); https://doi.org/10.1016/j.commatsci.2008.01.066
  218. R. Komanduri, N. Chandrasekaran, and L.M. Raff, Molecular dynamics (MD) simulation of uniaxial tension of some single-crystal cubic metals at nanolevel, Int. J. Mech. Sci., 43, No. 10: 2237 (2001); https://doi.org/10.1016/S0020-7403(01)00043-1
  219. S.A. Kotrechko, A.V. Filatov, and A.V. Ovsjannikov, Molecular dynamics simulation of deformation and failure of nanocrystals of bcc metals, Theor. Appl. Fract. Mech., 45, No. 2: 92 (2006); https://doi.org/10.1016/j.tafmec.2006.02.002
  220. S. Kotrechko, O. Filatov, and O. Ovsjannikov, Peculiarities of plastic deformation and failure of nanoparticles of bcc transition metals, Mater. Sci. Forum, 567: 65 (2008); https://doi.org/10.4028/www.scientific.net/MSF.567-568.65
  221. C.J. Ruestes, I.A. Alhafez, and H.M. Urbassek, Atomistic studies of nanoindentation — a review of recent advances, Crystals, 7, No. 10: 293 (2017); https://doi.org/10.3390/cryst7100293
  222. T.X. Bui, Y.S. Lu, and T.H. Fang, Deformation Mechanism of NiCoCrFe/Cu Multilayers, Proc. Int. Conf. Appl. New Technol. Green Build (2024); https://doi.org/10.1109/ATiGB63471.2024.10717841
  223. S. Jun, T. Tashi, and H.S. Park, Size Dependence of the nonlinear elastic softening of nanoscale graphene monolayers under plane-strain bulge tests: a molecular dynamics study, J. Nanomater., 2011, No. 1: 380286 (2011); https://doi.org/10.1155/2011/380286