Сульфідування металевих поверхонь електроіскровим леґуванням. Ч. 2: Трибологічні властивості електроіскрового напорошення сірковмісного покриття

ТАРЕЛЬНИК В.Б.$^1$, ГАПОНОВА О.П.$^{2,3}$, ТАРЕЛЬНИК Н.В.$^1$, КОНОПЛЯНЧЕНКО Є.В.$^1$

$^1$Сумський національний аграрний університет, вул. Г. Кондратьєва, 160, 40021 Суми, Україна
$^2$Сумський державний університет, вул. Харківська, 116, 40007 Суми, Україна
$^3$Інститут фундаментальних технологічних досліджень Польської академії наук, вул. Павіньського, 5Б, 02-016 Варшава, Польща

Отримано 25.10.2024, остаточна версія 05.05.2025 Завантажити PDF logo PDF

Анотація
Розглянуто сутність і технологічні характеристики процесу електроіскрового леґування (ЕІЛ), його переваги та недоліки з метою його застосування для поліпшення трибологічних властивостей деталів із бронзи та криці. Зроблено узагальнення наявних літературних даних і результатів, що стосуються ЕІЛ. На основі опублікованих даних представлено порівняльну аналізу різних методик формування комбінованих електроіскрових покриттів (КЕІП) на бронзах, у склад яких входить Сульфур, вплив режимних параметрів і складу КЕІП на мікроструктуру, механічні та трибологічні властивості. Запропоновано методики для практичного застосування у виробництві. Досліджено методики формування самозмащувальних електроіскрових покриттів, що містять дисульфід Молібдену, на крицевих підкладинках. Наведено фізико-механічні характеристики покриттів, одержаних за різних стратегій, і характер зміни їх залежно від технологічних параметрів режиму ЕІЛ і типу вихідних матеріялів аноди, катоди та складу середовища, у якому відбувається процес ЕІЛ. Наведено зведені дані щодо трибологічних властивостей покриттів, одержаних із використанням різних електродних матеріялів і режимів на крицях. Було продемонстровано, що ЕІЛ можна успішно застосовувати для пониження коефіцієнта тертя та підвищення зносостійкости бронзових і крицевих поверхонь. Вказано пропоновані електродні матеріяли та параметри процесу EІЛ для модифікування поверхонь бронзи та криці.

Ключові слова: технологія, електроіскрове леґування, покриття, мікроструктура, триботехнічні властивості.

DOI: https://doi.org/10.15407/ufm.26.02.***

Citation: V.B. Tarelnyk, O.P. Haponova, N.V. Tarelnyk, and Ye.V. Konoplianchenko, Sulphurizing of Metal Surfaces by Electrospark-Discharge Alloying. Pt. 2: Tribological Properties of Electrospark Depositing Sulphur-Containing Coating, Progress in Physics of Metals, 26, No. 2: ***–*** (2025)


Цитована література   
  1. V.B. Tarelnyk, O.P. Haponova, N.V. Tarelnyk, and Ye.V. Konoplianchenko, Sulphurizing of metal surfaces by electrospark-discharge alloying. Pt. 1: Structural–phase state of sulphur-containing coatings on constructional steels, Progress in Physics of Metals, 26, No. 1: 146–200 (2025); https://doi.org/10.15407/ufm.26.01.151
  2. F.A.P. Fernandes, S.C. Heck, R.G. Pereira, and A. Lombardi-Neto, Journal of Achievements in Materials and Manufacturing Engineering, 40, No. 2: 175 (2010).
  3. S.H. Yeh, L.H. Chiu, and H. Chang, Engineering, Scientific Research Publishing, 9, No. 3: 942 (2011).
  4. S. Ben Slima, Materials Sciences and Applications, Scientific Research Publishing, 9, No. 3: 640 (2012); https://doi.org/10.4236/msa.2012.39093
  5. P. Baghery, M. Farzam, A.B. Mousavi, and M. Hosseini, Surface & Coatings Technology, 204, No. 23: 3804 (2010).
  6. M. Bembenek, P. Prysyazhnyuk, T. Shihab, R. Machnik, O. Ivanov, and L. Ropyak, Materials, 15, No. 14: 5074 (2022); https://doi.org/10.3390/ma15145074
  7. B.O. Trembach, M.G. Sukov, V.A. Vynar, I.O. Trembach, V.V. Subbotina, O.Yu. Rebrov, O.M. Rebrova, and V.I. Zakiev, Metallofizika i Noveishie Tekhnologii, 44, No. 4: 493 (2022); https://doi.org/10.15407/mfint.44.04.0493
  8. O.P. Umanskyi, M.S. Storozhenko, V.B. Tarelnyk, N.V. Tarelnyk, and T.V. Kurinna, Powder Metallurgy and Metal Ceramics, 59, Nos. 1–2: 57 (2020); https://doi.org/10.1007/s11106-020-00138-5
  9. C.P. Klages, M. Fryda, T. Matthke, L. Schafer, and H. Dimigen, International Journal of Refractory Metals & Hard Materials, 16: 171 (1998).
  10. P. Karvankova, M.G.J. Veprek-Heijman, O. Zindulka, A. Bergmaier, and S. Veprek, Surface and Coatings Technology, 163–164: 149 (2003); https://doi.org/10.1016/S0257-8972(02)00492-9
  11. A.D. Pogrebnjak, A.A. Bagdasaryan, P. Horodek, V. Tarelnyk, V.V. Buranich, H. Amekura, N. Okubo, N. Ishikawa, and V.M. Beresnev, Materials Letters, 303: 130548 (2021); https://doi.org/10.1016/j.matlet.2021.130548
  12. L. Ropyak, I. Schuliar, and O. Bohachenko, Eastern-European Journal of Enterprise Technologies, 1, No. 5: 53 (2016) (in Ukrainian); https://doi.org/10.15587/1729-4061.2016.59850
  13. I. Ivasenko, V. Posuvailo, H. Veselivska, and V. Vynar, International Scientific and Technical Conference on Computer Sciences and Information Technologies, 2: 9321900 (2020); https://doi.org/10.1109/CSIT49958.2020.9321900
  14. M. Bembenek, M. Makoviichuk, I. Shatskyi, L. Ropyak, I. Pritula, L. Gryn, and V. Belyakovskyi, Sensors, 22, No. 21: 8105 (2022); https://doi.org/10.3390/s22218105
  15. М.М. Student, V.M. Dovhunyk, V.M. Posuvailo, I.V. Koval’chuk, and V.M. Hvozdets’kyi, Materials Science, 53, No. 3: 359 (2017); https://doi.org/10.1007/s11003-017-0083-x
  16. O. Bazaluk, O. Dubei, L. Ropyak, M. Shovkoplias, T. Pryhorovska, and V. Lozynskyi, Energies, 15, No. 1: 83 (2022); https://doi.org/10.3390/en15010083
  17. B. Antoszewski, S. Tofil, M. Scendo, and W. Tarelnik, IOP Conference Series: Materials Science and Engineering, 233: 012036 (2017); https://doi.org/10.1088/1757-899X/233/1/012036
  18. V. Tarelnyk, I. Konoplianchenko, O. Gaponova, N. Tarelnyk, V. Martsynkovskyy, B. Sarzhanov, O. Sarzhanov, and B. Antoszewski, Powder Metallurgy and Metal Ceramics, 58: 703 (2020); https://doi.org/10.1007/s11106-020-00127-8
  19. S. Pylypaka, T. Volina, A. Nesvidomin, I. Zakharova, and A. Rebrіi, Lecture Notes in Mechanical Engineering (Springer: 2021), p. 156. https://doi.org/10.1007/978-3-030-77823-1_16
  20. S. Pylypaka, V. Nesvidomin, T. Volina, L. Sirykh, and L. Ivashyna, Agricul-tural Engineering, 62, No. 3: 79 (2020); https://doi.org/10.35633/inmateh-62-08
  21. T. Volina, S. Pylypaka, A. Rebrii, O. Pavlenko, and Ya. Kremets, Lecture Notes in Mechanical Engineering. Springer, 237 (2021). https://doi.org/10.1007/978-3-030-68014-5_24
  22. S. Pylypaka, T. Volina, M. Mukvich, G. Efremova, and O. Kozlova, Lecture Notes in Mechanical Engineering (Springer: 2021), p. 63; https://doi.org/10.1007/978-3-030-50491-5_7
  23. S. Pylypaka, T. Zaharova, O. Zalevska, D. Kozlov, and O. Podliniaieva, Lecture Notes in Mechanical Engineering (Springer: 2020), p. 582; https://doi.org/10.1007/978-3-030-40724-7_59
  24. K. Kostyk, I. Kuric, M. Saga, V. Kostyk, V. Ivanov, V. Kovalov, and I. Pavlenko, Appl. Sci., 12, No. 1: 469 (2022). https://doi.org/10.3390/app12010469
  25. V. Tarelnyk, I. Konoplianchenko, V. Martsynkovskyy, A. Zhukov, and P. Kurp, Lecture Notes in Mechanical Engineering (Springer: 2019), p. 382; https://doi.org/10.1007/978-3-319-93587-4_40
  26. O.M. Myslyvchenko, O.P. Gaponova, V.B. Tarelnyk, and M.O. Krapivka, Powder Metallurgy and Metal Ceramics, 59, Nos. 3–4: 201 (2020); https://doi.org/10.1007/s11106-020-00152-7
  27. V. Martsynkovskyy, V. Tarelnyk, I. Konoplianchenko, O. Gaponova, and M. Dumanchuk, Lecture Notes in Mechanical Engineering (Springer: 2020), p. 216; https://doi.org/10.1007/978-3-030-22365-6_22
  28. V. Martsinkovsky, V. Yurko, V. Tarelnik, and Yu. Filonenko, Procedia Engineering, 39: 157 (2012); https://doi.org/10.1016/j.proeng.2012.07.020
  29. V. Tarelnyk, I. Konoplianchenko, N. Tarelnyk, and A. Kozachenko, Materials Science Forum, 968: 131 (2019); https://doi.org/10.4028/www.scientific.net/MSF.968.131
  30. V.B. Tarelnik, O.P. Gaponova, E.V. Konoplyantschenko, N.S. Yevtushenko, and V.A. Gerasimenko, Metallofizika i Noveishie Tekhnologii, 40, No. 6: 795 (2018); https://doi.org/10.15407/mfint.40.06.0795
  31. C. Barile, C. Casavola, G. Pappalettera, and G. Renna, Coatings, 12, No. 10: 1536 (2022); https://doi.org/10.3390/coatings12101536
  32. O.P. Gaponova, V.B. Tarelnyk, N.V. Tarelnyk, and O.M. Myslyvchenko. JOM, 75, No. 9: 3400 (2023); https://doi.org/10.1007/s11837-023-05940-1
  33. O. Haponova, V. Tarelnyk, S. Marchenko, N. Tarelnyk, and I. Konoplianchenko, Nanocomposite and Nanocrystalline Materials and Coatings. Advanced Structured Materials (Springer: 2024), p. 181; https://doi.org/10.1007/978-981-97-2667-7_7
  34. V. Martsinkovsky, V. Yurko, V. Tarelnik, and Yu. Filonenko, Procedia Engineering, 39: 148 (2012); https://doi.org/10.1016/j.proeng.2012.07.019
  35. V. Tarelnyk, I. Konoplianchenko, O. Gaponova, B. Sarzhanov, and A. Polyvanyi, Proceedings of the 2022 IEEE 12th International Conference ‘Nanomaterials: Applications and Properties’, NAP 2022 (2022); https://doi.org/10.1109/NAP55339.2022.9934739
  36. V. Tarelnyk, V. Martsynkovskyy, and A. Dziuba, Applied Mechanics and Materials, 630: 388 (2014); https://doi.org/10.4028/www.scientific.net/AMM.630.388
  37. G. Cao, X. Zhang, G. Tang, and X. Ma, Journal of Materials Engineering and Performance, 28: 4086 (2019); https://doi.org/10.1007/s11665-019-04148-2
  38. O. Gaponova, C. Kundera, G. Kirik, V. Tarelnyk, V. Martsynkovskyy, Ie. Konoplianchenko, M. Dovzhyk, A. Belous, and O. Vasilenko, Advances in Thin Films, Nanostructured Materials, and Coatings. NAP 2018. Lecture Notes in Mechanical Engineering (Springer: 2019), p. 249; https://doi.org/10.1007/978-981-13-6133-3_25
  39. G.V. Kirik, O.P. Gaponova, V.B. Tarelnyk, O.M. Myslyvchenko, and B. Antoszewski, Powder Metallurgy and Metal Ceramics, 56, Nos. 11–12: 688 (2018); https://doi.org/10.1007/s11106-018-9944-6
  40. V.B. Tarelnyk, O.P. Gaponova, Ye.V. Konoplianchenko, V.S. Martsynkovskyy, N.V. Tarelnyk, and O.O. Vasylenko, Metallofizika i Noveishie Tekhnologii, 41, No. 1: 47 (2019); https://doi.org/10.15407/mfint.41.01.0047
  41. V.B. Tarelnyk, O.P. Gaponova, I.V. Konoplianchenko, and M.Ya. Dovzhyk, Metallofizika i Noveishie Tekhnologii, 39, No. 3: 363 (2017); https://doi.org/10.15407/mfint.39.03.0363
  42. V.B. Tarel’nyk, O.P. Gaponova, Y.V. Konoplyanchenko, and M.Y. Dovzhyk, Metallofizika i Noveishie Tekhnologii, 38, No. 12: 1611 (2016); https://doi.org/10.15407/mfint.38.12.1611
  43. J. Padgurskas, R. Kreivaitis, R. Rukuiža, V. Mihailov, V. Agafii, R. Kriūkienė, and A. Baltušnikas, Surface and Coatings Technology, 311: 90 (2017); https://doi.org/10.1016/j.surfcoat.2016.12.098
  44. V. Tarelnyk and V. Martsynkovskyy, Applied Mechanics and Materials, 630: 397 (2014); https://doi.org/10.4028/www.scientific.net/AMM.630.397
  45. V. Tarelnyk, I. Konoplianchenko, O. Gaponova, N. Tarelnyk, V. Martsynkovskyy, B. Sarzhanov, O. Sarzhanov, and B. Antoszewski, Powder Metallurgy and Metall Ceramics, 58: 703 (2020); https://doi.org/10.1007/s11106-020-00127-8
  46. V. Tarelnyk, A. Kozachenko, V. Martsynkovskyy, C. Kundera, and O. Gaponova, Proceedings of the 2018 IEEE 8th International Conference on Nanomaterials: Applications and Properties–NAP 2018 (2018), p. 8915077; https://doi.org/10.1109/NAP.2018.8915077
  47. V.B. Tarelnyk, O.P. Gaponova, Ie.V. Konoplianchenko, S.O. Gorovoy, and N.K. Medvedchuk, Metallofizika i Noveishie Tekhnologii, 44, No. 11: 1475 (2022); https://doi.org/10.15407/mfint.44.11.1475
  48. N.V. Tarelnyk, Metallofizika i Noveishie Tekhnologii, 44, No. 8: 1037 (2022); https://doi.org/10.15407/mfint.44.08.1037
  49. O.P. Gaponova and N.V. Tarelnyk, Metallofizika i Noveishie Tekhnologii, 44, No. 9: 1103–1115 (2022); https://doi.org/10.15407/mfint.44.09.1103
  50. V.B. Tarelnyk, O.P. Gaponova, I.E. Konoplianchenko, V.М. Zubko, and V.I. Melnyk, Metallofizika i Noveishie Tekhnologii, 44, No. 10: 1323 (2022). https://doi.org/10.15407/mfint.44.10.1323
  51. P.D. Enrique, C. Li, C. DiGiovanni, S. Peterkin, and N.Y. Zhou, Manufacturing Letters, 24: 123 (2020); https://doi.org/10.1016/j.mfglet.2020.04.009
  52. J. Xianda, L. Yong, and L. Chang, Aeronaut. Manuf. Technol., 63, No. 17: 61 (2020).
  53. M. Rukanskis, Surface Engineering and Applied Electrochemistry, 55, No. 5: 607 (2019); https://doi.org/10.3103/S1068375519050107
  54. V.B. Tarelnyk, O.P. Gaponova, Ye.V. Konoplianchenko, N.V. Tarelnyk, and O.O. Vasylenko, Metallofizika i Noveishie Tekhnologii, 41, No. 1: 47 (2019). https://doi.org/10.15407/mfint.41.01.0047
  55. V.B. Tarelnyk, O.P. Gaponova, Ye.V. Konoplianchenko, V.S. Martsynkovskyy, N.V. Tarelnyk, and O.O. Vasylenko, Metallofizika i Noveishie Tekhnologii, 41, No. 2: 173 (2019); https://doi.org/10.15407/mfint.41.02.0173
  56. V.B. Tarelnyk, O.P. Gaponova, Ye.V. Konoplianchenko, V.S. Martsynkovskyy, N.V. Tarelnyk, and O.O. Vasylenko, Metallofizika i Noveishie Tekhnologii, 41, No. 3: 313 (2019); https://doi.org/10.15407/mfint.41.03.0313
  57. Y. Hou, H. Han, G. Zheng, P. Zhang, and Q. Tian, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 238, No. 4: 1142 (2024); https://doi.org/10.1177/09544062231179088
  58. O.P. Gaponova, V.B. Tarelnyk, V.S. Martsynkovskyy, G.V. Kirik, and A.B. Batalova, Metallofizika i Noveishie Tekhnologii, 43, No. 8: 1121 (2021); https://doi.org/10.15407/MFINT.43.08.1121
  59. O.P. Gaponova, V.B. Tarelnyk, V.S. Martsynkovskyy, Y.I. Semirnenko, and O.V. Ryasnaya, Metallofizika i Noveishie Tekhnologii, 43, No. 9: 1155 (2021); https://doi.org/10.15407/mfint.43.09.1155
  60. O.P. Gaponova, V.B. Tarelnyk, V.S. Martsynkovskyy, M.M. Mayfat, and A.N. Kalnaguz, Metallofizika i Noveishie Tekhnologii, 43, No. 10: 1325 (2021); https://doi.org/10.15407/mfint.43.10.1325
  61. V.B. Tarelnik, O.P. Gaponova, E.V. Konoplyantschenko, N.S. Yevtushenko, and V.A. Gerasimenko, Metallofizika i Noveishie Tekhnologii, 40, No. 6: 795 (2018); https://doi.org/10.15407/mfint.40.06.0795
  62. V.B. Tarel’nik, A.V. Paustovskii, Y.G. Tkachenko, V.S. Martsinkovskii, A.V. Belous, E.V. Konoplyanchenko, and O.P. Gaponova, Surface Engineering and Applied Electrochemistry, 54: 147 (2018).
  63. V.B. Tarel’nik, A.V. Paustovskii, Y.G. Tkachenko, V.S. Martsinkovskii, E.V. Konoplyanchenko, and В. Antoshevskii, Surface Engineering and Applied Electrochemistry, 53: 285 (2017).
  64. V.B. Tarel’nik, V.S. Martsinkovskii, and A.N. Zhukov, Chemical and Petroleum Engineering, 53: 114 (2017).
  65. V.B. Tarel’nik, V.S. Martsinkovskii, and A.N. Zhukov, Chemical and Petroleum Engineering, 53: 266 (2017).
  66. V.B. Tarel’nik, V.S. Martsinkovskii, and A.N. Zhukov, Chemical and Petroleum Engineering, 53: 385 (2017).
  67. T.V. Mosina, A.D. Panasiuk, O.I. Pivdnia, and O.M. Hryhoriev, Poroshkova Metalurhiia, 9, No. 10: 104 (1999) (in Ukrainian).
  68. V.B. Tarelnyk, B. Antoshevskyi, V.S. Martsynkovskyi, P. Karp, and A.V. Dziuba, Kompresorne ta Ehnerhetychne Mashynobuduvannya, 1: 39 (2015) (in Ukrainian).
  69. V. Tarelnyk, V. Martsynkovskyy, O. Gaponova, Ie. Konoplianchenko, A. Belous, V. Gerasimenko, and M. Zakharov, 15th International Scientific and Engineering Conference Hermetic Sealing, Vibration Reliability and Ecological Safety of Pump and Compressor Machinery, 233: 012048 (2017).
  70. T.A. Roik, O.A. Gavrysh, Iu.Iu. Vitsiuk, and V.V. Kholiavko, Powder Metallurgy and Metal Ceramics, 62, Nos. 3–4: 215 (2023); https://doi.org/10.1007/s11106-023-00385-2
  71. D.B. Hlushkova, V.A. Bagrov, V.M. Volchuk, and U.A. Murzakhmetova, Functional Materials, 30, No. 1: 74 (2023); https://doi.org/10.15407/fm30.01.74
  72. V. Martsinkovsky, V. Yurko, V. Tarelnik, and Yu. Filonenko, Procedia Engineering, 39: 157 (2012); https://doi.org/10.1016/j.proeng.2012.07.020
  73. V. Tarelnyk, I. Konoplianchenko, V. Martsynkovskyy, A. Zhukov, and P. Kurp, Lecture Notes in Mechanical Engineering (Springer: 2019), p. 382; https://doi.org/10.1007/978-3-319-93587-4_40
  74. V. Martsinkovsky, V. Yurko, V. Tarelnik, and Yu. Filonenko, Procedia Engineering, 39: 148 (2012); https://doi.org/10.1016/j.proeng.2012.07.019
  75. T.N. Halchuk,; O.Yu. Povstyanoy, M. Bembenek, R.G. Redko, T.I. Chetverzhuk, and R.M. Polinkevych, Journal of Engineering Sciences, 10, No. 1: A22 (2023); https://doi.org/10.21272/jes.2023.10(1).a4
  76. M. Wasilczuk and M. Wodtke, Friction, 12: 812 (2024); https://doi.org/10.1007/s40544-023-0838-3
  77. A. Joseph, A.S. Vijayan, M.C. Shebeeb, K.S.Akshay, K.P.J. Mathew, and V. Sajith, Journal of Materials Chemistry A, 7: 3172 (2023); https://doi.org/10.1039/d2ta07821j
  78. B. Antoszewski and P. Kurp, Lubricants, 10, No. 5: 80 (2022); https://doi.org/10.3390/lubricants10050080
  79. S. Bouti, M.N. Аntonova, K. Hamouda, A.P. Babichev, and T. Sayah, Materials Science, 53: 739 (2018); https://doi.org/10.1007/s11003-018-0131-1
  80. P.M. Martin, Handbook of Deposition Technologies for Films and Coatings (Boston: William Andrew Publishing: 2010), p. 912.
  81. A. Seynstahl, M. Köbrich, T. Rosnitschek, M. Göken, and S. Tremmel, Surface and Coatings Technology, 477: 130343 (2024); https://doi.org/10.1016/j.surfcoat.2023.130343
  82. A. Altuntepe, S. Erkan, and G. Karadeniz, Eurasian Journal of Science Engineering and Technology, 4, No. 1: 36 (2023); https://doi.org/10.55696/ejset.1301601
  83. F. Bozheyev, D. Friedrich, M. Nie, M. Rengachari, and K. Ellmer, Physica Status Solidi A, 211, No. 9: 2013 (2014); https://doi.org/10.1002/pssa.201400016
  84. M.V. Nozhenkov, Mechanical Engineering Research, 3, No. 2: 73 (2013); https://doi.org/10.5539/mer.v3n2p73
  85. M. Poyraz and R.F. Tunay, Int. J. Surface Science and Engineering, 14, No. 2: 117 (2020); https://doi.org/10.1504/IJSURFSE.2020.108221
  86. X. Lu, X. Sui, X. Zhang, Z. Yan, and J. Hao, Industrial Lubrication and Tribology, 76, No. 1: 29 (2024); https://doi.org/10.1108/ILT-09-2023-0306
  87. H. Torres, T. Vuchkov, S. Slawik, C. Gachot, B. Prakash, and M.R. Ripoll, Wear, 408–409: 22 (2018); https://doi.org/10.1016/j.wear.2018.05.001
  88. Y.H. Yao, Y.C. Wu, Z.Y. Zhang, H. Zhu, M.N. Hu, K.Xu, and Y. Liu, Applied Surface Science, 605: 154635 (2022); https://doi.org/10.1016/j.apsusc.2022.154635
  89. S. Li, X. Zhao, Y. An, D. Liu, H. Zhou, and J. Chen, Ceramics International, 44, No. 15: 17864 (2018); https://doi.org/10.1016/j.ceramint.2018.06.258
  90. T.X. Liu, C.A. Guo, F.S. Lu, X.Y. Zhang, L. Zhang, Z.J. Wang, Z.Y. Xu, and G.L. Zhu, Chalcogenide Letters, 20, No. 10: 741 (2023); https://doi.org/10.15251/CL.2023.2010.741
  91. M. Yue, W. Zhao, S. Wang, J. Li, C. Zhu, H. Jin, and C. Guo, Chalcogenide Letters, 18, No. 10: 557 (2021); https://doi.org/10.15251/CL.2021.1810.557
  92. J. Wang, M. Zhang, S. Dai, and L. Zhu, Coatings, 13, No. 8: 1473 (2023); https://doi.org/10.3390/coatings13081473
  93. B. Antoszewski, O.P. Gaponova, V.B. Tarelnyk, O.M. Myslyvchenko, P. Kurp, T.I. Zhylenko, and I. Konoplianchenko, Materials, 14: 739 (2021); https://doi.org/10.3390/ma14040739
  94. H.L. Yang, X.M. Chen, L. Chen, Z.J. Wang, G.C. Hou, C.A. Guo, and J. Zhang, Digest Journal of Nanomaterials and Biostructures, 18, No. 1: 145 (2023); https://doi.org/10.15251/DJNB.2023.181.145
  95. V.B. Tarelnyk, O.P. Gaponova, V.B. Loboda, E.V. Konoplyanchenko, V.S. Martsinkovskii, Yu.I. Semirnenko, N.V. Tarelnyk, M.A. Mikulina, and B.A. Sarzhanov, Surface Engineering and Applied Electrochemistry, 57: 173 (2021); https://doi.org/10.3103/S1068375521020113
  96. C.X. Geng, H.X. Zhang, X.J. Li, and H.B. Geng, Materials Science and Engineering A, 868: 144746 (2023); https://doi.org/10.1016/j.msea.2023.144746
  97. J. Wang, M. Zhang, S. Dai, and L. Zhu, Coatings, 13, No. 8: 1473 (2023); https://doi.org/10.3390/coatings13081473
  98. T. Cao, S. Lei, and M. Zhang, Surface and Coatings Technology, 270: 24 (2015); https://doi.org/10.1016/j.surfcoat.2015.03.023
  99. C. Guo, F. Kong, S. Zhao, X. Yan, J. Yang, and J. Zhang, Chalcogenide Letters, 16, No. 7: 309 (2019).
  100. Ph.V. Kiryukhantsev-Korneev, A.N. Sheveyko, N.V. Shvindina, E.A. Levashov, and D.V. Shtansky, Ceramics International, 44, No. 7: 7637 (2018); https://doi.org/10.1016/j.ceramint.2018.01.187
  101. O. Haponova, V. Tarelnyk, T. Mościcki, N. Tarelnyk, J. Półrolniczak, O. Myslyvchenko, B. Adamczyk-Cieślak, and J. Sulej-Chojnacka, Coatings, 14: 563 (2024); https://doi.org/10.3390/coatings14050563
  102. N. Tarelnyk, The method of eliminating adhesion of electrodes during electrospark alloying of steel parts of equipment subject to radiation exposure, Patent 155134 UA МPК (2006), IPC B23P 6/00 (Bull. 3) (2024).
  103. J.M. Wang, G.H. Liu, Y.L. Fang, and W.K. Li, Reviews in Chemical Engineering, 32, No. 5: 551 (2016); https://doi.org/10.1515/revce-2015-0067
  104. Y. Tuo, Z. Yang, Z. Guo, Y. Chen, J. Hao, Q. Zhao, Y. Kang, Y. Zhang, and Y. Zhao, Vacuum, 207: 111687 (2023); https://doi.org/10.1016/j.vacuum.2022.111687
  105. Yu.S. Borysov, N.V. Vihilianska, O.M. Burlachenko, L.P. Olevska, and V.M. Lopata, Automatic Welding, 4: 41 (2022) (in Ukrainian); https://doi.org/10.37434/as2022.04.06
  106. L. Boichyshyn, M. Kovbuz, Yu. Kulyk, and V. Nosenko, Proc. Shevchenko Sci. Soc. Chem. Sci., XLII: 101 (2015).
  107. J. Houserová, J. Vřešťál, and M. Šob, Calphad, 29, No. 2: 133 (2005); https://doi.org/10.1016/j.calphad.2005.06.002
  108. W. Wang, M. Du, X. Zhang, C. Luan, and Y. Tian, Materials, 14: 3700 (2021); https://doi.org/10.3390/ma14133700
  109. O.P. Gaponova, B. Antoszewski, V.B. Tarelnyk, P. Kurp, O.M. Myslyvchenko, and N.V. Tarelnyk, Materials, 14: 6332 (2021); https://doi.org/10.3390/ma14216332