Sulphurizing of Metal Surfaces by Electrospark-Discharge Alloying. Pt. 2: Tribological Properties of Electrospark Depositing Sulphur-Containing Coating

TARELNYK V.B.$^1$, HAPONOVA O.P.$^{2,3}$, TARELNYK N.V.$^1$, and KONOPLIANCHENKO Ye.V.$^1$

$^1$Sumy National Agrarian University, 160 Herasyma Kondratieva Str., 40021 Sumy, Ukraine
$^2$Sumy State University, 116 Kharkivska Str., 40007 Sumy, Ukraine
$^3$Institute of Fundamental Technological Research, Polish Academy of Sciences, 5В Pawińskiego Str., 02-016 Warsaw, Poland

Received 25.10.2024, Final version 05.05.2025 Download PDF logo PDF

Abstract
The essence and technological characteristics of the electrospark alloying (ESA) process, its advantages and disadvantages have been considered in order to use it to improve the tribological properties of bronze and steel parts. A generalization of the available data and results in the literature concerned with the ESA process has been made. Based on the published data, a comparative analysis of various methods for forming combined electrospark coatings (CESC) on bronzes, which include sulphur, the influence of the mode parameters and the compositions of the CESC on the microstructure, mechanical and tribological properties are represented. The methods for practical application in production have been proposed. The methods for forming the self-lubricating electrospark coatings containing molybdenum disulphide on steel substrates have been investigated. There have been represented physical and mechanical characteristics of the coatings, which had been obtained using different strategies, as well as there has been disclosed the nature of their changes depending on the technological parameters of the ESA modes and the types of the starting materials for the anode and cathode, and on the compositions of the environment wherein the ESA process takes place. There have been given the summarized data on the tribological properties of the coatings, which had been obtained on some steel grades using different electrode materials and modes of operation. As demonstrated, the ESA method can be successfully used to reduce the coefficient of friction and to increase the wear resistance of bronze and steel surfaces. There have been specified the proposed electrode materials and ESA process parameters for modifying the surfaces made of some bronzes and steels.

Keywords: technology, electrospark alloying, coating, microstructure, tribotechnical properties.

DOI: https://doi.org/10.15407/ufm.26.02.***

Citation: V.B. Tarelnyk, O.P. Haponova, N.V. Tarelnyk, and Ye.V. Konoplianchenko, Sulphurizing of Metal Surfaces by Electrospark-Discharge Alloying. Pt. 2: Tribological Properties of Electrospark Depositing Sulphur-Containing Coating, Progress in Physics of Metals, 26, No. 2: ***–*** (2025)


References  
  1. V.B. Tarelnyk, O.P. Haponova, N.V. Tarelnyk, and Ye.V. Konoplianchenko, Sulphurizing of metal surfaces by electrospark-discharge alloying. Pt. 1: Structural–phase state of sulphur-containing coatings on constructional steels, Progress in Physics of Metals, 26, No. 1: 146–200 (2025); https://doi.org/10.15407/ufm.26.01.151
  2. F.A.P. Fernandes, S.C. Heck, R.G. Pereira, and A. Lombardi-Neto, Journal of Achievements in Materials and Manufacturing Engineering, 40, No. 2: 175 (2010).
  3. S.H. Yeh, L.H. Chiu, and H. Chang, Engineering, Scientific Research Publishing, 9, No. 3: 942 (2011).
  4. S. Ben Slima, Materials Sciences and Applications, Scientific Research Publishing, 9, No. 3: 640 (2012); https://doi.org/10.4236/msa.2012.39093
  5. P. Baghery, M. Farzam, A.B. Mousavi, and M. Hosseini, Surface & Coatings Technology, 204, No. 23: 3804 (2010).
  6. M. Bembenek, P. Prysyazhnyuk, T. Shihab, R. Machnik, O. Ivanov, and L. Ropyak, Materials, 15, No. 14: 5074 (2022); https://doi.org/10.3390/ma15145074
  7. B.O. Trembach, M.G. Sukov, V.A. Vynar, I.O. Trembach, V.V. Subbotina, O.Yu. Rebrov, O.M. Rebrova, and V.I. Zakiev, Metallofizika i Noveishie Tekhnologii, 44, No. 4: 493 (2022); https://doi.org/10.15407/mfint.44.04.0493
  8. O.P. Umanskyi, M.S. Storozhenko, V.B. Tarelnyk, N.V. Tarelnyk, and T.V. Kurinna, Powder Metallurgy and Metal Ceramics, 59, Nos. 1–2: 57 (2020); https://doi.org/10.1007/s11106-020-00138-5
  9. C.P. Klages, M. Fryda, T. Matthke, L. Schafer, and H. Dimigen, International Journal of Refractory Metals & Hard Materials, 16: 171 (1998).
  10. P. Karvankova, M.G.J. Veprek-Heijman, O. Zindulka, A. Bergmaier, and S. Veprek, Surface and Coatings Technology, 163–164: 149 (2003); https://doi.org/10.1016/S0257-8972(02)00492-9
  11. A.D. Pogrebnjak, A.A. Bagdasaryan, P. Horodek, V. Tarelnyk, V.V. Buranich, H. Amekura, N. Okubo, N. Ishikawa, and V.M. Beresnev, Materials Letters, 303: 130548 (2021); https://doi.org/10.1016/j.matlet.2021.130548
  12. L. Ropyak, I. Schuliar, and O. Bohachenko, Eastern-European Journal of Enterprise Technologies, 1, No. 5: 53 (2016) (in Ukrainian); https://doi.org/10.15587/1729-4061.2016.59850
  13. I. Ivasenko, V. Posuvailo, H. Veselivska, and V. Vynar, International Scientific and Technical Conference on Computer Sciences and Information Technologies, 2: 9321900 (2020); https://doi.org/10.1109/CSIT49958.2020.9321900
  14. M. Bembenek, M. Makoviichuk, I. Shatskyi, L. Ropyak, I. Pritula, L. Gryn, and V. Belyakovskyi, Sensors, 22, No. 21: 8105 (2022); https://doi.org/10.3390/s22218105
  15. М.М. Student, V.M. Dovhunyk, V.M. Posuvailo, I.V. Koval’chuk, and V.M. Hvozdets’kyi, Materials Science, 53, No. 3: 359 (2017); https://doi.org/10.1007/s11003-017-0083-x
  16. O. Bazaluk, O. Dubei, L. Ropyak, M. Shovkoplias, T. Pryhorovska, and V. Lozynskyi, Energies, 15, No. 1: 83 (2022); https://doi.org/10.3390/en15010083
  17. B. Antoszewski, S. Tofil, M. Scendo, and W. Tarelnik, IOP Conference Series: Materials Science and Engineering, 233: 012036 (2017); https://doi.org/10.1088/1757-899X/233/1/012036
  18. V. Tarelnyk, I. Konoplianchenko, O. Gaponova, N. Tarelnyk, V. Martsynkovskyy, B. Sarzhanov, O. Sarzhanov, and B. Antoszewski, Powder Metallurgy and Metal Ceramics, 58: 703 (2020); https://doi.org/10.1007/s11106-020-00127-8
  19. S. Pylypaka, T. Volina, A. Nesvidomin, I. Zakharova, and A. Rebrіi, Lecture Notes in Mechanical Engineering (Springer: 2021), p. 156. https://doi.org/10.1007/978-3-030-77823-1_16
  20. S. Pylypaka, V. Nesvidomin, T. Volina, L. Sirykh, and L. Ivashyna, Agricul-tural Engineering, 62, No. 3: 79 (2020); https://doi.org/10.35633/inmateh-62-08
  21. T. Volina, S. Pylypaka, A. Rebrii, O. Pavlenko, and Ya. Kremets, Lecture Notes in Mechanical Engineering. Springer, 237 (2021). https://doi.org/10.1007/978-3-030-68014-5_24
  22. S. Pylypaka, T. Volina, M. Mukvich, G. Efremova, and O. Kozlova, Lecture Notes in Mechanical Engineering (Springer: 2021), p. 63; https://doi.org/10.1007/978-3-030-50491-5_7
  23. S. Pylypaka, T. Zaharova, O. Zalevska, D. Kozlov, and O. Podliniaieva, Lecture Notes in Mechanical Engineering (Springer: 2020), p. 582; https://doi.org/10.1007/978-3-030-40724-7_59
  24. K. Kostyk, I. Kuric, M. Saga, V. Kostyk, V. Ivanov, V. Kovalov, and I. Pavlenko, Appl. Sci., 12, No. 1: 469 (2022). https://doi.org/10.3390/app12010469
  25. V. Tarelnyk, I. Konoplianchenko, V. Martsynkovskyy, A. Zhukov, and P. Kurp, Lecture Notes in Mechanical Engineering (Springer: 2019), p. 382; https://doi.org/10.1007/978-3-319-93587-4_40
  26. O.M. Myslyvchenko, O.P. Gaponova, V.B. Tarelnyk, and M.O. Krapivka, Powder Metallurgy and Metal Ceramics, 59, Nos. 3–4: 201 (2020); https://doi.org/10.1007/s11106-020-00152-7
  27. V. Martsynkovskyy, V. Tarelnyk, I. Konoplianchenko, O. Gaponova, and M. Dumanchuk, Lecture Notes in Mechanical Engineering (Springer: 2020), p. 216; https://doi.org/10.1007/978-3-030-22365-6_22
  28. V. Martsinkovsky, V. Yurko, V. Tarelnik, and Yu. Filonenko, Procedia Engineering, 39: 157 (2012); https://doi.org/10.1016/j.proeng.2012.07.020
  29. V. Tarelnyk, I. Konoplianchenko, N. Tarelnyk, and A. Kozachenko, Materials Science Forum, 968: 131 (2019); https://doi.org/10.4028/www.scientific.net/MSF.968.131
  30. V.B. Tarelnik, O.P. Gaponova, E.V. Konoplyantschenko, N.S. Yevtushenko, and V.A. Gerasimenko, Metallofizika i Noveishie Tekhnologii, 40, No. 6: 795 (2018); https://doi.org/10.15407/mfint.40.06.0795
  31. C. Barile, C. Casavola, G. Pappalettera, and G. Renna, Coatings, 12, No. 10: 1536 (2022); https://doi.org/10.3390/coatings12101536
  32. O.P. Gaponova, V.B. Tarelnyk, N.V. Tarelnyk, and O.M. Myslyvchenko. JOM, 75, No. 9: 3400 (2023); https://doi.org/10.1007/s11837-023-05940-1
  33. O. Haponova, V. Tarelnyk, S. Marchenko, N. Tarelnyk, and I. Konoplianchenko, Nanocomposite and Nanocrystalline Materials and Coatings. Advanced Structured Materials (Springer: 2024), p. 181; https://doi.org/10.1007/978-981-97-2667-7_7
  34. V. Martsinkovsky, V. Yurko, V. Tarelnik, and Yu. Filonenko, Procedia Engineering, 39: 148 (2012); https://doi.org/10.1016/j.proeng.2012.07.019
  35. V. Tarelnyk, I. Konoplianchenko, O. Gaponova, B. Sarzhanov, and A. Polyvanyi, Proceedings of the 2022 IEEE 12th International Conference ‘Nanomaterials: Applications and Properties’, NAP 2022 (2022); https://doi.org/10.1109/NAP55339.2022.9934739
  36. V. Tarelnyk, V. Martsynkovskyy, and A. Dziuba, Applied Mechanics and Materials, 630: 388 (2014); https://doi.org/10.4028/www.scientific.net/AMM.630.388
  37. G. Cao, X. Zhang, G. Tang, and X. Ma, Journal of Materials Engineering and Performance, 28: 4086 (2019); https://doi.org/10.1007/s11665-019-04148-2
  38. O. Gaponova, C. Kundera, G. Kirik, V. Tarelnyk, V. Martsynkovskyy, Ie. Konoplianchenko, M. Dovzhyk, A. Belous, and O. Vasilenko, Advances in Thin Films, Nanostructured Materials, and Coatings. NAP 2018. Lecture Notes in Mechanical Engineering (Springer: 2019), p. 249; https://doi.org/10.1007/978-981-13-6133-3_25
  39. G.V. Kirik, O.P. Gaponova, V.B. Tarelnyk, O.M. Myslyvchenko, and B. Antoszewski, Powder Metallurgy and Metal Ceramics, 56, Nos. 11–12: 688 (2018); https://doi.org/10.1007/s11106-018-9944-6
  40. V.B. Tarelnyk, O.P. Gaponova, Ye.V. Konoplianchenko, V.S. Martsynkovskyy, N.V. Tarelnyk, and O.O. Vasylenko, Metallofizika i Noveishie Tekhnologii, 41, No. 1: 47 (2019); https://doi.org/10.15407/mfint.41.01.0047
  41. V.B. Tarelnyk, O.P. Gaponova, I.V. Konoplianchenko, and M.Ya. Dovzhyk, Metallofizika i Noveishie Tekhnologii, 39, No. 3: 363 (2017); https://doi.org/10.15407/mfint.39.03.0363
  42. V.B. Tarel’nyk, O.P. Gaponova, Y.V. Konoplyanchenko, and M.Y. Dovzhyk, Metallofizika i Noveishie Tekhnologii, 38, No. 12: 1611 (2016); https://doi.org/10.15407/mfint.38.12.1611
  43. J. Padgurskas, R. Kreivaitis, R. Rukuiža, V. Mihailov, V. Agafii, R. Kriūkienė, and A. Baltušnikas, Surface and Coatings Technology, 311: 90 (2017); https://doi.org/10.1016/j.surfcoat.2016.12.098
  44. V. Tarelnyk and V. Martsynkovskyy, Applied Mechanics and Materials, 630: 397 (2014); https://doi.org/10.4028/www.scientific.net/AMM.630.397
  45. V. Tarelnyk, I. Konoplianchenko, O. Gaponova, N. Tarelnyk, V. Martsynkovskyy, B. Sarzhanov, O. Sarzhanov, and B. Antoszewski, Powder Metallurgy and Metall Ceramics, 58: 703 (2020); https://doi.org/10.1007/s11106-020-00127-8
  46. V. Tarelnyk, A. Kozachenko, V. Martsynkovskyy, C. Kundera, and O. Gaponova, Proceedings of the 2018 IEEE 8th International Conference on Nanomaterials: Applications and Properties–NAP 2018 (2018), p. 8915077; https://doi.org/10.1109/NAP.2018.8915077
  47. V.B. Tarelnyk, O.P. Gaponova, Ie.V. Konoplianchenko, S.O. Gorovoy, and N.K. Medvedchuk, Metallofizika i Noveishie Tekhnologii, 44, No. 11: 1475 (2022); https://doi.org/10.15407/mfint.44.11.1475
  48. N.V. Tarelnyk, Metallofizika i Noveishie Tekhnologii, 44, No. 8: 1037 (2022); https://doi.org/10.15407/mfint.44.08.1037
  49. O.P. Gaponova and N.V. Tarelnyk, Metallofizika i Noveishie Tekhnologii, 44, No. 9: 1103–1115 (2022); https://doi.org/10.15407/mfint.44.09.1103
  50. V.B. Tarelnyk, O.P. Gaponova, I.E. Konoplianchenko, V.М. Zubko, and V.I. Melnyk, Metallofizika i Noveishie Tekhnologii, 44, No. 10: 1323 (2022). https://doi.org/10.15407/mfint.44.10.1323
  51. P.D. Enrique, C. Li, C. DiGiovanni, S. Peterkin, and N.Y. Zhou, Manufacturing Letters, 24: 123 (2020); https://doi.org/10.1016/j.mfglet.2020.04.009
  52. J. Xianda, L. Yong, and L. Chang, Aeronaut. Manuf. Technol., 63, No. 17: 61 (2020).
  53. M. Rukanskis, Surface Engineering and Applied Electrochemistry, 55, No. 5: 607 (2019); https://doi.org/10.3103/S1068375519050107
  54. V.B. Tarelnyk, O.P. Gaponova, Ye.V. Konoplianchenko, N.V. Tarelnyk, and O.O. Vasylenko, Metallofizika i Noveishie Tekhnologii, 41, No. 1: 47 (2019). https://doi.org/10.15407/mfint.41.01.0047
  55. V.B. Tarelnyk, O.P. Gaponova, Ye.V. Konoplianchenko, V.S. Martsynkovskyy, N.V. Tarelnyk, and O.O. Vasylenko, Metallofizika i Noveishie Tekhnologii, 41, No. 2: 173 (2019); https://doi.org/10.15407/mfint.41.02.0173
  56. V.B. Tarelnyk, O.P. Gaponova, Ye.V. Konoplianchenko, V.S. Martsynkovskyy, N.V. Tarelnyk, and O.O. Vasylenko, Metallofizika i Noveishie Tekhnologii, 41, No. 3: 313 (2019); https://doi.org/10.15407/mfint.41.03.0313
  57. Y. Hou, H. Han, G. Zheng, P. Zhang, and Q. Tian, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 238, No. 4: 1142 (2024); https://doi.org/10.1177/09544062231179088
  58. O.P. Gaponova, V.B. Tarelnyk, V.S. Martsynkovskyy, G.V. Kirik, and A.B. Batalova, Metallofizika i Noveishie Tekhnologii, 43, No. 8: 1121 (2021); https://doi.org/10.15407/MFINT.43.08.1121
  59. O.P. Gaponova, V.B. Tarelnyk, V.S. Martsynkovskyy, Y.I. Semirnenko, and O.V. Ryasnaya, Metallofizika i Noveishie Tekhnologii, 43, No. 9: 1155 (2021); https://doi.org/10.15407/mfint.43.09.1155
  60. O.P. Gaponova, V.B. Tarelnyk, V.S. Martsynkovskyy, M.M. Mayfat, and A.N. Kalnaguz, Metallofizika i Noveishie Tekhnologii, 43, No. 10: 1325 (2021); https://doi.org/10.15407/mfint.43.10.1325
  61. V.B. Tarelnik, O.P. Gaponova, E.V. Konoplyantschenko, N.S. Yevtushenko, and V.A. Gerasimenko, Metallofizika i Noveishie Tekhnologii, 40, No. 6: 795 (2018); https://doi.org/10.15407/mfint.40.06.0795
  62. V.B. Tarel’nik, A.V. Paustovskii, Y.G. Tkachenko, V.S. Martsinkovskii, A.V. Belous, E.V. Konoplyanchenko, and O.P. Gaponova, Surface Engineering and Applied Electrochemistry, 54: 147 (2018).
  63. V.B. Tarel’nik, A.V. Paustovskii, Y.G. Tkachenko, V.S. Martsinkovskii, E.V. Konoplyanchenko, and В. Antoshevskii, Surface Engineering and Applied Electrochemistry, 53: 285 (2017).
  64. V.B. Tarel’nik, V.S. Martsinkovskii, and A.N. Zhukov, Chemical and Petroleum Engineering, 53: 114 (2017).
  65. V.B. Tarel’nik, V.S. Martsinkovskii, and A.N. Zhukov, Chemical and Petroleum Engineering, 53: 266 (2017).
  66. V.B. Tarel’nik, V.S. Martsinkovskii, and A.N. Zhukov, Chemical and Petroleum Engineering, 53: 385 (2017).
  67. T.V. Mosina, A.D. Panasiuk, O.I. Pivdnia, and O.M. Hryhoriev, Poroshkova Metalurhiia, 9, No. 10: 104 (1999) (in Ukrainian).
  68. V.B. Tarelnyk, B. Antoshevskyi, V.S. Martsynkovskyi, P. Karp, and A.V. Dziuba, Kompresorne ta Ehnerhetychne Mashynobuduvannya, 1: 39 (2015) (in Ukrainian).
  69. V. Tarelnyk, V. Martsynkovskyy, O. Gaponova, Ie. Konoplianchenko, A. Belous, V. Gerasimenko, and M. Zakharov, 15th International Scientific and Engineering Conference Hermetic Sealing, Vibration Reliability and Ecological Safety of Pump and Compressor Machinery, 233: 012048 (2017).
  70. T.A. Roik, O.A. Gavrysh, Iu.Iu. Vitsiuk, and V.V. Kholiavko, Powder Metallurgy and Metal Ceramics, 62, Nos. 3–4: 215 (2023); https://doi.org/10.1007/s11106-023-00385-2
  71. D.B. Hlushkova, V.A. Bagrov, V.M. Volchuk, and U.A. Murzakhmetova, Functional Materials, 30, No. 1: 74 (2023); https://doi.org/10.15407/fm30.01.74
  72. V. Martsinkovsky, V. Yurko, V. Tarelnik, and Yu. Filonenko, Procedia Engineering, 39: 157 (2012); https://doi.org/10.1016/j.proeng.2012.07.020
  73. V. Tarelnyk, I. Konoplianchenko, V. Martsynkovskyy, A. Zhukov, and P. Kurp, Lecture Notes in Mechanical Engineering (Springer: 2019), p. 382; https://doi.org/10.1007/978-3-319-93587-4_40
  74. V. Martsinkovsky, V. Yurko, V. Tarelnik, and Yu. Filonenko, Procedia Engineering, 39: 148 (2012); https://doi.org/10.1016/j.proeng.2012.07.019
  75. T.N. Halchuk,; O.Yu. Povstyanoy, M. Bembenek, R.G. Redko, T.I. Chetverzhuk, and R.M. Polinkevych, Journal of Engineering Sciences, 10, No. 1: A22 (2023); https://doi.org/10.21272/jes.2023.10(1).a4
  76. M. Wasilczuk and M. Wodtke, Friction, 12: 812 (2024); https://doi.org/10.1007/s40544-023-0838-3
  77. A. Joseph, A.S. Vijayan, M.C. Shebeeb, K.S.Akshay, K.P.J. Mathew, and V. Sajith, Journal of Materials Chemistry A, 7: 3172 (2023); https://doi.org/10.1039/d2ta07821j
  78. B. Antoszewski and P. Kurp, Lubricants, 10, No. 5: 80 (2022); https://doi.org/10.3390/lubricants10050080
  79. S. Bouti, M.N. Аntonova, K. Hamouda, A.P. Babichev, and T. Sayah, Materials Science, 53: 739 (2018); https://doi.org/10.1007/s11003-018-0131-1
  80. P.M. Martin, Handbook of Deposition Technologies for Films and Coatings (Boston: William Andrew Publishing: 2010), p. 912.
  81. A. Seynstahl, M. Köbrich, T. Rosnitschek, M. Göken, and S. Tremmel, Surface and Coatings Technology, 477: 130343 (2024); https://doi.org/10.1016/j.surfcoat.2023.130343
  82. A. Altuntepe, S. Erkan, and G. Karadeniz, Eurasian Journal of Science Engineering and Technology, 4, No. 1: 36 (2023); https://doi.org/10.55696/ejset.1301601
  83. F. Bozheyev, D. Friedrich, M. Nie, M. Rengachari, and K. Ellmer, Physica Status Solidi A, 211, No. 9: 2013 (2014); https://doi.org/10.1002/pssa.201400016
  84. M.V. Nozhenkov, Mechanical Engineering Research, 3, No. 2: 73 (2013); https://doi.org/10.5539/mer.v3n2p73
  85. M. Poyraz and R.F. Tunay, Int. J. Surface Science and Engineering, 14, No. 2: 117 (2020); https://doi.org/10.1504/IJSURFSE.2020.108221
  86. X. Lu, X. Sui, X. Zhang, Z. Yan, and J. Hao, Industrial Lubrication and Tribology, 76, No. 1: 29 (2024); https://doi.org/10.1108/ILT-09-2023-0306
  87. H. Torres, T. Vuchkov, S. Slawik, C. Gachot, B. Prakash, and M.R. Ripoll, Wear, 408–409: 22 (2018); https://doi.org/10.1016/j.wear.2018.05.001
  88. Y.H. Yao, Y.C. Wu, Z.Y. Zhang, H. Zhu, M.N. Hu, K.Xu, and Y. Liu, Applied Surface Science, 605: 154635 (2022); https://doi.org/10.1016/j.apsusc.2022.154635
  89. S. Li, X. Zhao, Y. An, D. Liu, H. Zhou, and J. Chen, Ceramics International, 44, No. 15: 17864 (2018); https://doi.org/10.1016/j.ceramint.2018.06.258
  90. T.X. Liu, C.A. Guo, F.S. Lu, X.Y. Zhang, L. Zhang, Z.J. Wang, Z.Y. Xu, and G.L. Zhu, Chalcogenide Letters, 20, No. 10: 741 (2023); https://doi.org/10.15251/CL.2023.2010.741
  91. M. Yue, W. Zhao, S. Wang, J. Li, C. Zhu, H. Jin, and C. Guo, Chalcogenide Letters, 18, No. 10: 557 (2021); https://doi.org/10.15251/CL.2021.1810.557
  92. J. Wang, M. Zhang, S. Dai, and L. Zhu, Coatings, 13, No. 8: 1473 (2023); https://doi.org/10.3390/coatings13081473
  93. B. Antoszewski, O.P. Gaponova, V.B. Tarelnyk, O.M. Myslyvchenko, P. Kurp, T.I. Zhylenko, and I. Konoplianchenko, Materials, 14: 739 (2021); https://doi.org/10.3390/ma14040739
  94. H.L. Yang, X.M. Chen, L. Chen, Z.J. Wang, G.C. Hou, C.A. Guo, and J. Zhang, Digest Journal of Nanomaterials and Biostructures, 18, No. 1: 145 (2023); https://doi.org/10.15251/DJNB.2023.181.145
  95. V.B. Tarelnyk, O.P. Gaponova, V.B. Loboda, E.V. Konoplyanchenko, V.S. Martsinkovskii, Yu.I. Semirnenko, N.V. Tarelnyk, M.A. Mikulina, and B.A. Sarzhanov, Surface Engineering and Applied Electrochemistry, 57: 173 (2021); https://doi.org/10.3103/S1068375521020113
  96. C.X. Geng, H.X. Zhang, X.J. Li, and H.B. Geng, Materials Science and Engineering A, 868: 144746 (2023); https://doi.org/10.1016/j.msea.2023.144746
  97. J. Wang, M. Zhang, S. Dai, and L. Zhu, Coatings, 13, No. 8: 1473 (2023); https://doi.org/10.3390/coatings13081473
  98. T. Cao, S. Lei, and M. Zhang, Surface and Coatings Technology, 270: 24 (2015); https://doi.org/10.1016/j.surfcoat.2015.03.023
  99. C. Guo, F. Kong, S. Zhao, X. Yan, J. Yang, and J. Zhang, Chalcogenide Letters, 16, No. 7: 309 (2019).
  100. Ph.V. Kiryukhantsev-Korneev, A.N. Sheveyko, N.V. Shvindina, E.A. Levashov, and D.V. Shtansky, Ceramics International, 44, No. 7: 7637 (2018); https://doi.org/10.1016/j.ceramint.2018.01.187
  101. O. Haponova, V. Tarelnyk, T. Mościcki, N. Tarelnyk, J. Półrolniczak, O. Myslyvchenko, B. Adamczyk-Cieślak, and J. Sulej-Chojnacka, Coatings, 14: 563 (2024); https://doi.org/10.3390/coatings14050563
  102. N. Tarelnyk, The method of eliminating adhesion of electrodes during electrospark alloying of steel parts of equipment subject to radiation exposure, Patent 155134 UA МPК (2006), IPC B23P 6/00 (Bull. 3) (2024).
  103. J.M. Wang, G.H. Liu, Y.L. Fang, and W.K. Li, Reviews in Chemical Engineering, 32, No. 5: 551 (2016); https://doi.org/10.1515/revce-2015-0067
  104. Y. Tuo, Z. Yang, Z. Guo, Y. Chen, J. Hao, Q. Zhao, Y. Kang, Y. Zhang, and Y. Zhao, Vacuum, 207: 111687 (2023); https://doi.org/10.1016/j.vacuum.2022.111687
  105. Yu.S. Borysov, N.V. Vihilianska, O.M. Burlachenko, L.P. Olevska, and V.M. Lopata, Automatic Welding, 4: 41 (2022) (in Ukrainian); https://doi.org/10.37434/as2022.04.06
  106. L. Boichyshyn, M. Kovbuz, Yu. Kulyk, and V. Nosenko, Proc. Shevchenko Sci. Soc. Chem. Sci., XLII: 101 (2015).
  107. J. Houserová, J. Vřešťál, and M. Šob, Calphad, 29, No. 2: 133 (2005); https://doi.org/10.1016/j.calphad.2005.06.002
  108. W. Wang, M. Du, X. Zhang, C. Luan, and Y. Tian, Materials, 14: 3700 (2021); https://doi.org/10.3390/ma14133700
  109. O.P. Gaponova, B. Antoszewski, V.B. Tarelnyk, P. Kurp, O.M. Myslyvchenko, and N.V. Tarelnyk, Materials, 14: 6332 (2021); https://doi.org/10.3390/ma14216332