Адитивні технології 3D-друку металами

ЛАТИПОВА М.А.$^{1}$, ТУРДАЛІЄВ А.Т.$^{2}$

$^1$Карагандинський індустріальний університет, просп. Республіки, 30, 101400 Темиртау, Казахстан
$^2$Південно-Казахстанський університет ім. М. Ауезова, просп. Тауке хана, 5, 160012 Шимкент, Казахстан

Отримано 01.02.2024, остаточна версія 26.04.2024 Завантажити PDF logo PDF

Анотація
Адитивні технології 3D-друку, що динамічно розвиваються швидкими темпами, використовуються у прогресивних виробництвах. Є кілька видів адитивних технологій, заснованих на різних фізичних принципах: селективне лазерне плавлення, електронно-променеве плавлення, моделювання методом пошарового натоплення, пошарове ламінування тощо. Усіх їх об’єднано одним технологічним принципом — одержанням виробів методом пошарової побудови. Як і традиційні технології формування виробів, кожен із типів адитивних технологій має свої переваги та недоліки. Основними матеріалами, з яких традиційно одержують функціональні вироби різного призначення, є метали та сплави. Для виробництва виробів із металів найбільш відпрацьованими у світі є наразі дві основні технології: селективне лазерне й електронно-променеве плавлення. Незважаючи на високу точність і непогану якість одержуваних виробів, ці технології мають низку недоліків, що стосуються як високої вартости самого технологічного обладнання, так і сировинних матеріалів.

Ключові слова: селективне лазерне топлення, адитивні технології, мікроструктура, керування мікроструктурою, термічне оброблення.

DOI: https://doi.org/10.15407/ufm.25.02.386

Citation: M.A. Latypova and A.T. Turdaliev, Additive Technologies for 3D Printing with Metals, Progress in Physics of Metals, 25, No. 2: 386–415 (2024)


Цитована література   
  1. W.E. King, A.T. Anderson, R.M. Ferencz, N.E. Hodge, C. Kamath, S.A. Khairallah, and A.M. Rubenchik, Appl. Phys. Rev., 2: 41304 (2015). https://doi.org/10.1063/1.4937809
  2. K. Osakada and M. Shiomi, Int. J. Machine Tools & Manufacture, 46: 1188 (2006). https://doi.org/10.1016/j.ijmachtools.2006.01.024
  3. I.E. Volokitina, Met. Sci. Heat Treat., 61, Nos. 3–4: 234 (2019). https://doi.org/10.1007/s11041-019-00406-1
  4. X.P. Li, C.W. Kang, H. Huang, L.C. Zhang, and T.B. Sercombe, Mater. Sci. Eng. A, 606: 370 (2014). https://doi.org/https://doi.org/10.1016/j.msea.2014.03.097
  5. I.E. Volokitina, A.V. Volokitin, M.A. Latypova, V.V. Chigirinsky, and A.S. Kolesnikov, Prog. Phys. Met., 24, No. 1: 132 (2023). https://doi.org/10.15407/ufm.24.01.132
  6. R. Morgan, C. Sutcliffe, and W. O’Neill, J. Mater. Sci., 39, No. 4: 1195 (2004).
  7. J. Majumdar and I. Manna, Laser Process. Mater., 28: 495 (2003). https://doi.org/10.1007/BF02706446
  8. A. Bychkov and A. Kolesnikov, Metallogr. Microstruct. Anal., 12, No. 3: 564 (2023). https://doi.org/10.1007/s13632-023-00966-y
  9. I.E. Volokitinа and A.V. Volokitin, Metallurgist, 67: 232 (2023). https://doi.org/10.1007/s11015-023-01510-7
  10. I. Volokitina, B. Sapargaliyeva, A. Agabekova, G. Ulyeva, A. Yerzhanov, and P. Kozlov, Case Studies Construct. Mater., 18: e02162 (2023). https://doi.org/10.1016/j.cscm.2023.e02162
  11. C.Y. Yap, C.K. Chua, Z.L. Dong, Z.H. Liu, D.Q. Zhang, L.E. Loh, and S.L. Sing, Appl. Phys. Rev. 2 (2015). https://doi.org/10.1063/1.4935926
  12. I.E. Volokitina, A.V. Volokitin, and E.A. Panin, Prog. Phys. Met., 23, No. 4: 684 (2022). https://doi.org/10.15407/ufm.23.04.684
  13. A. Naizabekov, A. Volokitin, and E. Panin, J. Mater. Eng. Perform., 28, No. 3: 1762(2019). https://doi.org/10.1007/s11665-019-3880-6
  14. H.D. Zhao, F. Wang, Y.Y. Li, and W. Xia, J. Mater. Process. Technol., 219: 4537 (2009).
  15. A. Denissova, Y. Kuatbay, and Y. Liseitsev, Case Studies Construct. Mater., 19: e023462023. https://doi.org/10.1016/j.cscm.2023.e02346
  16. A.B. Spierings, K. Dawson, K. Kern, F. Palm, and K. Wegener, Mater. Sci. Eng. A, 701: 264 (2017). https://doi.org/10.1016/j.msea.2017.06.089
  17. V. Manakari, G. Parande, and M. Gupta, Metals, 7, No. 1: 2 (2017). https://doi.org/10.3390/met7010002
  18. K. Wei, M. Gao, Z. Wang, and X. Zeng, Mater. Sci. Eng. A, 611: 212 (2014). https://doi.org/10.1016/j.msea.2014.05.092
  19. L. Thijs, F. Verhaeghe, T. Craeghs, and Jean-Pierre Kruth, Acta Mater., 58, No. 9: 3303 (2010). https://doi.org/10.1016/j.actamat.2010.02.004
  20. J.-P. Kruth, G. Levy, F. Klocke, and T.H.C. Childs, CIRP Annals, 56, No. 2: 730 (2007).
  21. S. Lezhnev, A. Naizabekov, E. Panin, and I. Volokitina, Procedia Engineering, 81: 15 (2014). https://doi.org/10.1016/j.proeng.2014.10.180
  22. M. Avalle, G. Belingardi, M.P. Cavatorta, and R. Doglione, Int. J. Fatigue, 24: 1 (2002).
  23. I. Gibson, D.W. Rosen, and B. Stucker, Additive Manufacturing Technologies, 160 (Boston, MA: Springer: 2010), p. 160. https://doi.org/10.1007/978-1-4419-1120-9_6
  24. X. Gong, T. Anderson, and K. Chou, Proc. ASME/ISCIE Int. Symp. Flexible Automation. American Society of Mechanical Engineers (June 18–20, 2012, St. Louis, Missouri, USA), p. 507. https://doi.org/10.1115/ISFA2012-7256
  25. J. Milberg and M. Sigl, Prod. Eng. Res. Devel., 2: 117 (2008). https://doi.org/10.1007/s11740-008-0088-2
  26. L.E. Murr, E. Martinez, S. Gaytan, D. Ramirez, B. Machado, P. Shindo, J. Martinez, F. Medina, J. Wooten, and D. Ciscel, Metall. Mater. Trans. A, 42: 3491 (2011).
  27. S. Biamino, A. Penna, U. Ackelid, S. Sabbadini, O. Tassa, P. Fino, M. Pavese, P. Gennaro, and C. Badini, Intermetallics, 19, No. 6: 776 (2011).
  28. I. Volokitina, E. Siziakova, R. Fediuk, and A. Kolesnikov, Materials, 15, No. 14: 4930 (2022). https://doi.org/10.3390/ma15144930
  29. A. Antonysamy, J. Meyer, and P. Prangnell, Mater. Charact., 84: 153 (2013). https://doi.org/10.1016/j.matchar.2013.07.012
  30. Y.-Y. Kim, Acta Metall. Mater., 40, No. 6: 1121 (1992). https://doi.org/10.1016/0956-7151(92)90411-7
  31. S. Draper, G. Das, I. Locci, J. Whittenberger, B. Lerch, and H. Kestler, Mater. Sci. Eng. A, 243, No. 1: 257 (1998).
  32. P. Heinl, C. Körner, and R.F. Singer, Adv. Eng. Mater., 10, No. 9: 882 (2008).
  33. I. Volokitina, Metal Sci. Heat Treat., 62: 253 (2020). https://doi.org/10.1007/s11041-020-00544-x
  34. P. Heinl, L. Müller, C. Körner, R.F. Singer, and F.A. Müller, Acta Biomater., 4, No. 5: 1536 (2008). https://doi.org/10.1016/j.actbio.2008.03.013
  35. P. Thomsen, J. Malmström, L. Emanuelsson, M. Rene, and A. Snis, J. Biomed. Mater. Res. B, 90, No. 1: 35 (2009). https://doi.org/10.1002/jbm.b.31250
  36. G. Chahine, H. Atharifar, P. Smith, and R. Kovacevic, Int. Solid Freefrom Fabrication Symposium (Austin, Texas, USA: 2009), p. 631.
  37. L.E. Murr, S.M. Gaytan, A. Ceylan, E. Martinez, J.L. Martinez, D.H. Hernandez, B.I. Machado, D.A. Ramirez, F. Medina, S. Collins, and R.B. Wicker, Acta Mater., 58, No. 5: 1887 (2010). https://doi.org/10.1016/j.actamat.2009.11.032
  38. D. Cormier, O. Harrysson, T. Mahale, and H. West, Adv. Mater. Sci. Eng., 2007: 034737 (2008). https://doi.org/10.1155/2007/34737
  39. S. Lezhnev, A. Naizabekov, A. Volokitin, and I. Volokitina, Procedia Engineering, 81: 1505 (2014). https://doi.org/10.1016/j.proeng.2014.10.181
  40. I.E. Volokitina, J. Chem. Technology Metallurgy, 57: 631 (2022).
  41. O. Harrysson, B. Deaton, J. Bardin, H. West, O. Cansizoglu, D. Cormier, and D. Marcellin-Little, Materials and Processes for Medical Devices Conference (2006), p. 15.
  42. H. Clemens and H. Kestler, Adv. Eng. Mater., 2: 551 (2000). https://doi.org/10.1002/1527-2648(200009)2:9%3C551::AID-ADEM551%3E3.0.CO;2-U
  43. A.V. Volokitin, I.E. Volokitina, and E.A. Panin, Prog. Phys. Met., 23, No. 3: 411 (2022). https://doi.org/10.15407/ufm.23.03.411
  44. N. Zhangabay, I. Baidilla, A. Tagybayev, U. Suleimenov, Z. Kurganbekov, M. Kambarov, A. Kolesnikov, G. Ibraimbayeva, K. Abshenov, I. Volokitina, B. Nsanbayev, Y. Anarbayev, and P. Kozlov, Case Studies in Construction Materials, 18: e02161 (2023). https://doi.org/10.1016/j.cscm.2023.e02161
  45. I. Volokitina, A. Volokitin, E. Panin, T. Fedorova, D. Lawrinuk, A. Kolesnikov, A. Yerzhanov, Z. Gelmanova, Y. Liseitsev, Case Studies Construct. Mater., 19: e02609 (2023). https://doi.org/10.1016/j.cscm.2023.e02609
  46. S.M. Gaytan, L.E. Murr, F. Medina, E. Martinez, M.I. Lopez, and R.B. Wicker, Mater. Technol., 24: 180 (2009). https://doi.org/10.1179/106678509X12475882446133
  47. T. Grimm, Fused Deposition Modeling: A Technology Evaluation (2002). https://docplayer.net/9035544-Fused-deposition-modeling-a-technology-evaluation.html
  48. K. Karami, A. Blok, L. Weber, S.M. Ahmadi, R. Petrov, K. Nikolic, E.V. Borisov, S. Leeflang, C. Ayas, A.A. Zadpoor, M. Mehdipour, E. Reinton, and V.A. Popovich, Addit. Manuf., 36: 101433 (2020). https://doi.org/10.1016/j.addma.2020.101433
  49. L.E. Murr, S.M. Gaytan, F. Medina, E. Martinez, J.L. Martinez, D.H. Hernandez, B.I. Machado, D.A. Ramirez, and R.B. Wicker, Mater. Sci. Eng. A, 527: 1861 (2010). https://doi.org/10.1016/j.msea.2009.11.015
  50. I.E. Volokitina and G.G. Kurapov, Metal Sci. Heat Treat., 59: 786 (2018). https://doi.org/10.1007/s11041-018-0227-0
  51. S.N. Lezhnev, I.E. Volokitina, and A.V. Volokitin, Phys. Metals Metallogr., 118: 1167 (2017). https://doi.org/10.1134/S0031918X17110072
  52. M. Too, K. Leong, C. Chua, Z. Du, S.F. Yang, C.M. Cheah, and S.L. Ho, Int. J. Adv. Manuf. Technol., 19: 217 (2002). https://doi.org/10.1007/s001700200016
  53. M. Sigl, S. Lutzmann, and M. Zäh, Solid Freeform Fabrication Symposium Proceedings (2006), p. 397.
  54. M. Larsson and A. Snis, Method and Device for Producing Three-Dimensional Objects (Google Patents: 2008).
  55. S. Knippscheer and G. Frommeyer, Adv. Eng. Mater., 1: 187 (1999). https://doi.org/10.1002/(SICI)1527-2648(199912)1:3/4%3C187::AID-ADEM187%3E3.3.CO;2-6
  56. C. Korner, E. Attar, and P. Heinl, J. Mater. Process. Technol., 211: 978 (2011). https://doi.org/10.1016/j.jmatprotec.2010.12.016
  57. H.B. Qi, Y.N. Yan, F. Lin, W. He, and R.J. Zhang, Proc. Int. Mech. Eng. B. J. Eng., 220: 1845 (2006). https://doi.org/10.1243/09544054JEM438
  58. http://www.up-pro.ru/library/innovations/niokr/additive-3d.html
  59. W.M. Steen, Laser Material Processing (London: Springer: 2003). https://doi.org/10.1007/978-1-4471-3752-8
  60. S. Lezhnev and A. Naizabekov, J. Chem. Technol. Metallurgy, 52, No. 4: 626 (2017).
  61. S. Lezhnev and T. Koinov, J. Chem. Technol. Metallurgy, 49, No. 6: 621 (2014).
  62. S. Lezhnev and E. Panin, Advanced Materials Research, 814: 68–75 (2013).
  63. A.V. Volokitin, M.A. Latypova, A.T. Turdaliev, and О.G. Kolesnikova, Prog. Phys. Met., 24, No. 4: 686 (2023). https://doi.org/10.15407/ufm.24.04.686
  64. A.T. Turdaliev, M.A. Latypova, and E.N. Reshotkina, Prog. Phys. Met., 24, No. 4: 792 (2023). https://doi.org/10.15407/ufm.24.04.792
  65. https://habr.com/ru/articles/218271
  66. M. Khan and P. Dickens, Rapid Prototyping J., 18:81 (2012). https://doi.org/10.1108/13552541211193520
  67. D. Zito, A. Carlotto, A. Loggi, P. Sbornicchia, D. Maggian, P. Unterberg, and I. Cristofolini, Optimization of SLM Technology Main Parameters in the Production of Gold and Platinum Jewelry, Proc. Santa Fe Symposium, Albuquerque (2014), p. 1.
  68. D. Ding, Z. Pan, and D. Cuiuri, Int. J. Adv. Manuf. Technol., 81: 465 (2015). https://doi.org/10.1007/s00170-015-7077-3
  69. J. Dawes, R. Bowerman, and R. Trepleton, Matthey Technol. Rev., 59: 243 (2015). https://doi.org/10.1595/205651315X688686
  70. R.M. German, Powder Metallurgy Science (Princeton, N.J.: Metal Powder Industries Federation: 1994), p. 167.
  71. A.J. Pinkerton and L. Li, J. Adv. Manuf. Technol., 25: 471 (2005). https://doi.org/10.1007/s00170-003-1844-2
  72. R.J. Herbert, J. Mater. Sci., 51: 1165 (2016). https://doi.org/10.1007/s10853-015-9479-x
  73. G. Zhu, A. Zhang, D. Li, Y. Tang, Z. Tong, and Q. Lu, Int. J. Adv. Manuf. Technol., 55: 945 (2011). https://doi.org/10.1007 /S00170-010-3142-0
  74. R. Jendrzejewski, G. Śliwiński, M. Krawczuk, and W. Ostachowicz, Comput. Struct., 82: 653 (2004). https://doi.org/10.1016/j.compstruc.2003.11.005
  75. R. Jendrzejewski and G. Śliwiński, Appl. Surf. Sci., 254: 921 (2007). https://doi.org/10.1016/j.apsusc.2007.08.014
  76. R. Ye, J.E. Smugeresky, B. Zheng, Y. Zhou, and E.J. Lavernia, Mater. Sci. Eng. A, 428: 47 (2006). https://doi.org/10.1016/J.MSEA.2006.04.079
  77. P. Peyre, P. Aubry, R. Fabbro, R. Neveu, and A. Longuet, J. Phys. D: Appl. Phys., 41: 025403 (2008). https://doi.org/10.1088/0022-3727/41/2/025403
  78. A. Lundback and L.E. Lindgren, Finite Elem. Anal. Des., 47: 1169 (2011). https://doi.org/10.1016/j.finel.2011.05.005
  79. M. Matsumoto, M. Shiomi, K. Osakada, and F. Abe, Int. J. Mach. Tools Manuf., 42: 61 (2002). https://doi.org/10.1016/S0890-6955(01)00093-1
  80. P. Michaleris, Finite Elem Anal Des., 86: 51 (2014). https://doi.org/10.1016/j.finel.2014.04.003
  81. Z. Fan and F. Liou, Titanium Alloys—Towards Achieving Enhanced Properties for Diversified Applications (Ed. A.K.M. Nurul Amin) (IntechOpen: 2012), ch. 1. https://doi.org/10.5772/34848
  82. L.E. Lindgren and P. Michaleris, Handbook on Residual Stress (Ed. J. Lu) (USA: SEM: 2005), vol. 2, p. 47.
  83. L.E. Lindgren, H. Runnemalm, and M.O. Nasstrom, Int. J. Numer. Methods Eng., 44: 1301 (1999). https://doi.org/10.1002/(SICI)1097-0207(19990330)44:9%3C1301::AID-NME479%3E3.0.CO;2-K
  84. A. Masmoudi, R. Bolot, and C. Coddet, J. Mater. Process. Technol., 225: 122 (2015). https://doi.org/10.1016/j.jmatprotec.2015.05.008
  85. I.E. Volokitina, Metal Sci. Heat Treat., 63: 163 (2021). https://doi.org/10.1007/s11041-021-00664-y
  86. I. Volokitina, B. Sapargaliyeva, A. Agabekova, S. Syrlybekkyzy, A. Volokitin, L. Nurshakhanova, F. Nurbaeva, A. Kolesnikov, G. Sabyrbayeva, A. Izbassar, O. Kolesnikova, Y. Liseitsev, and S. Vavrenyuk, Case Studies Construct. Mater., 19: e02256 (2023). https://doi.org/10.1016/j.cscm.2023.e02256
  87. I.E. Volokitina, Prog. Phys. Met., 3, No. 24: 593 (2023). https://doi.org/10.15407/ufm.24.03.593
  88. A. Hussein, L. Ha, C. Yan, and R. Everson, Mater. Design, 52: 638 (2013). https://doi.org/10.1016/j.matdes.2013.05.070
  89. H. Ali, H. Ghadbeigi, and K. Mumtaz, Int. J. Adv. Manuf. Technol., 97: 2621 (2018). https://doi.org/10.1007/s00170-018-2104-9
  90. Y. Shi, H. Shen, Z. Yao, and J. Hu, Opt. Laser Technol., 39: 858 (2007). https://doi.org/10.1016/j.finel.2014.04.003
  91. I. Yadroitsev, P. Krakhmalev, and I. Yadroitsava, J. Alloys Compd., 583: 404 (2014). https://doi.org/10.1016/j.jallcom.2013.08.183
  92. M. Alimardani, E. Toyserkani, J.P. Huissoon, and C.P. Paul, Opt. Lasers Eng., 47: 1160 (2009). https://doi.org/10.1016/j.optlaseng.2009.06.010
  93. S. Zou, H. Xiao, F. Ye, Z. Li, W. Tang, F. Zhu, and C. Zhu, Results Phys., 16: 103005 (2020). https://doi.org/10.1016/j.rinp.2020.103005
  94. M. Masoomi, S.M. Thompson, and N. Shamsaei, Int. J. Machine Tools Manuf., 118: 73 (2017). https://doi.org/10.1016/j.ijmachtools.2017.04.007
  95. C.F. Guo, T.i Sun, F. Cao, Q. Liu, and Z. Ren, Light Sci. Appl., 3: e161 (2014). https://doi.org/10.1038/lsa.2014.42
  96. R. Maaß, S. Van Petegem, D. Ma, J. Zimmermann, Daniel Grolimund, F. Roters, H. Van Swygenhoven, and D. Raabe, Acta Mater., 57: 5996 (2009). https://doi.org/10.1016/j.actamat.2009.08.024
  97. F. Melchels, M. Domingos, T. Klein, J. Malda, P. Bártolo, and D. Hutmacher, Prog. Polymer Sci., 37, No. 8: 1079 (2012). https://doi.org/10.1016/j.progpolymsci.2011.11.007
  98. A. Zocca, P. Colombo, C. Gomes, and J. Günster, J. Am. Ceram. Soc., 98: 638 (2015). https://doi.org/10.1111/jace.13700
  99. L. Hirt, A. Reiser, R. Spolenak, and T. Zambelli, Adv. Mater., 29: 1604211 (2017) https://doi.org/10.1002/adma.201604211
  100. F. Martinaa, J. Mehnen, S.W. Williams, P. Colegrove, and F. Wang, J. Mater. Process. Technol., 212: 1377 (2012). https://doi.org/10.1016/j.jmatprotec.2012.02.002
  101. M. Vaezi, H. Seitz, and S. Yang, Int. J. Adv. Manuf. Technol., 67: 1721 (2013). https://doi.org/10.1007/s00170-012-4605-2
  102. ISO/ASTM52900-15, Standard Terminology for Additive Manufacturing – General Principles – Terminology (West Conshohocken, PA: ASTM International: 2015).
  103. G. Kurapov, E. Orlova, and A. Turdaliev, J. Chem. Technol. Metall., 51: 451 (2016).
  104. A.B. Naizabekov, S.N. Lezhnev, and I.E. Volokitina, Metal Sci. Heat Treat., 57: 254 (2015). https://doi.org/10.1007/s11041-015-9870-x
  105. I. Volokitina, A. Volokitin, and D. Kuis, J. Chem. Technol. Metall., 56: 643 (2021).
  106. D.A. Sinitsin, A.E.M.M. Elrefaei, A.O. Glazachev, E.I. Kayumova, and I.V. Nedoseko, Construction Materials and Products, 6: 2 (2023). https://doi.org/10.58224/2618-7183-2023-6-6-2
  107. M. Galati and L. Iuliano, Addit. Manuf., 19: 1 (2018). https://doi.org/10.1016/j.addma.2017.11.001
  108. A. Vyatskikh, S. Delalande, A. Kudo, X. Zhang, C.M. Portela, and J.R. Greer, Nature Commun., 9: 593 (2018). https://doi.org/10.1038/s41467-018-03071-9
  109. P.E. Markovsky, D.V. Kovalchuk, S.V. Akhonin, S.L. Schwab, D.G. Savvakin, O.O. Stasiuk, D.V. Oryshych, D.V. Vedel, M.A. Skoryk, and V.P. Tkachuk, Prog. Phys. Met., 24, No. 4: 715 (2023). https://doi.org/10.15407/ufm.24.04.715
  110. P.E. Markovsky, D.V. Kovalchuk, J. Janiszewski, B. Fikus, D.G. Savvakin, O.O. Stasiuk, D.V. Oryshych, M.A. Skoryk, V.I. Nevmerzhytskyi, and V.I. Bondarchuk, Prog. Phys. Met., 24, No. 4: 741 (2023). https://doi.org/10.15407/ufm.24.04.741
  111. A.V. Zavdoveev, T. Baudin, D.G. Mohan, D.L. Pakula, D.V. Vedel, and M.A. Skoryk, Prog. Phys. Met., 24, No. 3: 561 (2023). https://doi.org/10.15407/ufm.24.03.561
  112. O.M. Ivasishin, D.V. Kovalchuk, P.E. Markovsky, D.G. Savvakin, O.O. Stasiuk, V.I. Bondarchuk, D.V. Oryshych, S.G. Sedov, and V.A. Golub, Prog. Phys. Met., 24, No. 1: 75 (2023). https://doi.org/10.15407/ufm.24.01.075
  113. M.O. Vasylyev, B.M. Mordyuk, and S.M. Voloshko, Prog. Phys. Met., 24, No. 1: 5 (2023). https://doi.org/10.15407/ufm.24.01.005
  114. M.O. Vasylyev, B.M. Mordyuk, and S.M. Voloshko, Prog. Phys. Met., 24, No. 1: 38 (2023). https://doi.org/10.15407/ufm.24.01.038