Гідроґен у сполуках і стопах із структурою А15
Ан. Д. Золотаренко$^{1,2}$, Ол. Д. Золотаренко$^{1,2}$, 3. А. Матисіна$^1$, Н. А. Швачко$^{1,3}$, Н. Є. Аханова$^{4,5}$, M. Уалханова$^5$, Д. В. Щур$^{1,6}$, M. T. Габдуллін$^4$, М. Т. Картель$^2$, Ю. М. Солонін$^1$, Ю. І. Жирко$^6$, Д. В. Ісмаїлов$^{5,7}$, О. Д. Золотаренко$^1$, І. В. Загорулько$^8$
$^1$Інститут проблем матеріалознавства ім. І. М. Францевича НАН України, вул. Омеляна Пріцака, 3, 03142 Київ, Україна
$^2$Інститут хімії поверхні ім. О. О. Чуйка НАН України, вул. Генерала Наумова, 17, 03164 Київ, Україна
$^3$Київський національний університет будівництва і архітектури, просп. Повітрофлотський, 31, 03037 Київ, Україна
$^4$Казахстансько-британський технічний університет, вул. Толе бі, 59, 050040 Алмати, Казахстан
$^5$Казахський національний університет ім. Аль-Фарабі, просп. Аль-Фарабі, 71, 050040 Алмати, Казахстан
$^6$Інститут прикладної фізики НАН України, вул. Петропавлівська, 58, 40000 Суми, Україна
$^7$НАТ «Казахський національний дослідницький технічний університет імені К.І. Сатбаєва», вул. Сатбаєва, 22, 050013 Алмати, Казахстан
$^8$Інститут металофізики ім. Г. В. Курдюмова НАН України, бульв. Академіка Вернадського, 36, 03142 Київ, Україна
Отримано 28.09.2023; остаточна версія — 17.11.2023
Завантажити PDF
Анотація
У даній роботі виконано теоретичне дослідження атомового впорядкування у стопі A3BCx. Вивчено взаємний вплив упорядкування та розчинности домішки C у стопі A3B. Знайдено та досліджено залежності розчинности від складу стопу, температури, ступеня далекого порядку. Також одержано критерії прояву екстремальности у концентраційній і температурній залежностях розчинности. Атомове впорядкування вивчено за допомогою методу середніх енергій; особливості розчинности домішки C у стопі A3B вдалося з’ясувати за допомогою конфіґураційного методу. Експерименти, що підтверджують результати теорії, наразі невідомі авторам. Одначе наявні експериментальні дані щодо визначення температур мартенситного перетворення (Tm) і переходу у надпровідний стан (Tc) для стопу Nb3SnHx дають змогу сподіватися та стверджувати стосовно можливої відповідности даних теорії й експерименту.
Ключові слова: кристалічна структура, структура типу A15, стопи, сполуки, металогідриди, водень, фазові перетворення, переходи лад–безлад, розчинність.
DOI:
https://doi.org/10.15407/ufm.24.04.654
Citation:
An. D. Zolotarenko, Ol. D. Zolotarenko, Z. A. Matysina, N. A. Shvachko, N. Y. Akhanova, M. Ualkhanova, D. V. Schur, M. T. Gabdullin, M. T. Kartel, Yu. M. Solonin, Yu. I. Zhirko, D. V. Ismailov, A. D. Zolotarenko, and I. V. Zagorulko, Hydrogen in Compounds and Alloys with A15 Structure, Progress in Physics of Metals, 24, No. 4: 654–685 (2023)
Цитована література
- Z.A. Matysina, An.D. Zolotarenko, Al.D. Zolotarenko, N.A. Gavrylyuk, A. Veziroglu, T.N. Veziroglu, A.P. Pomytkin, D.V. Schur, and M.T. Gabdullin, Features of the Interaction of Hydrogen with Metals, Alloys and Compounds. Hydrogen Atoms in Crystalline Solids (KIM Publishing House: Kyiv: 2022); http://www.aheu.com.ua/Hydrogen.html
- D.V. Schur, M.T. Gabdullin, V.A. Bogolepov, A. Veziroglu, S.Y. Zaginaichenko, A.F. Savenko,and K.A. Meleshevich, Int. J. Hydrogen Energy, 41, No. 3: 1811 (2016); https://doi.org/10.1016/j.ijhydene.2015.10.011
- Z.A. Matysina, O.S. Pogorelova, and S.Yu. Zaginaichenko, J. Phy. Chem. Solids, 56, No. 1: 9 (1995); https://doi.org/10.1016/0022-3697(94)00106-5
- Z.A. Matysina and S.Yu. Zaginaichenko, Int. J. Hydrogen Energy, 21, Nos. 11–12: 1085 (1996); https://doi.org/10.1016/S0360-3199(96)00050-X
- S.Yu. Zaginaichenko, Z.A. Matysina, I. Smityukh, and V.K. Pishuk, J. Alloys Compd., 330–332: 70 (2002); https://doi.org/10.1016/S0925-8388(01)01661-9
- Z.A. Matysina and S.Y. Zaginaichenko, Rus. Phys. J., 59, No.2: 177 (2016); https://doi.org/10.1007/s11182-016-0757-0
- S.Y. Zaginaichenko, D.A. Zaritskii, Z.A. Matysina, T.N. Veziroglu, and L.I. Kopylova, Int. J. Hydrogen Energy, 40, No. 24: 7644 (2015); https://doi.org/10.1016/j.ijhydene.2015.01.089
- Z.A. Matysina and S.Y. Zaginaichenko, Phys. Met. Metallogr., 114, No. 4: 308 (2013); https://doi.org/10.1134/S0031918X13010079
- Z.A. Matysina, N.A. Gavrylyuk, M. Kartel, A. Veziroglu, T.N. Veziroglu, A.P. Pomytkin, D.V. Schur, T.S. Ramazanov, M.T. Gabdullin, A.D. Zolotarenko, A.D. Zolotarenko, and N.A. Shvachko, Int. J. Hydrogen Energy, 46, No. 50: 25520 (2021); https://doi.org/0.1016/j.ijhydene.2021.05.069
- D.V. Shchur, S.Y. Zaginaichenko, A. Veziroglu, T.N. Veziroglu, N.A. Gavrylyuk, A.D. Zolotarenko, M.T. Gabdullin, T.S. Ramazanov, A.D. Zolotarenko, and A.D. Zolotarenko, Rus. Phys. J., 64, No. 1: 89 (2021); https://doi.org/10.1007/s11182-021-02304-7
- S.Yu. Zaginaichenko, Z.A. Matysina, D.V. Schur, and A.D. Zolotarenko, Int. J. Hydrogen Energy, 37, No. 9: 7565 (2012);
https://doi.org/10.1016/j.ijhydene.2012.01.006
- Z.A. Matysina, S.Y. Zaginaichenko, D.V. Schur, T.N. Veziroglu, A. Veziroglu, M.T. Gabdullin, Al.D. Zolotarenko, and An.D. Zolotarenko, Int. J. Hydrogen Energy, 43, No. 33: 16092 (2018);
https://doi.org/10.1016/j.ijhydene.2018.06.168
- Z.A. Matysina, S.Y. Zaginaichenko, D.V. Schur, A.D. Zolotarenko, A.D. Zolotarenko, M.T. Gabdulin, L.I. Kopylova, and T.I. Shaposhnikova, Rus. Phys. J., 61, No. 12: 2244 (2019); https://doi.org/10.1007/s11182-019-01662-7
- D.V. Schur, A. Veziroglu, S.Yu Zaginaychenko, Z.A. Matysina, T.N. Veziroglu, M.T. Gabdullin, T.S. Ramazanov, An.D. Zolonarenko, and Al.D. Zolonarenko, Int. J. Hydrogen Energy, 44, No. 45: 24810 (2019); https://doi.org/10.1016/j.ijhydene.2019.07.205
- Z.A. Matysina, S.Yu. Zaginaichenko, D.V. Schur, Al.D. Zolotarenko, An.D. Zolotarenko, and M.T. Gabdulin, Rus. Phys. J., 61, No. 2: 253 (2018);
https://doi.org/10.1007/s11182-018-1395-5
- Z.A. Matysinaa, An.D. Zolotarenko, Al.D. Zolotarenko, M.T. Kartel, A. Veziroglu, T.N. Veziroglu, N.A. Gavrylyuk, D.V. Schur, M.T. Gabdullin, N.E. Akhanova, T.S. Ramazanov, M. Ualkhanova, and N.A. Shvachko, Int. J. Hydrogen Energy, 48, No. 6: 2271;
https://doi.org/10.1016/j.ijhydene.2022.09.225
- Z.A. Matysina, An.D. Zolotarenko, Ol.D. Zolotarenko, T.V. Myronenko, D.V. Schur, E.P. Rudakova, M.V. Chymbai, A.D. Zolotarenko, I.V. Zagorulko, and O.O. Havryliuk, Chem., Phys. Technol. Surf., 14, No. 2: 210 (2023); https://doi.org/10.15407/hftp14.02.210
- Z.A. Matysina and D.V. Shchur, Rus. Phys. J., 44, No. 11: 1237 (2001); https://doi.org/10.1023/A:1015318110874
- V.I. Trefilov, D.V. Shchur, V.K. Pishuk, S.Yu. Zaginaichenko, A.V. Choba, and N.R. Nagornaya, Renewable Energy, 16, Nos. 1–4: 757 (1999);
https://doi.org/10.1016/S0960-1481(98)00273-0
- Yu.M. Lytvynenko and D.V. Shchur, Renewable Energy, 16, No. 1–4: 753 (1999); https://doi.org/10.1016/S0960-1481(98)00272-9
- D.V. Schur, A.A. Lyashenko, V.M. Adejev, V.B. Voitovich, and S.Yu. Zaginaichenko, Int. J. Hydrogen Energy, 20, No. 5: 405 (1995);
https://doi.org/10.1016/0360-3199(94)00077-D
- D.V. Schur, V.A. Lavrenko, V.M. Adejev, and I.E. Kirjakova, Int. J. Hydrogen Energy, 19, No. 3: 265 (1994);
https://doi.org/10.1016/0360-3199(94)90096-5
- S.Y. Zaginaichenko, Z.A. Matysina, D.V. Schur, L.O. Teslenko, A. Veziroglu, Int. J. Hydrogen Energy, 36, No. 1: 1152 (2011); https://doi.org/10.1016/j.ijhydene.2010.06.088
- S.A. Tikhotskii, I.V. Fokin, and D.V. Schur, Phys. Solid Earth, 47, No. 4: 327 (2011); https://doi.org/10.1134/S1069351311030062
- A.D. Zolotarenko, A.D. Zolotarenko, A. Veziroglu, T.N. Veziroglu, N.A. Shvachko, A.P. Pomytkin, D.V. Schur, N.A. Gavrylyuk, T.S. Ramazanov, N.Y. Akhanova, and M.T. Gabdullin, Int. J. Hydrogen Energy, 47, No. 11: 7310 (2022); https://doi.org/10.1016/j.ijhydene.2021.03.065
- An.D. Zolotarenko, Al.D. Zolotarenko, A. Veziroglu, T.N. Veziroglu, N.A. Shvachko, A.P. Pomytkin, N.A. Gavrylyuk, D.V. Schur, T.S. Ramazanov, and M.T. Gabdullin, Int. J. Hydrogen Energy, 47, No. 11: 7281 (2021); https://doi.org/10.1016/j.ijhydene.2021.03.025
- D.V. Schur, S.Y. Zaginaichenko, E.A. Lysenko, T.N. Golovchenko, and N.F. Javadov, NATO Science for Peace and Security Series C: Environmental Security: 53 (Springer Science + Business Media B.V: 2008); https://doi.org/10.1007/978-1-4020-8898-8_5
- D.V. Schur, S.Y. Zaginaichenko, A.D. Zolotarenko, and T.N. Veziroglu, NATO Science for Peace and Security Series C: Environmental Security: 85 (Springer Science + Business Media B.V: 2008); https://doi.org/10.1007/978-1-4020-8898-8_7
- O.D. Zolotarenko, O.P. Rudakova, M.T. Kartel, H.O. Kaleniuk, A.D. Zolotarenko, D.V. Schur, and Y.O. Tarasenko, Surface, 12, No. 27: 263 (2020);
https://doi.org/10.15407/Surface.2020.12.263
- Ol.D. Zolotarenko, O.P. Rudakova, N.E. Akhanova, An.D. Zolotarenko, D.V. Shchur, Z.A. Matysina, M.T. Gabdullin, M. Ualkhanova, N.A. Gavrilyuk, O.D. Zolotarenko, M.V. Chymbai, and I.V. Zagorulko, Nanosistemi, Nanomateriali, Nanotehnologii, 20, No. 3: 725 (2022);
https://doi.org/10.15407/nnn.20.03.725
- D.S. Kerimbekov, N.E. Akhanova, M.T. Gabdullin, Kh.A. Abdullin, D.G. Batryshev, A.D. Zolotarenko, N.A. Gavrylyuk, O,D. Zolotarenko, and D.V. Shchur, J. Problems in the Evolution of Open Systems, 24, Nos. 3–4: 79 (2023); https://doi.org/10.26577/JPEOS.2022.v24.i2.i6
- V.M. Gun’ko, V.V. Turov, V.I. Zarko, G.P. Prykhod’ko, T.V. Krupska, A.P. Golovan, J. Skubiszewska-Zięba, B. Charmas, and M.T. Kartel, Chem. Phys., 459: 172 (2015); https://doi.org/10.1016/j.chemphys.2015.08.016
- M.M. Nishchenko, S.P. Likhtorovich, A.G. Dubovoy, and T.A. Rashevskaya, Carbon, 41, No. 7: 1381 (2003); https://doi.org/10.1016/S0008-6223(03)00065-4
- N.Y. Akhanova, D.V. Schur, N.A. Gavrylyuk, M.T. Gabdullin, N.S. Anikina, An.D. Zolotarenko, O.Ya. Krivushchenko, Ol.D. Zolotarenko, B.M. Gorelov, E. Erlanuli, and D.G. Batrishev, Chem., Phys. Technol. Surf., 11, No. 3: 429 (2020); https://doi.org/10.15407/hftp11.03.429
- Z.A. Matysina, Ol.D. Zolotarenko, O.P. Rudakova, N.Y. Akhanova, A.P. Pomytkin, An.D. Zolotarenko, D.V. Shchur, M.T. Gabdullin, M. Ualkhanova, N.A. Gavrylyuk, A.D. Zolotarenko, M.V. Chymbai, and I.V. Zagorulko, Prog. Phys. Met., 23, No. 3: 510 (2022); https://doi.org/10.15407/ufm.23.03.510
- N.Ye. Akhanova, D.V. Shchur, A.P. Pomytkin, Al.D. Zolotarenko, An.D. Zolotarenko, N.A. Gavrylyuk, M. Ualkhanova, W. Bo, and D. Ang, J. Nanosci. Nanotechnol., 21: 2435 (2021);
https://doi.org/10.1166/jnn.2021.18970
- O.D. Zolotarenko, E.P. Rudakova, A.D. Zolotarenko, N.Y. Akhanova, M.N. Ualkhanova, D.V. Shchur, M.T. Gabdullin, N.A. Gavrylyuk, T.V. Myronenko, A.D. Zolotarenko, M.V. Chymbai, I.V. Zagorulko, Yu.O. Tarasenko, and O.O. Havryliuk, Chem., Phys. Technol. Surf., 13, No. 3: 259 (2022); https://doi.org/10.15407/hftp13.03.259
- D.V. Schur, A.D. Zolotarenko, A.D. Zolotarenko, O.P. Zolotarenko, and M.V. Chimbai, Phys. Sci. Technol., 6, Nos. 1–2: 46 (2019);
https://doi.org/10.26577/phst-2019-1-p9
- M. Baibarac, I. Baltog, S. Frunza, A. Magrez, D. Schur, and S.Y. Zaginaichenko, Diamond and Related Materials, 32: 72 (2013);
https://doi.org/10.1016/j.diamond.2012.12.006
- Al.D. Zolotarenko, An.D. Zolotarenko, V.A. Lavrenko, S.Yu. Zaginaichenko, N.A. Shvachko, O.V. Milto, V.B. Molodkin, A.E. Perekos, V.M. Nadutov, and Yu.A. Tarasenko, Carbon Nanomaterials in Clean Energy Hydrogen Systems-II, (Springer, Dordrecht: 2011) p. 127; https://doi.org/10.1007/978-94-007-0899-0_10
- M. Ualkhanova, A.Y. Perekos, A.G. Dubovoy, D.V. Schur, Al.D. Zolotarenko, An.D. Zolotarenko, N.A. Gavrylyuk, M.T. Gabdullin, T.S. Ramazanov, N. Akhanova and S. Orazbayev, J. Nanosci. Nanotechnol. Applications, 3, No. 3: 1 (2019); https://doi.org/10.18875/2577-7920.3.302
- D.V. Schur, S.Y. Zaginaichenko, A.F. Savenko, V.A. Bogolepov, and N.S. Anikina., Int. J. Hydrogen Energ., 36, No. 1: 1143 (2011);
https://doi.org/10.1016/j.ijhydene.2010.06.087
- A.F. Savenko, V.A. Bogolepov, K.A. Meleshevich, S.Yu. Zaginaichenko, M.V. Lototsky, V.K. Pishuk, L.O. Teslenko, and V.V. Skorokhod, NATO Security through Science Series A: Chemistry and Biology, (Springer: Dordrecht: 2007) p. 365;
https://doi.org/10.1007/978-1-4020-5514-0_47
- D.V. Schur, S. Zaginaichenko, and T.N. Veziroglu, Int. J. Hydrogen Energy,33, No. 13: 3330 (2008);
https://doi.org/10.1016/j.ijhydene.2008.03.064
- S.Yu. Zaginaichenko, T.N. Veziroglu, M.V. Lototsky, V.A. Bogolepov, and A.F. Savenko, Int. J. Hydrogen Energy, 41, No. 1: 401 (2016); https://doi.org/10.1016/j.ijhydene.2015.08.087
- D.V. Schur, S.Y. Zaginaichenko, and T.N. Veziroglu, Int. J. Hydrogen Energy, 40, No. 6: 2742 (2015); https://doi.org/10.1016/j.ijhydene.2014.12.092
- Z.A. Matysina, S.Yu. Zaginaichenko, D.V. Shchur, A. Viziroglu, T.N. Viziroglu, M.T. Gabdullin, N.F. Javadov, An.D. Zolotarenko, and Al.D. Zolotarenko, Hydrogen in Crystals (KIM Publishing House: Kyiv: 2017).
- D.V. Schur, S.Y. Zaginaichenko, A.F. Savenko, V.A. Bogolepov, N.S. Anikina, A.D. Zolotarenko, Z.A. Matysina, T.N. Veziroglu, and N.E. Skryabina, NATO Science for Peace and Security Series C: Environmental Security, (Dordrecht: Springer: 2011), p. 87; https://doi.org/10.1007/978-94-007-0899-0_7
- V.A. Lavrenko, I.A. Podchernyaeva, D.V. Shchur, An.D. Zolotarenko, and Al.D. Zolotarenko, Powder Metallurgy and Metal Ceramics, 56: 504 (2018);
https://doi.org/10.1007/s11106-018-9922-z
- Ol.D. Zolotarenko, M.N. Ualkhanova, E.P. Rudakova, N.Y. Akhanova, An.D. Zolotarenko, D.V. Shchur, M.T. Gabdullin, N.A. Gavrylyuk, A.D. Zolotarenko, M.V. Chymbai, I.V. Zagorulko, and O.O. Havryliuk, Chem., Phys. Technol. Surf., 13, No. 2: 209 (2022); https://doi.org/10.15407/hftp13.02.209
- Z.A. Matysina, Ol.D. Zolotarenko, M. Ualkhanova, O.P. Rudakova, N.Y. Akhanova, An.D. Zolotarenko, D.V. Shchur, M.T. Gabdullin, N.A. Gavrylyuk, O.D. Zolotarenko, M.V. Chymbai, and I.V. Zagorulko, Prog. Phys. Met., 23, No. 3: 528 (2022); https://doi.org/10.15407/ufm.23.03.528
- A.D. Zolotarenko, A.D. Zolotarenko, E.P. Rudakova, S.Y. Zaginaichenko, A.G. Dubovoy, D.V. Schur, and Y.A. Tarasenko, Carbon Nanomaterials in Clean Energy Hydrogen Systems-II (Dordrecht: Springer: 2011), p. 137;
https://doi.org/10.1007/978-94-007-0899-0_11
- D.V. Schur, A.G. Dubovoy, S.Yu. Zaginaichenko, V.M. Adejev, A.V. Kotko, V.A. Bogolepov, A.F. Savenko, A.D. Zolotarenko, S.A. Firstov, and V.V. Skorokhod, NATO Security through Science Series A: Chemistry and Biology (Springer: Dordrecht: 2007), p. 199; https://doi.org/10.1007/978-1-4020-5514-0_25
- M.N. Ualkhanova, A.S. Zhakypov, R.R. Nemkayeva, M.B. Aitzhanov, B.Y. Kurbanov, N.Y. Akhanova, Y. Yerlanuly, S.A. Orazbayev, D. Shchur, A. Zolotarenko, and M.T. Gabdullin, Energies, 16, No. 3: 1450 (2023); https://doi.org/10.3390/en16031450
- S.Y. Zaginaichenko and Z.A. Matysina, Carbon, 41, No. 7: 1349 (2003);
https://doi.org/10.1016/S0008-6223(03)00059-9
- V.A. Lavrenko, D.V. Shchur, A.D. Zolotarenko, and A.D. Zolotarenko, Powder Metallurgy and Metal Ceramics, 57, No. 9: 596 (2019);
https://doi.org/10.1007/s11106-019-00021-y
- Ol.D. Zolotarenko, E.P. Rudakova, I.V. Zagorulko, N.Y. Akhanova, An.D. Zolotarenko, D.V. Schur, M.T. Gabdullin, M. Ualkhanova, T.V. Myronenko, A.D. Zolotarenko, M.V. Chymbai, and O.E. Dubrova, Ukr. J. Phys., 68, No. 1: 57 (2023); https://doi.org/10.15407/ujpe68.1.57
- Ol.D. Zolotarenko, An.D. Zolotarenko, E.P. Rudakova, N.Y. Akhanova, M.Ualkhanova, D.V. Schur, M.T. Gabdullin, T.V. Myronenko, A.D. Zolotarenko, M.V. Chymbai, I.V. Zagorulko, and O.O. Havryliuk, Chem., Phys. Technol. Surf., 14, No. 2: 191 (2023);
https://doi.org/10.15407/hftp14.02.191
- Ol.D. Zolotarenko, E.P. Rudakova, N.Y. Akhanova, An.D. Zolotarenko, D.V. Shchur, M.T. Gabdullin, M. Ualkhanova, N.A. Gavrylyuk, M.V. Chymbai, Yu.O. Tarasenko, I.V. Zagorulko, andA. D. Zolotarenko, Metallofiz. Noveishie Tekhnol., 43, No. 10: 1417 (2021);
https://doi.org/10.15407/mfint.43.10.1417
- Ol.D. Zolotarenko, E.P. Rudakova, N.Y. Akhanova, An.D. Zolotarenko, D.V. Shchur, M.T. Gabdullin, M. Ualkhanova, М. Sultangazina, N.A. Gavrylyuk, M.V. Chymbai, A.D. Zolotarenko, I.V. Zagorulko, and Yu.O. Tarasenko, Metallofiz. Noveishie Tekhnol., 44, No. 3: 343 (2022);
https://doi.org/10.15407/mfint.44.03.0343
- Ol.D. Zolotarenko, E.P. Rudakova, N.Y. Akhanova, An.D. Zolotarenko, D.V. Shchur, M.T. Gabdullin, M. Ualkhanova, N.A. Gavrylyuk, M.V. Chymbai, T.V. Myronenko, I.V. Zagorulko, A.D. Zolotarenko, andO.O. Havryliuk, Chem. Phys. Tekhnol. Sci., 13, No. 4: 415 (2022);
https://doi.org/10.15407/hftp13.04.415
- Ol.D. Zolotarenko, E. P. Rudakova, An.D. Zolotarenko, N.Y. Akhanova, M. Ualkhanova, D.V. Shchur, M.T. Gabdullin, T.V. Myronenko, A.D. Zolotarenko, M.V. Chymbai, and I.V. Zagorulko, Metallofiz. Noveishie Tekhnol., 45, No. 2: 199 (2023); https://doi.org/10.15407/mfint.45.02.019
- E.M. Savitsky, V.V. Baron, Yu.V. Efimov, M.I. Bychkova, and L.F. Myzenkova, Metallovedenie Sverkhprovodyashchikh Materialov (Moskva: Nauka: 1969), p. 265.
- Yu.A. Izyumov and E.Z. Kurmaev, Ukr. Phys. J., 2: 193 (1974).
- A.S. Chaves, F.C.S. Barreto, R.A. Nogueira, and B.Zẽks, Phys. Rev. B, 13, No. 1: 207 (1976); https://doi.org/10.1103/PhysRevB.13.207
- L. Testardi, M. Weger and I. Goldberg, Superconducting Compounds with the Structure of -Tungsten (Moskva, Mir: 1977), p. 436.
- S.V. Vonsovsky, Yu.A. Izyumov, and E.Z. Kurmaev, Superconductivity of Transition Metals, Their Alloys and Compounds (Moskva: Nauka: 1977), p. 384.
- V.I. Surikov, V.I. Pryadein, A.K. Stolts, A.P. Stepanov, A.F. Prekuya, and P.V. Geld, Phys. Met. Metallogr., 34, No. 4: 724 (1972).
- A.I. Medvedev, A.K. Stolts, P.V. Geld, and G.N. Vorobyova, Ordering of Atoms and Its Influence on the Properties of Alloys: Tez. Dokl. VII Vsesoyuzn. Conf.: UNC of the USSR Academy of Sciences (Sverdlovsk: 1983), 2: 117.
- L.J. Vieland, A.W. Wicklund, and J.G. White, Phys. Rev. B, 11, No. 9: 3311 (1975).
- E.C. Van Reuth and R.M.Waterstrat, Acta Crystallogr. B, 24: 186 (1968).
- N.V. Ageev, N.E. Alekseevsky and V.F. Shamray, Izvestiya AN SSSR. Metals, 3: 171 (1970).
- Yu.A. Khon, V.P. Fadin, S.A. Beznosyuk and V.M. Kuznetsov, Dokl. IV Vsesoyuzn. Confer. on the Ordering of Atoms and Its Effect on the Properties of Alloys (Tomsk: Tomsk State University: 1974), 1, p. 309.
- N.V. Ageev, N.E. Alekseevsky and V.F. Shamray, Izv. AN USSR. Metals, 1: 170 (1976).
- V.S. Belovol and V.A. Finkel, Questions of Atomic Science and Technology. Ser. Foundation and Applied Superconductivity (Kharkiv: KhFTI of the Academy of Sciences of the Ukrainian SSR: 1977), vol. 1, p. 6.
- N.N. Degtyarenko, V.F. Yelesin and Yu.P. Skopintsev, Ordering of Atoms and Its Effect on the Properties of Alloys: Tez. Dokl. VII Vsezoyuzn. Conf., (Sverdlovsk: UNC of the USSR Academy of Sciences: 1983), 2, p. 42.
- A.A. Smirnov, Phys. Met. Metallogr., 58, No. 4: 667 (1984).
- A.A. Smirnov, Generalized Theory of Ordering Alloys, (Kyiv: Naukova Dumka: 1986).
- Z.A. Matysina, D.V. Seriy, and V.A. Bondarenko, Atomic ordering. The solubility of the impurity, Izv.vuzov. Physics, 1: 127 (1996).
- Z.A. Matysina, S.Yu. Zaginaichenko, D.V. Schur, and V.K. Pishuk, Proc. 11th World Hydrogen Energy Conf. (Germany: Stuttgard: 1996) 2: 1091.
- Z.A. Matysina, S.Yu. Zaginaichenko, D.V. Seryi, and D.V. Schur, Int. J. Hydrogen Energy, 21, Nos. 11–12: 1065 (1996).
- W. Gorsky, Zs. Phys., 50, Nos. 1–2: 64 (1928).
- S.Yu. Zaginaichenko, Z.A. Matysina, and M.I. Milyan, The Solubility of Impurities in Alloys, 2597: 186 (1989).
- Z.A. Matysina and M.I. Milyan, Theory of Solubility of Impurities in Ordered Phases (Dnipropetrovsk: Publishing House of DSU: 1991), p. 180.
- K.H. Levchuk, T.M. Radchenko, and V.A. Tatarenko, Metallofiz. Noveishie Tekhnol., 43, No. 1: 1 (2021); https://doi.org/10.15407/mfint.43.01.0001
- T.M. Radchenko, O.S. Gatsenko, V.V. Lizunov, and V.A. Tatarenko, Prog. Phys. Met., 21, No. 4: 580 (2020); https://doi.org/10.15407/ufm.21.04.580
- I.M. Melnyk, T.M. Radchenko, and V.A. Tatarenko, Metallofiz. Noveishie Tekhnol., 32, No. 9: 1191 (2010).
- V.A. Tatarenko, S.M. Bokoch, V.M. Nadutov, T.M. Radchenko, and Y.B. Park, Defect Diffus. Forum, 280–281: 29 (2008); https://doi.org/10.4028/www.scientific.net/DDF.280-281.29
- T.M. Radchenko, V.A. Tatarenko, and H. Zapolsky, Solid State Phenom., 138: 283 (2008); https://doi.org/10.4028/www.scientific.net/ssp.138.283
- V.A. Tatarenko and C.L. Tsynman, Solid State Ionics, 101–103, Pt. 2: 1061 (1997); https://doi.org/10.1016/s0167-2738(97)00376-7
- T.M. Radchenko and V.A. Tatarenko, Carbon Nanomaterials in Clean Energy Hydrogen Systems. NATO Science for Peace and Security Series C: Environmental Security (Eds. B. Baranowsky, S.Y. Zaginaichenko, D.V. Schur, V.V. Skorokhod, and A. Veziroglu) (Springer Science Business Media B.V.: 2008), p. 489; https://doi.org/10.1007/978-1-4020-8898-8_62
- T.M. Radchenko and V.A. Tatarenko, Hydrogen Materials Science and Chemistry of Carbon Nanomaterials. NATO Security through Science Series A: Chemistry and Biology (Eds. T.N. Veziroglu, S.Yu. Zaginaichenko, D.V. Schur, B. Baranowski, A.P. Shpak, V.V. Skorokhod, and A. Kale) (Dordrecht: Springer: 2007), p. 229; https://doi.org/10.1007/978-1-4020-5514-0_28
- V.A. Tatarenko and T.M. Radchenko, Hydrogen Materials Science and Chemistry of Metal Hydrides: NATO Science Series, Series II: Mathematics, Physics and Chemistry (Eds. T.N. Veziroglu, S.Yu. Zaginaichenko, D.V. Schur, and V.I. Trefilov) (Dordrecht, The Netherlands: Kluwer Academic Publishers: 2002), vol. 82, p. 123.
- T.M. Radchenko and V.A. Tatarenko, Int. J. Hydrogen Energy, 36, No. 1: 1338 (2011); https://doi.org/10.1016/j.ijhydene.2010.06.112
- T. Radchenko, H. Zapolsky, D. Blavette, and V. Tatarenko, Acta Cryst., A60: s71 (2004); https://doi.org/10.1107/S0108767304098599
- S.P. Repetsky, E.G. Len, and V.V. Lizunov, Metallofiz. Noveishie Tekhnol., 28, No. 8: 989 (2006).
- S.P. Repetsky, T.S. Len, and V.V. Lizunov, Metallofiz. Noveishie Tekhnol., 28, No. 9: 1143 (2006).
- P. Prysyazhnyuk and D. Di Tommaso, Mater. Adv., 4, No. 17: 3822 (2023); https://doi.org/10.1039/d3ma00313b
- P. Szroeder, I.Yu. Sagalianov, T.M. Radchenko, V.A. Tatarenko, Yu.I. Prylutskyy, and W. Strupiński, Appl. Surf. Sci., 442: 185 (2018); https://doi.org/10.1016/j.apsusc.2018.02.150
- S.M. Bokoch, M.P. Kulish, T.M. Radchenko, and V.A. Tatarenko, Metallofiz. Noveishie Tekhnol., 26, No. 3: 387 (2004).
- S.M. Bokoch, M.P. Kulish, V.A. Tatarenko, and T.M. Radchenko, Metallofiz. Noveishie Tekhnol., 26, No. 4: 541 (2004).
- A.G. Solomenko, R.M. Balabai, T.M. Radchenko, and V.A. Tatarenko, Prog. Phys. Met., 23, No. 2: 147 (2022); https://doi.org/10.15407/ufm.23.02.147
- Т.М. Radchenko, Metallofiz. Noveishie Tekhnol., 30, Spec. Iss.: 195 (2008); Metal Physics and Advanced Technologies, 19, No. 2: 211 (2001).
- D.S. Leonov, T.M. Radchenko, V.A. Tatarenko, and Yu.A. Kunitsky, Defect Diffus. Forum, 273–276: 520 (2008); https://doi.org/10.4028/www.scientific.net/DDF.273-276.520
- K. Cornell, H. Wipf, U. Stuhr, and A.V. Skripov, Solid State Communications, 101, No. 8: 569 (1997); https://doi.org/10.1016/S0038-1098(96)00653-9
- F. Mebtouche, T. Zergoug, S.E.H. Abaidia, J. Bertsch, A. Seddik Kebaili, and A. Nedjar, Comput. Theor. Chem., 1178, No. 15: 112781 (2020); https://doi.org/10.1016/j.comptc.2020.112781
- Chunlei Shen, Yunping Jia, Canhui Xu, Shuanglin Hu, Xiaosong Zhou, and Xinggui Long, Surface Science, 725: 122149 (2022); https://doi.org/10.1016/j.susc.2022.122149
- Q. Liu, Z. Zhang, S. Liu, and H. Yang, Adv. Eng. Mater, 20, No. 5: 1700679 (2018), https://doi.org/10.1002/adem.201700679
- J. Wang and H. Gong, Int. J. Hydrog. Energy, 39, No. 11: 6068 (2014); https://doi.org/10.1016/j.ijhydene.2014.01.126
- M. Schlereth and H. Wipf, J. Phys.: Cond. Matt., 2, No. 33: 6929; https://doi.org/10.1088/0953-8984/2/33/005
- L. Chen, Q. Wang, W. Jiang, and H. Gong, Metals, 2019, 9, No. 2: 121; https://doi.org/10.3390/met9020121
- S. Zhu, R.J. Zhang, L. Wan, Y.K. Guo, R.Y. Zhou, and T. Gao, Mater. Chem. Phys., 277: 125549 (2022); https://doi.org/10.1016/j.matchemphys.2021.125549
- Y.J. Choi, J.W. Choi, H.Y. Sohn, T. Ryu, K.S. Hwang, and Z.Z. Fang, Int. J. Hydrog. Energy, 34, No. 18: 7700 (2009); https://doi.org/10.1016/j.ijhydene.2009.07.033
- M. Calizzi, D. Chericoni, L.H. Jepsen, T.R. Jensen, and L. Pasquini, Int. J. Hydrog. Energy, 41, No. 32: 14447 (2016); https://doi.org/10.1016/j.ijhydene.2016.03.071
- F. Yan, I. Mouton, L.T. Stephenson, A.J. Breen, Y. Chang, D. Ponge, D. Raabe, and B. Gault, Scr. Mater., 162: 321 (2019); https://doi.org/10.1016/j.scriptamat.2018.11.040
- M. Pozzo and D. Alfè, Int. J. Hydrog. Energy, 34, No. 4: 1922 (2009); https://doi.org/10.1016/j.ijhydene.2008.11.109.
- M.W. Davids, M. Lototskyy, A. Nechaev, Q. Naidoo, M. Williams, and Y. Klochko, Int. J. Hydrog. Energy, 36, No. 16: 9743 (2011); https://doi.org/10.1016/j.ijhydene.2011.05.036
- V.N. Bugayev, V.G. Gavrilyuk, V.M. Nadutov, and V.A. Tatarenko, Fiz. Met. Metalloved., 68, No. 5: 931 (1989).