Гідроґен у сполуках і стопах із структурою А15

Ан. Д. Золотаренко$^{1,2}$, Ол. Д. Золотаренко$^{1,2}$, 3. А. Матисіна$^1$, Н. А. Швачко$^{1,3}$, Н. Є. Аханова$^{4,5}$, M. Уалханова$^5$, Д. В. Щур$^{1,6}$, M. T. Габдуллін$^4$, М. Т. Картель$^2$, Ю. М. Солонін$^1$, Ю. І. Жирко$^6$, Д. В. Ісмаїлов$^{5,7}$, О. Д. Золотаренко$^1$, І. В. Загорулько$^8$

$^1$Інститут проблем матеріалознавства ім. І. М. Францевича НАН України, вул. Омеляна Пріцака, 3, 03142 Київ, Україна
$^2$Інститут хімії поверхні ім. О. О. Чуйка НАН України, вул. Генерала Наумова, 17, 03164 Київ, Україна
$^3$Київський національний університет будівництва і архітектури, просп. Повітрофлотський, 31, 03037 Київ, Україна
$^4$Казахстансько-британський технічний університет, вул. Толе бі, 59, 050040 Алмати, Казахстан
$^5$Казахський національний університет ім. Аль-Фарабі, просп. Аль-Фарабі, 71, 050040 Алмати, Казахстан
$^6$Інститут прикладної фізики НАН України, вул. Петропавлівська, 58, 40000 Суми, Україна
$^7$НАТ «Казахський національний дослідницький технічний університет імені К.І. Сатбаєва», вул. Сатбаєва, 22, 050013 Алмати, Казахстан
$^8$Інститут металофізики ім. Г. В. Курдюмова НАН України, бульв. Академіка Вернадського, 36, 03142 Київ, Україна

Отримано 28.09.2023; остаточна версія — 17.11.2023 Завантажити PDF logo PDF

Анотація
У даній роботі виконано теоретичне дослідження атомового впорядкування у стопі A3BCx. Вивчено взаємний вплив упорядкування та розчинности домішки C у стопі A3B. Знайдено та досліджено залежності розчинности від складу стопу, температури, ступеня далекого порядку. Також одержано критерії прояву екстремальности у концентраційній і температурній залежностях розчинности. Атомове впорядкування вивчено за допомогою методу середніх енергій; особливості розчинности домішки C у стопі A3B вдалося з’ясувати за допомогою конфіґураційного методу. Експерименти, що підтверджують результати теорії, наразі невідомі авторам. Одначе наявні експериментальні дані щодо визначення температур мартенситного перетворення (Tm) і переходу у надпровідний стан (Tc) для стопу Nb3SnHx дають змогу сподіватися та стверджувати стосовно можливої відповідности даних теорії й експерименту.

Ключові слова: кристалічна структура, структура типу A15, стопи, сполуки, металогідриди, водень, фазові перетворення, переходи лад–безлад, розчинність.

DOI: https://doi.org/10.15407/ufm.24.04.654

Citation: An. D. Zolotarenko, Ol. D. Zolotarenko, Z. A. Matysina, N. A. Shvachko, N. Y. Akhanova, M. Ualkhanova, D. V. Schur, M. T. Gabdullin, M. T. Kartel, Yu. M. Solonin, Yu. I. Zhirko, D. V. Ismailov, A. D. Zolotarenko, and I. V. Zagorulko, Hydrogen in Compounds and Alloys with A15 Structure, Progress in Physics of Metals, 24, No. 4: 654–685 (2023)


Цитована література   
  1. Z.A. Matysina, An.D. Zolotarenko, Al.D. Zolotarenko, N.A. Gavrylyuk, A. Veziroglu, T.N. Veziroglu, A.P. Pomytkin, D.V. Schur, and M.T. Gabdullin, Features of the Interaction of Hydrogen with Metals, Alloys and Compounds. Hydrogen Atoms in Crystalline Solids (KIM Publishing House: Kyiv: 2022); http://www.aheu.com.ua/Hydrogen.html
  2. D.V. Schur, M.T. Gabdullin, V.A. Bogolepov, A. Veziroglu, S.Y. Zaginaichenko, A.F. Savenko,and K.A. Meleshevich, Int. J. Hydrogen Energy, 41, No. 3: 1811 (2016); https://doi.org/10.1016/j.ijhydene.2015.10.011
  3. Z.A. Matysina, O.S. Pogorelova, and S.Yu. Zaginaichenko, J. Phy. Chem. Solids, 56, No. 1: 9 (1995); https://doi.org/10.1016/0022-3697(94)00106-5
  4. Z.A. Matysina and S.Yu. Zaginaichenko, Int. J. Hydrogen Energy, 21, Nos. 11–12: 1085 (1996); https://doi.org/10.1016/S0360-3199(96)00050-X
  5. S.Yu. Zaginaichenko, Z.A. Matysina, I. Smityukh, and V.K. Pishuk, J. Alloys Compd., 330–332: 70 (2002); https://doi.org/10.1016/S0925-8388(01)01661-9
  6. Z.A. Matysina and S.Y. Zaginaichenko, Rus. Phys. J., 59, No.2: 177 (2016); https://doi.org/10.1007/s11182-016-0757-0
  7. S.Y. Zaginaichenko, D.A. Zaritskii, Z.A. Matysina, T.N. Veziroglu, and L.I. Kopylova, Int. J. Hydrogen Energy, 40, No. 24: 7644 (2015); https://doi.org/10.1016/j.ijhydene.2015.01.089
  8. Z.A. Matysina and S.Y. Zaginaichenko, Phys. Met. Metallogr., 114, No. 4: 308 (2013); https://doi.org/10.1134/S0031918X13010079
  9. Z.A. Matysina, N.A. Gavrylyuk, M. Kartel, A. Veziroglu, T.N. Veziroglu, A.P. Pomytkin, D.V. Schur, T.S. Ramazanov, M.T. Gabdullin, A.D. Zolotarenko, A.D. Zolotarenko, and N.A. Shvachko, Int. J. Hydrogen Energy, 46, No. 50: 25520 (2021); https://doi.org/0.1016/j.ijhydene.2021.05.069
  10. D.V. Shchur, S.Y. Zaginaichenko, A. Veziroglu, T.N. Veziroglu, N.A. Gavrylyuk, A.D. Zolotarenko, M.T. Gabdullin, T.S. Ramazanov, A.D. Zolotarenko, and A.D. Zolotarenko, Rus. Phys. J., 64, No. 1: 89 (2021); https://doi.org/10.1007/s11182-021-02304-7
  11. S.Yu. Zaginaichenko, Z.A. Matysina, D.V. Schur, and A.D. Zolotarenko, Int. J. Hydrogen Energy, 37, No. 9: 7565 (2012); https://doi.org/10.1016/j.ijhydene.2012.01.006
  12. Z.A. Matysina, S.Y. Zaginaichenko, D.V. Schur, T.N. Veziroglu, A. Veziroglu, M.T. Gabdullin, Al.D. Zolotarenko, and An.D. Zolotarenko, Int. J. Hydrogen Energy, 43, No. 33: 16092 (2018); https://doi.org/10.1016/j.ijhydene.2018.06.168
  13. Z.A. Matysina, S.Y. Zaginaichenko, D.V. Schur, A.D. Zolotarenko, A.D. Zolotarenko, M.T. Gabdulin, L.I. Kopylova, and T.I. Shaposhnikova, Rus. Phys. J., 61, No. 12: 2244 (2019); https://doi.org/10.1007/s11182-019-01662-7
  14. D.V. Schur, A. Veziroglu, S.Yu Zaginaychenko, Z.A. Matysina, T.N. Veziroglu, M.T. Gabdullin, T.S. Ramazanov, An.D. Zolonarenko, and Al.D. Zolonarenko, Int. J. Hydrogen Energy, 44, No. 45: 24810 (2019); https://doi.org/10.1016/j.ijhydene.2019.07.205
  15. Z.A. Matysina, S.Yu. Zaginaichenko, D.V. Schur, Al.D. Zolotarenko, An.D. Zolotarenko, and M.T. Gabdulin, Rus. Phys. J., 61, No. 2: 253 (2018); https://doi.org/10.1007/s11182-018-1395-5
  16. Z.A. Matysinaa, An.D. Zolotarenko, Al.D. Zolotarenko, M.T. Kartel, A. Veziroglu, T.N. Veziroglu, N.A. Gavrylyuk, D.V. Schur, M.T. Gabdullin, N.E. Akhanova, T.S. Ramazanov, M. Ualkhanova, and N.A. Shvachko, Int. J. Hydrogen Energy, 48, No. 6: 2271; https://doi.org/10.1016/j.ijhydene.2022.09.225
  17. Z.A. Matysina, An.D. Zolotarenko, Ol.D. Zolotarenko, T.V. Myronenko, D.V. Schur, E.P. Rudakova, M.V. Chymbai, A.D. Zolotarenko, I.V. Zagorulko, and O.O. Havryliuk, Chem., Phys. Technol. Surf., 14, No. 2: 210 (2023); https://doi.org/10.15407/hftp14.02.210
  18. Z.A. Matysina and D.V. Shchur, Rus. Phys. J., 44, No. 11: 1237 (2001); https://doi.org/10.1023/A:1015318110874
  19. V.I. Trefilov, D.V. Shchur, V.K. Pishuk, S.Yu. Zaginaichenko, A.V. Choba, and N.R. Nagornaya, Renewable Energy, 16, Nos. 1–4: 757 (1999); https://doi.org/10.1016/S0960-1481(98)00273-0
  20. Yu.M. Lytvynenko and D.V. Shchur, Renewable Energy, 16, No. 1–4: 753 (1999); https://doi.org/10.1016/S0960-1481(98)00272-9
  21. D.V. Schur, A.A. Lyashenko, V.M. Adejev, V.B. Voitovich, and S.Yu. Zaginaichenko, Int. J. Hydrogen Energy, 20, No. 5: 405 (1995); https://doi.org/10.1016/0360-3199(94)00077-D
  22. D.V. Schur, V.A. Lavrenko, V.M. Adejev, and I.E. Kirjakova, Int. J. Hydrogen Energy, 19, No. 3: 265 (1994); https://doi.org/10.1016/0360-3199(94)90096-5
  23. S.Y. Zaginaichenko, Z.A. Matysina, D.V. Schur, L.O. Teslenko, A. Veziroglu, Int. J. Hydrogen Energy, 36, No. 1: 1152 (2011); https://doi.org/10.1016/j.ijhydene.2010.06.088
  24. S.A. Tikhotskii, I.V. Fokin, and D.V. Schur, Phys. Solid Earth, 47, No. 4: 327 (2011); https://doi.org/10.1134/S1069351311030062
  25. A.D. Zolotarenko, A.D. Zolotarenko, A. Veziroglu, T.N. Veziroglu, N.A. Shvachko, A.P. Pomytkin, D.V. Schur, N.A. Gavrylyuk, T.S. Ramazanov, N.Y. Akhanova, and M.T. Gabdullin, Int. J. Hydrogen Energy, 47, No. 11: 7310 (2022); https://doi.org/10.1016/j.ijhydene.2021.03.065
  26. An.D. Zolotarenko, Al.D. Zolotarenko, A. Veziroglu, T.N. Veziroglu, N.A. Shvachko, A.P. Pomytkin, N.A. Gavrylyuk, D.V. Schur, T.S. Ramazanov, and M.T. Gabdullin, Int. J. Hydrogen Energy, 47, No. 11: 7281 (2021); https://doi.org/10.1016/j.ijhydene.2021.03.025
  27. D.V. Schur, S.Y. Zaginaichenko, E.A. Lysenko, T.N. Golovchenko, and N.F. Javadov, NATO Science for Peace and Security Series C: Environmental Security: 53 (Springer Science + Business Media B.V: 2008); https://doi.org/10.1007/978-1-4020-8898-8_5
  28. D.V. Schur, S.Y. Zaginaichenko, A.D. Zolotarenko, and T.N. Veziroglu, NATO Science for Peace and Security Series C: Environmental Security: 85 (Springer Science + Business Media B.V: 2008); https://doi.org/10.1007/978-1-4020-8898-8_7
  29. O.D. Zolotarenko, O.P. Rudakova, M.T. Kartel, H.O. Kaleniuk, A.D. Zolotarenko, D.V. Schur, and Y.O. Tarasenko, Surface, 12, No. 27: 263 (2020); https://doi.org/10.15407/Surface.2020.12.263
  30. Ol.D. Zolotarenko, O.P. Rudakova, N.E. Akhanova, An.D. Zolotarenko, D.V. Shchur, Z.A. Matysina, M.T. Gabdullin, M. Ualkhanova, N.A. Gavrilyuk, O.D. Zolotarenko, M.V. Chymbai, and I.V. Zagorulko, Nanosistemi, Nanomateriali, Nanotehnologii, 20, No. 3: 725 (2022); https://doi.org/10.15407/nnn.20.03.725
  31. D.S. Kerimbekov, N.E. Akhanova, M.T. Gabdullin, Kh.A. Abdullin, D.G. Batryshev, A.D. Zolotarenko, N.A. Gavrylyuk, O,D. Zolotarenko, and D.V. Shchur, J. Problems in the Evolution of Open Systems, 24, Nos. 3–4: 79 (2023); https://doi.org/10.26577/JPEOS.2022.v24.i2.i6
  32. V.M. Gun’ko, V.V. Turov, V.I. Zarko, G.P. Prykhod’ko, T.V. Krupska, A.P. Golovan, J. Skubiszewska-Zięba, B. Charmas, and M.T. Kartel, Chem. Phys., 459: 172 (2015); https://doi.org/10.1016/j.chemphys.2015.08.016
  33. M.M. Nishchenko, S.P. Likhtorovich, A.G. Dubovoy, and T.A. Rashevskaya, Carbon, 41, No. 7: 1381 (2003); https://doi.org/10.1016/S0008-6223(03)00065-4
  34. N.Y. Akhanova, D.V. Schur, N.A. Gavrylyuk, M.T. Gabdullin, N.S. Anikina, An.D. Zolotarenko, O.Ya. Krivushchenko, Ol.D. Zolotarenko, B.M. Gorelov, E. Erlanuli, and D.G. Batrishev, Chem., Phys. Technol. Surf., 11, No. 3: 429 (2020); https://doi.org/10.15407/hftp11.03.429
  35. Z.A.  Matysina, Ol.D.  Zolotarenko, O.P.  Rudakova, N.Y.  Akhanova, A.P.  Pomytkin, An.D.  Zolotarenko, D.V.  Shchur, M.T.  Gabdullin, M.  Ualkhanova, N.A.  Gavrylyuk, A.D.  Zolotarenko, M.V.  Chymbai, and I.V.  Zagorulko, Prog. Phys. Met., 23, No. 3: 510 (2022); https://doi.org/10.15407/ufm.23.03.510
  36. N.Ye. Akhanova, D.V. Shchur, A.P. Pomytkin, Al.D. Zolotarenko, An.D. Zolotarenko, N.A. Gavrylyuk, M. Ualkhanova, W. Bo, and D. Ang, J. Nanosci. Nanotechnol., 21: 2435 (2021); https://doi.org/10.1166/jnn.2021.18970
  37. O.D. Zolotarenko, E.P. Rudakova, A.D. Zolotarenko, N.Y. Akhanova, M.N. Ualkhanova, D.V. Shchur, M.T. Gabdullin, N.A. Gavrylyuk, T.V. Myronenko, A.D. Zolotarenko, M.V. Chymbai, I.V. Zagorulko, Yu.O. Tarasenko, and O.O. Havryliuk, Chem., Phys. Technol. Surf., 13, No. 3: 259 (2022); https://doi.org/10.15407/hftp13.03.259
  38. D.V. Schur, A.D. Zolotarenko, A.D. Zolotarenko, O.P. Zolotarenko, and M.V. Chimbai, Phys. Sci. Technol., 6, Nos. 1–2: 46 (2019); https://doi.org/10.26577/phst-2019-1-p9
  39. M. Baibarac, I. Baltog, S. Frunza, A. Magrez, D. Schur, and S.Y. Zaginaichenko, Diamond and Related Materials, 32: 72 (2013); https://doi.org/10.1016/j.diamond.2012.12.006
  40. Al.D. Zolotarenko, An.D. Zolotarenko, V.A. Lavrenko, S.Yu. Zaginaichenko, N.A. Shvachko, O.V. Milto, V.B. Molodkin, A.E. Perekos, V.M. Nadutov, and Yu.A. Tarasenko, Carbon Nanomaterials in Clean Energy Hydrogen Systems-II, (Springer, Dordrecht: 2011) p. 127; https://doi.org/10.1007/978-94-007-0899-0_10
  41. M. Ualkhanova, A.Y. Perekos, A.G. Dubovoy, D.V. Schur, Al.D. Zolotarenko, An.D. Zolotarenko, N.A. Gavrylyuk, M.T. Gabdullin, T.S. Ramazanov, N. Akhanova and S. Orazbayev, J. Nanosci. Nanotechnol. Applications, 3, No. 3: 1 (2019); https://doi.org/10.18875/2577-7920.3.302
  42. D.V. Schur, S.Y. Zaginaichenko, A.F. Savenko, V.A. Bogolepov, and N.S. Anikina., Int. J. Hydrogen Energ., 36, No. 1: 1143 (2011); https://doi.org/10.1016/j.ijhydene.2010.06.087
  43. A.F. Savenko, V.A. Bogolepov, K.A. Meleshevich, S.Yu. Zaginaichenko, M.V. Lototsky, V.K. Pishuk, L.O. Teslenko, and V.V. Skorokhod, NATO Security through Science Series A: Chemistry and Biology, (Springer: Dordrecht: 2007) p. 365; https://doi.org/10.1007/978-1-4020-5514-0_47
  44. D.V. Schur, S. Zaginaichenko, and T.N. Veziroglu, Int. J. Hydrogen Energy,33, No. 13: 3330 (2008); https://doi.org/10.1016/j.ijhydene.2008.03.064
  45. S.Yu. Zaginaichenko, T.N. Veziroglu, M.V. Lototsky, V.A. Bogolepov, and A.F. Savenko, Int. J. Hydrogen Energy, 41, No. 1: 401 (2016); https://doi.org/10.1016/j.ijhydene.2015.08.087
  46. D.V. Schur, S.Y. Zaginaichenko, and T.N. Veziroglu, Int. J. Hydrogen Energy, 40, No. 6: 2742 (2015); https://doi.org/10.1016/j.ijhydene.2014.12.092
  47. Z.A. Matysina, S.Yu. Zaginaichenko, D.V. Shchur, A. Viziroglu, T.N. Viziroglu, M.T. Gabdullin, N.F. Javadov, An.D. Zolotarenko, and Al.D. Zolotarenko, Hydrogen in Crystals (KIM Publishing House: Kyiv: 2017).
  48. D.V. Schur, S.Y. Zaginaichenko, A.F. Savenko, V.A. Bogolepov, N.S. Anikina, A.D. Zolotarenko, Z.A. Matysina, T.N. Veziroglu, and N.E. Skryabina, NATO Science for Peace and Security Series C: Environmental Security, (Dordrecht: Springer: 2011), p. 87; https://doi.org/10.1007/978-94-007-0899-0_7
  49. V.A. Lavrenko, I.A. Podchernyaeva, D.V. Shchur, An.D. Zolotarenko, and Al.D. Zolotarenko, Powder Metallurgy and Metal Ceramics, 56: 504 (2018); https://doi.org/10.1007/s11106-018-9922-z
  50. Ol.D. Zolotarenko, M.N. Ualkhanova, E.P. Rudakova, N.Y. Akhanova, An.D. Zolotarenko, D.V. Shchur, M.T. Gabdullin, N.A. Gavrylyuk, A.D. Zolotarenko, M.V. Chymbai, I.V. Zagorulko, and O.O. Havryliuk, Chem., Phys. Technol. Surf., 13, No. 2: 209 (2022); https://doi.org/10.15407/hftp13.02.209
  51. Z.A.  Matysina, Ol.D.  Zolotarenko, M.  Ualkhanova, O.P.  Rudakova, N.Y.  Akhanova, An.D.  Zolotarenko, D.V.  Shchur, M.T.  Gabdullin, N.A.  Gavrylyuk, O.D.  Zolotarenko, M.V.  Chymbai, and I.V.  Zagorulko, Prog. Phys. Met., 23, No. 3: 528 (2022); https://doi.org/10.15407/ufm.23.03.528
  52. A.D. Zolotarenko, A.D. Zolotarenko, E.P. Rudakova, S.Y. Zaginaichenko, A.G. Dubovoy, D.V. Schur, and Y.A. Tarasenko, Carbon Nanomaterials in Clean Energy Hydrogen Systems-II (Dordrecht: Springer: 2011), p. 137; https://doi.org/10.1007/978-94-007-0899-0_11
  53. D.V. Schur, A.G. Dubovoy, S.Yu. Zaginaichenko, V.M. Adejev, A.V. Kotko, V.A. Bogolepov, A.F. Savenko, A.D. Zolotarenko, S.A. Firstov, and V.V. Skorokhod, NATO Security through Science Series A: Chemistry and Biology (Springer: Dordrecht: 2007), p. 199; https://doi.org/10.1007/978-1-4020-5514-0_25
  54. M.N. Ualkhanova, A.S. Zhakypov, R.R. Nemkayeva, M.B. Aitzhanov, B.Y. Kurbanov, N.Y. Akhanova, Y. Yerlanuly, S.A. Orazbayev, D. Shchur, A. Zolotarenko, and M.T. Gabdullin, Energies, 16, No. 3: 1450 (2023); https://doi.org/10.3390/en16031450
  55. S.Y. Zaginaichenko and Z.A. Matysina, Carbon, 41, No. 7: 1349 (2003); https://doi.org/10.1016/S0008-6223(03)00059-9
  56. V.A. Lavrenko, D.V. Shchur, A.D. Zolotarenko, and A.D. Zolotarenko, Powder Metallurgy and Metal Ceramics, 57, No. 9: 596 (2019); https://doi.org/10.1007/s11106-019-00021-y
  57. Ol.D. Zolotarenko, E.P. Rudakova, I.V. Zagorulko, N.Y. Akhanova, An.D. Zolotarenko, D.V. Schur, M.T. Gabdullin, M. Ualkhanova, T.V. Myronenko, A.D. Zolotarenko, M.V. Chymbai, and O.E. Dubrova, Ukr. J. Phys., 68, No. 1: 57 (2023); https://doi.org/10.15407/ujpe68.1.57
  58. Ol.D. Zolotarenko, An.D. Zolotarenko, E.P. Rudakova, N.Y. Akhanova, M.Ualkhanova, D.V. Schur, M.T. Gabdullin, T.V. Myronenko, A.D. Zolotarenko, M.V. Chymbai, I.V. Zagorulko, and O.O. Havryliuk, Chem., Phys. Technol. Surf., 14, No. 2: 191 (2023); https://doi.org/10.15407/hftp14.02.191
  59. Ol.D. Zolotarenko, E.P. Rudakova, N.Y. Akhanova, An.D. Zolotarenko, D.V. Shchur, M.T. Gabdullin, M. Ualkhanova, N.A. Gavrylyuk, M.V. Chymbai, Yu.O. Tarasenko, I.V. Zagorulko, andA. D. Zolotarenko, Metallofiz. Noveishie Tekhnol., 43, No. 10: 1417 (2021); https://doi.org/10.15407/mfint.43.10.1417
  60. Ol.D. Zolotarenko, E.P. Rudakova, N.Y. Akhanova, An.D. Zolotarenko, D.V. Shchur, M.T. Gabdullin, M. Ualkhanova, М. Sultangazina, N.A. Gavrylyuk, M.V. Chymbai, A.D. Zolotarenko, I.V. Zagorulko, and Yu.O. Tarasenko, Metallofiz. Noveishie Tekhnol., 44, No. 3: 343 (2022); https://doi.org/10.15407/mfint.44.03.0343
  61. Ol.D. Zolotarenko, E.P. Rudakova, N.Y. Akhanova, An.D. Zolotarenko, D.V. Shchur, M.T. Gabdullin, M. Ualkhanova, N.A. Gavrylyuk, M.V. Chymbai, T.V. Myronenko, I.V. Zagorulko, A.D. Zolotarenko, andO.O. Havryliuk, Chem. Phys. Tekhnol. Sci., 13, No. 4: 415 (2022); https://doi.org/10.15407/hftp13.04.415
  62. Ol.D. Zolotarenko, E. P. Rudakova, An.D. Zolotarenko, N.Y. Akhanova, M. Ualkhanova, D.V. Shchur, M.T. Gabdullin, T.V. Myronenko, A.D. Zolotarenko, M.V. Chymbai, and I.V. Zagorulko, Metallofiz. Noveishie Tekhnol., 45, No. 2: 199 (2023); https://doi.org/10.15407/mfint.45.02.019
  63. E.M. Savitsky, V.V. Baron, Yu.V. Efimov, M.I. Bychkova, and L.F. Myzenkova, Metallovedenie Sverkhprovodyashchikh Materialov (Moskva: Nauka: 1969), p. 265.
  64. Yu.A. Izyumov and E.Z. Kurmaev, Ukr. Phys. J., 2: 193 (1974).
  65. A.S. Chaves, F.C.S. Barreto, R.A. Nogueira, and B.Zẽks, Phys. Rev. B, 13, No. 1: 207 (1976); https://doi.org/10.1103/PhysRevB.13.207
  66. L. Testardi, M. Weger and I. Goldberg, Superconducting Compounds with the Structure of -Tungsten (Moskva, Mir: 1977), p. 436.
  67. S.V. Vonsovsky, Yu.A. Izyumov, and E.Z. Kurmaev, Superconductivity of Transition Metals, Their Alloys and Compounds (Moskva: Nauka: 1977), p. 384.
  68. V.I. Surikov, V.I. Pryadein, A.K. Stolts, A.P. Stepanov, A.F. Prekuya, and P.V. Geld, Phys. Met. Metallogr., 34, No. 4: 724 (1972).
  69. A.I. Medvedev, A.K. Stolts, P.V. Geld, and G.N. Vorobyova, Ordering of Atoms and Its Influence on the Properties of Alloys: Tez. Dokl. VII Vsesoyuzn. Conf.: UNC of the USSR Academy of Sciences (Sverdlovsk: 1983), 2: 117.
  70. L.J. Vieland, A.W. Wicklund, and J.G. White, Phys. Rev. B, 11, No. 9: 3311 (1975).
  71. E.C. Van Reuth and R.M.Waterstrat, Acta Crystallogr. B, 24: 186 (1968).
  72. N.V. Ageev, N.E. Alekseevsky and V.F. Shamray, Izvestiya AN SSSR. Metals, 3: 171 (1970).
  73. Yu.A. Khon, V.P. Fadin, S.A. Beznosyuk and V.M. Kuznetsov, Dokl. IV Vsesoyuzn. Confer. on the Ordering of Atoms and Its Effect on the Properties of Alloys (Tomsk: Tomsk State University: 1974), 1, p. 309.
  74. N.V. Ageev, N.E. Alekseevsky and V.F. Shamray, Izv. AN USSR. Metals, 1: 170 (1976).
  75. V.S. Belovol and V.A. Finkel, Questions of Atomic Science and Technology. Ser. Foundation and Applied Superconductivity (Kharkiv: KhFTI of the Academy of Sciences of the Ukrainian SSR: 1977), vol. 1, p. 6.
  76. N.N. Degtyarenko, V.F. Yelesin and Yu.P. Skopintsev, Ordering of Atoms and Its Effect on the Properties of Alloys: Tez. Dokl. VII Vsezoyuzn. Conf., (Sverdlovsk: UNC of the USSR Academy of Sciences: 1983), 2, p. 42.
  77. A.A. Smirnov, Phys. Met. Metallogr., 58, No. 4: 667 (1984).
  78. A.A. Smirnov, Generalized Theory of Ordering Alloys, (Kyiv: Naukova Dumka: 1986).
  79. Z.A. Matysina, D.V. Seriy, and V.A. Bondarenko, Atomic ordering. The solubility of the impurity, Izv.vuzov. Physics, 1: 127 (1996).
  80. Z.A. Matysina, S.Yu. Zaginaichenko, D.V. Schur, and V.K. Pishuk, Proc. 11th World Hydrogen Energy Conf. (Germany: Stuttgard: 1996) 2: 1091.
  81. Z.A. Matysina, S.Yu. Zaginaichenko, D.V. Seryi, and D.V. Schur, Int. J. Hydrogen Energy, 21, Nos. 11–12: 1065 (1996).
  82. W. Gorsky, Zs. Phys., 50, Nos. 1–2: 64 (1928).
  83. S.Yu. Zaginaichenko, Z.A. Matysina, and M.I. Milyan, The Solubility of Impurities in Alloys, 2597: 186 (1989).
  84. Z.A. Matysina and M.I. Milyan, Theory of Solubility of Impurities in Ordered Phases (Dnipropetrovsk: Publishing House of DSU: 1991), p. 180.
  85. K.H. Levchuk, T.M. Radchenko, and V.A. Tatarenko, Metallofiz. Noveishie Tekhnol., 43, No. 1: 1 (2021); https://doi.org/10.15407/mfint.43.01.0001
  86. T.M. Radchenko, O.S. Gatsenko, V.V. Lizunov, and V.A. Tatarenko, Prog. Phys. Met., 21, No. 4: 580 (2020); https://doi.org/10.15407/ufm.21.04.580
  87. I.M. Melnyk, T.M. Radchenko, and V.A. Tatarenko, Metallofiz. Noveishie Tekhnol., 32, No. 9: 1191 (2010).
  88. V.A. Tatarenko, S.M. Bokoch, V.M. Nadutov, T.M. Radchenko, and Y.B. Park, Defect Diffus. Forum, 280–281: 29 (2008); https://doi.org/10.4028/www.scientific.net/DDF.280-281.29
  89. T.M. Radchenko, V.A. Tatarenko, and H. Zapolsky, Solid State Phenom., 138: 283 (2008); https://doi.org/10.4028/www.scientific.net/ssp.138.283
  90. V.A. Tatarenko and C.L. Tsynman, Solid State Ionics, 101–103, Pt. 2: 1061 (1997); https://doi.org/10.1016/s0167-2738(97)00376-7
  91. T.M. Radchenko and V.A. Tatarenko, Carbon Nanomaterials in Clean Energy Hydrogen Systems. NATO Science for Peace and Security Series C: Environmental Security (Eds. B. Baranowsky, S.Y. Zaginaichenko, D.V. Schur, V.V. Skorokhod, and A. Veziroglu) (Springer Science  Business Media B.V.: 2008), p. 489; https://doi.org/10.1007/978-1-4020-8898-8_62
  92. T.M. Radchenko and V.A. Tatarenko, Hydrogen Materials Science and Chemistry of Carbon Nanomaterials. NATO Security through Science Series A: Chemistry and Biology (Eds. T.N. Veziroglu, S.Yu. Zaginaichenko, D.V. Schur, B. Baranowski, A.P. Shpak, V.V. Skorokhod, and A. Kale) (Dordrecht: Springer: 2007), p. 229; https://doi.org/10.1007/978-1-4020-5514-0_28
  93. V.A. Tatarenko and T.M. Radchenko, Hydrogen Materials Science and Chemistry of Metal Hydrides: NATO Science Series, Series II: Mathematics, Physics and Chemistry (Eds. T.N. Veziroglu, S.Yu. Zaginaichenko, D.V. Schur, and V.I. Trefilov) (Dordrecht, The Netherlands: Kluwer Academic Publishers: 2002), vol. 82, p. 123.
  94. T.M. Radchenko and V.A. Tatarenko, Int. J. Hydrogen Energy, 36, No. 1: 1338 (2011); https://doi.org/10.1016/j.ijhydene.2010.06.112
  95. T. Radchenko, H. Zapolsky, D. Blavette, and V. Tatarenko, Acta Cryst., A60: s71 (2004); https://doi.org/10.1107/S0108767304098599
  96. S.P. Repetsky, E.G. Len, and V.V. Lizunov, Metallofiz. Noveishie Tekhnol., 28, No. 8: 989 (2006).
  97. S.P. Repetsky, T.S. Len, and V.V. Lizunov, Metallofiz. Noveishie Tekhnol., 28, No. 9: 1143 (2006).
  98. P. Prysyazhnyuk and D. Di Tommaso, Mater. Adv., 4, No. 17: 3822 (2023); https://doi.org/10.1039/d3ma00313b
  99. P. Szroeder, I.Yu. Sagalianov, T.M. Radchenko, V.A. Tatarenko, Yu.I. Prylutskyy, and W. Strupiński, Appl. Surf. Sci., 442: 185 (2018); https://doi.org/10.1016/j.apsusc.2018.02.150
  100. S.M. Bokoch, M.P. Kulish, T.M. Radchenko, and V.A. Tatarenko, Metallofiz. Noveishie Tekhnol., 26, No. 3: 387 (2004).
  101. S.M. Bokoch, M.P. Kulish, V.A. Tatarenko, and T.M. Radchenko, Metallofiz. Noveishie Tekhnol., 26, No. 4: 541 (2004).
  102. A.G. Solomenko, R.M. Balabai, T.M. Radchenko, and V.A. Tatarenko, Prog. Phys. Met., 23, No. 2: 147 (2022); https://doi.org/10.15407/ufm.23.02.147
  103. Т.М. Radchenko, Metallofiz. Noveishie Tekhnol., 30, Spec. Iss.: 195 (2008); Metal Physics and Advanced Technologies, 19, No. 2: 211 (2001).
  104. D.S. Leonov, T.M. Radchenko, V.A. Tatarenko, and Yu.A. Kunitsky, Defect Diffus. Forum, 273–276: 520 (2008); https://doi.org/10.4028/www.scientific.net/DDF.273-276.520
  105. K. Cornell, H. Wipf, U. Stuhr, and A.V. Skripov, Solid State Communications, 101, No. 8: 569 (1997); https://doi.org/10.1016/S0038-1098(96)00653-9
  106. F. Mebtouche, T. Zergoug, S.E.H. Abaidia, J. Bertsch, A. Seddik Kebaili, and A. Nedjar, Comput. Theor. Chem., 1178, No. 15: 112781 (2020); https://doi.org/10.1016/j.comptc.2020.112781
  107. Chunlei Shen, Yunping Jia, Canhui Xu, Shuanglin Hu, Xiaosong Zhou, and Xinggui Long, Surface Science, 725: 122149 (2022); https://doi.org/10.1016/j.susc.2022.122149
  108. Q. Liu, Z. Zhang, S. Liu, and H. Yang, Adv. Eng. Mater, 20, No. 5: 1700679 (2018), https://doi.org/10.1002/adem.201700679
  109. J. Wang and H. Gong, Int. J. Hydrog. Energy, 39, No. 11: 6068 (2014); https://doi.org/10.1016/j.ijhydene.2014.01.126
  110. M. Schlereth and H. Wipf, J. Phys.: Cond. Matt., 2, No. 33: 6929; https://doi.org/10.1088/0953-8984/2/33/005
  111. L. Chen, Q. Wang, W. Jiang, and H. Gong, Metals, 2019, 9, No. 2: 121; https://doi.org/10.3390/met9020121
  112. S. Zhu, R.J. Zhang, L. Wan, Y.K. Guo, R.Y. Zhou, and T. Gao, Mater. Chem. Phys., 277: 125549 (2022); https://doi.org/10.1016/j.matchemphys.2021.125549
  113. Y.J. Choi, J.W. Choi, H.Y. Sohn, T. Ryu, K.S. Hwang, and Z.Z. Fang, Int. J. Hydrog. Energy, 34, No. 18: 7700 (2009); https://doi.org/10.1016/j.ijhydene.2009.07.033
  114. M. Calizzi, D. Chericoni, L.H. Jepsen, T.R. Jensen, and L. Pasquini, Int. J. Hydrog. Energy, 41, No. 32: 14447 (2016); https://doi.org/10.1016/j.ijhydene.2016.03.071
  115. F. Yan, I. Mouton, L.T. Stephenson, A.J. Breen, Y. Chang, D. Ponge, D. Raabe, and B. Gault, Scr. Mater., 162: 321 (2019); https://doi.org/10.1016/j.scriptamat.2018.11.040
  116. M. Pozzo and D. Alfè, Int. J. Hydrog. Energy, 34, No. 4: 1922 (2009); https://doi.org/10.1016/j.ijhydene.2008.11.109.
  117. M.W. Davids, M. Lototskyy, A. Nechaev, Q. Naidoo, M. Williams, and Y. Klochko, Int. J. Hydrog. Energy, 36, No. 16: 9743 (2011); https://doi.org/10.1016/j.ijhydene.2011.05.036
  118. V.N. Bugayev, V.G. Gavrilyuk, V.M. Nadutov, and V.A. Tatarenko, Fiz. Met. Metalloved., 68, No. 5: 931 (1989).