Hydrogen in Compounds and Alloys with A15 Structure

An. D. Zolotarenko$^{1,2}$, Ol. D. Zolotarenko$^{1,2}$, Z. A. Matysina$^1$, N. A. Shvachko$^{1,3}$, N. Y. Akhanova$^{4,5}$, M. Ualkhanova$^5$, D. V. Schur$^{1,6}$, M. T. Gabdullin$^4$, M. T. Kartel$^2$, Yu. M. Solonin$^1$, Yu. I. Zhirko$^6$, D. V. Ismailov$^{5,7}$, A. D. Zolotarenko$^1$, and I. V. Zagorulko$^8$

$^1$I. M. Frantsevych Institute for Problems of Materials Science of the N.A.S. of Ukraine, Omeljan Pritsak Str., UA-03142 Kyiv, Ukraine
$^2$O. O. Chuiko Institute of Surface Chemistry of the N.A.S. of Ukraine, 17 General Naumov Str., UA-03164 Kyiv, Ukraine
$^3$Kyiv National University of Construction and Architecture, 31 Povitroflotskyi Ave., UA-03037 Kyiv, Ukraine
$^4$Kazakh–British Technical University, 59 Tole bi Str., 050000 Almaty, Kazakhstan
$^5$Al-Farabi Kazakh National University, 71 Al-Farabi Ave., 050040 Almaty, Kazakhstan
$^6$Institute of Applied Physics of the N.A.S. of Ukraine, 58 Petropavlivska Str., UA-40000 Sumy, Ukraine
$^7$NJSC ‘K. I. Satbayev Kazakh National Research Technical University’, 22a Satbaev Str., 050013 Almaty, Kazakhstan
$^8$G. V. Kurdyumov Institute for Metal Physics of the N.A.S. of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine

Received 28.09.2023; final version — 17.11.2023 Download PDF logo PDF

Abstract
In the present work, a theoretical study of atomic ordering in the A3BCx alloy is carried out. The mutual influence of the ordering and solubility of impurity C in the A3B alloy is studied. The dependences of solubility on the composition of the alloy, temperature, degree of long-range order are found and studied. In addition, the criteria for the manifestation of extremity in the concentration and temperature dependences of solubility are obtained. The atomic ordering is studied using the average-energies’ method; the features of the C impurity solubility in the A3B alloy are elucidated using the configuration method. Experiments confirming the results of the theory are currently unknown to authors. However, the available experimental data on determining the temperatures of martensitic transformation (Tm) and superconducting transition (Tc) for the Nb3SnHx alloy allow us to hope and assert a possible agreement between the data of theory and experiment.

Keywords: crystal structure, A15-type structure, alloys, compounds, metal hydrides, hydrogen, phase transformations, order–disorder transitions, solubility.

DOI: https://doi.org/10.15407/ufm.24.04.654

Citation: An. D. Zolotarenko, Ol. D. Zolotarenko, Z. A. Matysina, N. A. Shvachko, N. Y. Akhanova, M. Ualkhanova, D. V. Schur, M. T. Gabdullin, M. T. Kartel, Yu. M. Solonin, Yu. I. Zhirko, D. V. Ismailov, A. D. Zolotarenko, and I. V. Zagorulko, Hydrogen in Compounds and Alloys with A15 Structure, Progress in Physics of Metals, 24, No. 4: 654–685 (2023)


References  
  1. Z.A. Matysina, An.D. Zolotarenko, Al.D. Zolotarenko, N.A. Gavrylyuk, A. Veziroglu, T.N. Veziroglu, A.P. Pomytkin, D.V. Schur, and M.T. Gabdullin, Features of the Interaction of Hydrogen with Metals, Alloys and Compounds. Hydrogen Atoms in Crystalline Solids (KIM Publishing House: Kyiv: 2022); http://www.aheu.com.ua/Hydrogen.html
  2. D.V. Schur, M.T. Gabdullin, V.A. Bogolepov, A. Veziroglu, S.Y. Zaginaichenko, A.F. Savenko,and K.A. Meleshevich, Int. J. Hydrogen Energy, 41, No. 3: 1811 (2016); https://doi.org/10.1016/j.ijhydene.2015.10.011
  3. Z.A. Matysina, O.S. Pogorelova, and S.Yu. Zaginaichenko, J. Phy. Chem. Solids, 56, No. 1: 9 (1995); https://doi.org/10.1016/0022-3697(94)00106-5
  4. Z.A. Matysina and S.Yu. Zaginaichenko, Int. J. Hydrogen Energy, 21, Nos. 11–12: 1085 (1996); https://doi.org/10.1016/S0360-3199(96)00050-X
  5. S.Yu. Zaginaichenko, Z.A. Matysina, I. Smityukh, and V.K. Pishuk, J. Alloys Compd., 330–332: 70 (2002); https://doi.org/10.1016/S0925-8388(01)01661-9
  6. Z.A. Matysina and S.Y. Zaginaichenko, Rus. Phys. J., 59, No.2: 177 (2016); https://doi.org/10.1007/s11182-016-0757-0
  7. S.Y. Zaginaichenko, D.A. Zaritskii, Z.A. Matysina, T.N. Veziroglu, and L.I. Kopylova, Int. J. Hydrogen Energy, 40, No. 24: 7644 (2015); https://doi.org/10.1016/j.ijhydene.2015.01.089
  8. Z.A. Matysina and S.Y. Zaginaichenko, Phys. Met. Metallogr., 114, No. 4: 308 (2013); https://doi.org/10.1134/S0031918X13010079
  9. Z.A. Matysina, N.A. Gavrylyuk, M. Kartel, A. Veziroglu, T.N. Veziroglu, A.P. Pomytkin, D.V. Schur, T.S. Ramazanov, M.T. Gabdullin, A.D. Zolotarenko, A.D. Zolotarenko, and N.A. Shvachko, Int. J. Hydrogen Energy, 46, No. 50: 25520 (2021); https://doi.org/0.1016/j.ijhydene.2021.05.069
  10. D.V. Shchur, S.Y. Zaginaichenko, A. Veziroglu, T.N. Veziroglu, N.A. Gavrylyuk, A.D. Zolotarenko, M.T. Gabdullin, T.S. Ramazanov, A.D. Zolotarenko, and A.D. Zolotarenko, Rus. Phys. J., 64, No. 1: 89 (2021); https://doi.org/10.1007/s11182-021-02304-7
  11. S.Yu. Zaginaichenko, Z.A. Matysina, D.V. Schur, and A.D. Zolotarenko, Int. J. Hydrogen Energy, 37, No. 9: 7565 (2012); https://doi.org/10.1016/j.ijhydene.2012.01.006
  12. Z.A. Matysina, S.Y. Zaginaichenko, D.V. Schur, T.N. Veziroglu, A. Veziroglu, M.T. Gabdullin, Al.D. Zolotarenko, and An.D. Zolotarenko, Int. J. Hydrogen Energy, 43, No. 33: 16092 (2018); https://doi.org/10.1016/j.ijhydene.2018.06.168
  13. Z.A. Matysina, S.Y. Zaginaichenko, D.V. Schur, A.D. Zolotarenko, A.D. Zolotarenko, M.T. Gabdulin, L.I. Kopylova, and T.I. Shaposhnikova, Rus. Phys. J., 61, No. 12: 2244 (2019); https://doi.org/10.1007/s11182-019-01662-7
  14. D.V. Schur, A. Veziroglu, S.Yu Zaginaychenko, Z.A. Matysina, T.N. Veziroglu, M.T. Gabdullin, T.S. Ramazanov, An.D. Zolonarenko, and Al.D. Zolonarenko, Int. J. Hydrogen Energy, 44, No. 45: 24810 (2019); https://doi.org/10.1016/j.ijhydene.2019.07.205
  15. Z.A. Matysina, S.Yu. Zaginaichenko, D.V. Schur, Al.D. Zolotarenko, An.D. Zolotarenko, and M.T. Gabdulin, Rus. Phys. J., 61, No. 2: 253 (2018); https://doi.org/10.1007/s11182-018-1395-5
  16. Z.A. Matysinaa, An.D. Zolotarenko, Al.D. Zolotarenko, M.T. Kartel, A. Veziroglu, T.N. Veziroglu, N.A. Gavrylyuk, D.V. Schur, M.T. Gabdullin, N.E. Akhanova, T.S. Ramazanov, M. Ualkhanova, and N.A. Shvachko, Int. J. Hydrogen Energy, 48, No. 6: 2271; https://doi.org/10.1016/j.ijhydene.2022.09.225
  17. Z.A. Matysina, An.D. Zolotarenko, Ol.D. Zolotarenko, T.V. Myronenko, D.V. Schur, E.P. Rudakova, M.V. Chymbai, A.D. Zolotarenko, I.V. Zagorulko, and O.O. Havryliuk, Chem., Phys. Technol. Surf., 14, No. 2: 210 (2023); https://doi.org/10.15407/hftp14.02.210
  18. Z.A. Matysina and D.V. Shchur, Rus. Phys. J., 44, No. 11: 1237 (2001); https://doi.org/10.1023/A:1015318110874
  19. V.I. Trefilov, D.V. Shchur, V.K. Pishuk, S.Yu. Zaginaichenko, A.V. Choba, and N.R. Nagornaya, Renewable Energy, 16, Nos. 1–4: 757 (1999); https://doi.org/10.1016/S0960-1481(98)00273-0
  20. Yu.M. Lytvynenko and D.V. Shchur, Renewable Energy, 16, No. 1–4: 753 (1999); https://doi.org/10.1016/S0960-1481(98)00272-9
  21. D.V. Schur, A.A. Lyashenko, V.M. Adejev, V.B. Voitovich, and S.Yu. Zaginaichenko, Int. J. Hydrogen Energy, 20, No. 5: 405 (1995); https://doi.org/10.1016/0360-3199(94)00077-D
  22. D.V. Schur, V.A. Lavrenko, V.M. Adejev, and I.E. Kirjakova, Int. J. Hydrogen Energy, 19, No. 3: 265 (1994); https://doi.org/10.1016/0360-3199(94)90096-5
  23. S.Y. Zaginaichenko, Z.A. Matysina, D.V. Schur, L.O. Teslenko, A. Veziroglu, Int. J. Hydrogen Energy, 36, No. 1: 1152 (2011); https://doi.org/10.1016/j.ijhydene.2010.06.088
  24. S.A. Tikhotskii, I.V. Fokin, and D.V. Schur, Phys. Solid Earth, 47, No. 4: 327 (2011); https://doi.org/10.1134/S1069351311030062
  25. A.D. Zolotarenko, A.D. Zolotarenko, A. Veziroglu, T.N. Veziroglu, N.A. Shvachko, A.P. Pomytkin, D.V. Schur, N.A. Gavrylyuk, T.S. Ramazanov, N.Y. Akhanova, and M.T. Gabdullin, Int. J. Hydrogen Energy, 47, No. 11: 7310 (2022); https://doi.org/10.1016/j.ijhydene.2021.03.065
  26. An.D. Zolotarenko, Al.D. Zolotarenko, A. Veziroglu, T.N. Veziroglu, N.A. Shvachko, A.P. Pomytkin, N.A. Gavrylyuk, D.V. Schur, T.S. Ramazanov, and M.T. Gabdullin, Int. J. Hydrogen Energy, 47, No. 11: 7281 (2021); https://doi.org/10.1016/j.ijhydene.2021.03.025
  27. D.V. Schur, S.Y. Zaginaichenko, E.A. Lysenko, T.N. Golovchenko, and N.F. Javadov, NATO Science for Peace and Security Series C: Environmental Security: 53 (Springer Science + Business Media B.V: 2008); https://doi.org/10.1007/978-1-4020-8898-8_5
  28. D.V. Schur, S.Y. Zaginaichenko, A.D. Zolotarenko, and T.N. Veziroglu, NATO Science for Peace and Security Series C: Environmental Security: 85 (Springer Science + Business Media B.V: 2008); https://doi.org/10.1007/978-1-4020-8898-8_7
  29. O.D. Zolotarenko, O.P. Rudakova, M.T. Kartel, H.O. Kaleniuk, A.D. Zolotarenko, D.V. Schur, and Y.O. Tarasenko, Surface, 12, No. 27: 263 (2020); https://doi.org/10.15407/Surface.2020.12.263
  30. Ol.D. Zolotarenko, O.P. Rudakova, N.E. Akhanova, An.D. Zolotarenko, D.V. Shchur, Z.A. Matysina, M.T. Gabdullin, M. Ualkhanova, N.A. Gavrilyuk, O.D. Zolotarenko, M.V. Chymbai, and I.V. Zagorulko, Nanosistemi, Nanomateriali, Nanotehnologii, 20, No. 3: 725 (2022); https://doi.org/10.15407/nnn.20.03.725
  31. D.S. Kerimbekov, N.E. Akhanova, M.T. Gabdullin, Kh.A. Abdullin, D.G. Batryshev, A.D. Zolotarenko, N.A. Gavrylyuk, O,D. Zolotarenko, and D.V. Shchur, J. Problems in the Evolution of Open Systems, 24, Nos. 3–4: 79 (2023); https://doi.org/10.26577/JPEOS.2022.v24.i2.i6
  32. V.M. Gun’ko, V.V. Turov, V.I. Zarko, G.P. Prykhod’ko, T.V. Krupska, A.P. Golovan, J. Skubiszewska-Zięba, B. Charmas, and M.T. Kartel, Chem. Phys., 459: 172 (2015); https://doi.org/10.1016/j.chemphys.2015.08.016
  33. M.M. Nishchenko, S.P. Likhtorovich, A.G. Dubovoy, and T.A. Rashevskaya, Carbon, 41, No. 7: 1381 (2003); https://doi.org/10.1016/S0008-6223(03)00065-4
  34. N.Y. Akhanova, D.V. Schur, N.A. Gavrylyuk, M.T. Gabdullin, N.S. Anikina, An.D. Zolotarenko, O.Ya. Krivushchenko, Ol.D. Zolotarenko, B.M. Gorelov, E. Erlanuli, and D.G. Batrishev, Chem., Phys. Technol. Surf., 11, No. 3: 429 (2020); https://doi.org/10.15407/hftp11.03.429
  35. Z.A.  Matysina, Ol.D.  Zolotarenko, O.P.  Rudakova, N.Y.  Akhanova, A.P.  Pomytkin, An.D.  Zolotarenko, D.V.  Shchur, M.T.  Gabdullin, M.  Ualkhanova, N.A.  Gavrylyuk, A.D.  Zolotarenko, M.V.  Chymbai, and I.V.  Zagorulko, Prog. Phys. Met., 23, No. 3: 510 (2022); https://doi.org/10.15407/ufm.23.03.510
  36. N.Ye. Akhanova, D.V. Shchur, A.P. Pomytkin, Al.D. Zolotarenko, An.D. Zolotarenko, N.A. Gavrylyuk, M. Ualkhanova, W. Bo, and D. Ang, J. Nanosci. Nanotechnol., 21: 2435 (2021); https://doi.org/10.1166/jnn.2021.18970
  37. O.D. Zolotarenko, E.P. Rudakova, A.D. Zolotarenko, N.Y. Akhanova, M.N. Ualkhanova, D.V. Shchur, M.T. Gabdullin, N.A. Gavrylyuk, T.V. Myronenko, A.D. Zolotarenko, M.V. Chymbai, I.V. Zagorulko, Yu.O. Tarasenko, and O.O. Havryliuk, Chem., Phys. Technol. Surf., 13, No. 3: 259 (2022); https://doi.org/10.15407/hftp13.03.259
  38. D.V. Schur, A.D. Zolotarenko, A.D. Zolotarenko, O.P. Zolotarenko, and M.V. Chimbai, Phys. Sci. Technol., 6, Nos. 1–2: 46 (2019); https://doi.org/10.26577/phst-2019-1-p9
  39. M. Baibarac, I. Baltog, S. Frunza, A. Magrez, D. Schur, and S.Y. Zaginaichenko, Diamond and Related Materials, 32: 72 (2013); https://doi.org/10.1016/j.diamond.2012.12.006
  40. Al.D. Zolotarenko, An.D. Zolotarenko, V.A. Lavrenko, S.Yu. Zaginaichenko, N.A. Shvachko, O.V. Milto, V.B. Molodkin, A.E. Perekos, V.M. Nadutov, and Yu.A. Tarasenko, Carbon Nanomaterials in Clean Energy Hydrogen Systems-II, (Springer, Dordrecht: 2011) p. 127; https://doi.org/10.1007/978-94-007-0899-0_10
  41. M. Ualkhanova, A.Y. Perekos, A.G. Dubovoy, D.V. Schur, Al.D. Zolotarenko, An.D. Zolotarenko, N.A. Gavrylyuk, M.T. Gabdullin, T.S. Ramazanov, N. Akhanova and S. Orazbayev, J. Nanosci. Nanotechnol. Applications, 3, No. 3: 1 (2019); https://doi.org/10.18875/2577-7920.3.302
  42. D.V. Schur, S.Y. Zaginaichenko, A.F. Savenko, V.A. Bogolepov, and N.S. Anikina., Int. J. Hydrogen Energ., 36, No. 1: 1143 (2011); https://doi.org/10.1016/j.ijhydene.2010.06.087
  43. A.F. Savenko, V.A. Bogolepov, K.A. Meleshevich, S.Yu. Zaginaichenko, M.V. Lototsky, V.K. Pishuk, L.O. Teslenko, and V.V. Skorokhod, NATO Security through Science Series A: Chemistry and Biology, (Springer: Dordrecht: 2007) p. 365; https://doi.org/10.1007/978-1-4020-5514-0_47
  44. D.V. Schur, S. Zaginaichenko, and T.N. Veziroglu, Int. J. Hydrogen Energy,33, No. 13: 3330 (2008); https://doi.org/10.1016/j.ijhydene.2008.03.064
  45. S.Yu. Zaginaichenko, T.N. Veziroglu, M.V. Lototsky, V.A. Bogolepov, and A.F. Savenko, Int. J. Hydrogen Energy, 41, No. 1: 401 (2016); https://doi.org/10.1016/j.ijhydene.2015.08.087
  46. D.V. Schur, S.Y. Zaginaichenko, and T.N. Veziroglu, Int. J. Hydrogen Energy, 40, No. 6: 2742 (2015); https://doi.org/10.1016/j.ijhydene.2014.12.092
  47. Z.A. Matysina, S.Yu. Zaginaichenko, D.V. Shchur, A. Viziroglu, T.N. Viziroglu, M.T. Gabdullin, N.F. Javadov, An.D. Zolotarenko, and Al.D. Zolotarenko, Hydrogen in Crystals (KIM Publishing House: Kyiv: 2017).
  48. D.V. Schur, S.Y. Zaginaichenko, A.F. Savenko, V.A. Bogolepov, N.S. Anikina, A.D. Zolotarenko, Z.A. Matysina, T.N. Veziroglu, and N.E. Skryabina, NATO Science for Peace and Security Series C: Environmental Security, (Dordrecht: Springer: 2011), p. 87; https://doi.org/10.1007/978-94-007-0899-0_7
  49. V.A. Lavrenko, I.A. Podchernyaeva, D.V. Shchur, An.D. Zolotarenko, and Al.D. Zolotarenko, Powder Metallurgy and Metal Ceramics, 56: 504 (2018); https://doi.org/10.1007/s11106-018-9922-z
  50. Ol.D. Zolotarenko, M.N. Ualkhanova, E.P. Rudakova, N.Y. Akhanova, An.D. Zolotarenko, D.V. Shchur, M.T. Gabdullin, N.A. Gavrylyuk, A.D. Zolotarenko, M.V. Chymbai, I.V. Zagorulko, and O.O. Havryliuk, Chem., Phys. Technol. Surf., 13, No. 2: 209 (2022); https://doi.org/10.15407/hftp13.02.209
  51. Z.A.  Matysina, Ol.D.  Zolotarenko, M.  Ualkhanova, O.P.  Rudakova, N.Y.  Akhanova, An.D.  Zolotarenko, D.V.  Shchur, M.T.  Gabdullin, N.A.  Gavrylyuk, O.D.  Zolotarenko, M.V.  Chymbai, and I.V.  Zagorulko, Prog. Phys. Met., 23, No. 3: 528 (2022); https://doi.org/10.15407/ufm.23.03.528
  52. A.D. Zolotarenko, A.D. Zolotarenko, E.P. Rudakova, S.Y. Zaginaichenko, A.G. Dubovoy, D.V. Schur, and Y.A. Tarasenko, Carbon Nanomaterials in Clean Energy Hydrogen Systems-II (Dordrecht: Springer: 2011), p. 137; https://doi.org/10.1007/978-94-007-0899-0_11
  53. D.V. Schur, A.G. Dubovoy, S.Yu. Zaginaichenko, V.M. Adejev, A.V. Kotko, V.A. Bogolepov, A.F. Savenko, A.D. Zolotarenko, S.A. Firstov, and V.V. Skorokhod, NATO Security through Science Series A: Chemistry and Biology (Springer: Dordrecht: 2007), p. 199; https://doi.org/10.1007/978-1-4020-5514-0_25
  54. M.N. Ualkhanova, A.S. Zhakypov, R.R. Nemkayeva, M.B. Aitzhanov, B.Y. Kurbanov, N.Y. Akhanova, Y. Yerlanuly, S.A. Orazbayev, D. Shchur, A. Zolotarenko, and M.T. Gabdullin, Energies, 16, No. 3: 1450 (2023); https://doi.org/10.3390/en16031450
  55. S.Y. Zaginaichenko and Z.A. Matysina, Carbon, 41, No. 7: 1349 (2003); https://doi.org/10.1016/S0008-6223(03)00059-9
  56. V.A. Lavrenko, D.V. Shchur, A.D. Zolotarenko, and A.D. Zolotarenko, Powder Metallurgy and Metal Ceramics, 57, No. 9: 596 (2019); https://doi.org/10.1007/s11106-019-00021-y
  57. Ol.D. Zolotarenko, E.P. Rudakova, I.V. Zagorulko, N.Y. Akhanova, An.D. Zolotarenko, D.V. Schur, M.T. Gabdullin, M. Ualkhanova, T.V. Myronenko, A.D. Zolotarenko, M.V. Chymbai, and O.E. Dubrova, Ukr. J. Phys., 68, No. 1: 57 (2023); https://doi.org/10.15407/ujpe68.1.57
  58. Ol.D. Zolotarenko, An.D. Zolotarenko, E.P. Rudakova, N.Y. Akhanova, M.Ualkhanova, D.V. Schur, M.T. Gabdullin, T.V. Myronenko, A.D. Zolotarenko, M.V. Chymbai, I.V. Zagorulko, and O.O. Havryliuk, Chem., Phys. Technol. Surf., 14, No. 2: 191 (2023); https://doi.org/10.15407/hftp14.02.191
  59. Ol.D. Zolotarenko, E.P. Rudakova, N.Y. Akhanova, An.D. Zolotarenko, D.V. Shchur, M.T. Gabdullin, M. Ualkhanova, N.A. Gavrylyuk, M.V. Chymbai, Yu.O. Tarasenko, I.V. Zagorulko, andA. D. Zolotarenko, Metallofiz. Noveishie Tekhnol., 43, No. 10: 1417 (2021); https://doi.org/10.15407/mfint.43.10.1417
  60. Ol.D. Zolotarenko, E.P. Rudakova, N.Y. Akhanova, An.D. Zolotarenko, D.V. Shchur, M.T. Gabdullin, M. Ualkhanova, М. Sultangazina, N.A. Gavrylyuk, M.V. Chymbai, A.D. Zolotarenko, I.V. Zagorulko, and Yu.O. Tarasenko, Metallofiz. Noveishie Tekhnol., 44, No. 3: 343 (2022); https://doi.org/10.15407/mfint.44.03.0343
  61. Ol.D. Zolotarenko, E.P. Rudakova, N.Y. Akhanova, An.D. Zolotarenko, D.V. Shchur, M.T. Gabdullin, M. Ualkhanova, N.A. Gavrylyuk, M.V. Chymbai, T.V. Myronenko, I.V. Zagorulko, A.D. Zolotarenko, andO.O. Havryliuk, Chem. Phys. Tekhnol. Sci., 13, No. 4: 415 (2022); https://doi.org/10.15407/hftp13.04.415
  62. Ol.D. Zolotarenko, E. P. Rudakova, An.D. Zolotarenko, N.Y. Akhanova, M. Ualkhanova, D.V. Shchur, M.T. Gabdullin, T.V. Myronenko, A.D. Zolotarenko, M.V. Chymbai, and I.V. Zagorulko, Metallofiz. Noveishie Tekhnol., 45, No. 2: 199 (2023); https://doi.org/10.15407/mfint.45.02.019
  63. E.M. Savitsky, V.V. Baron, Yu.V. Efimov, M.I. Bychkova, and L.F. Myzenkova, Metallovedenie Sverkhprovodyashchikh Materialov (Moskva: Nauka: 1969), p. 265.
  64. Yu.A. Izyumov and E.Z. Kurmaev, Ukr. Phys. J., 2: 193 (1974).
  65. A.S. Chaves, F.C.S. Barreto, R.A. Nogueira, and B.Zẽks, Phys. Rev. B, 13, No. 1: 207 (1976); https://doi.org/10.1103/PhysRevB.13.207
  66. L. Testardi, M. Weger and I. Goldberg, Superconducting Compounds with the Structure of -Tungsten (Moskva, Mir: 1977), p. 436.
  67. S.V. Vonsovsky, Yu.A. Izyumov, and E.Z. Kurmaev, Superconductivity of Transition Metals, Their Alloys and Compounds (Moskva: Nauka: 1977), p. 384.
  68. V.I. Surikov, V.I. Pryadein, A.K. Stolts, A.P. Stepanov, A.F. Prekuya, and P.V. Geld, Phys. Met. Metallogr., 34, No. 4: 724 (1972).
  69. A.I. Medvedev, A.K. Stolts, P.V. Geld, and G.N. Vorobyova, Ordering of Atoms and Its Influence on the Properties of Alloys: Tez. Dokl. VII Vsesoyuzn. Conf.: UNC of the USSR Academy of Sciences (Sverdlovsk: 1983), 2: 117.
  70. L.J. Vieland, A.W. Wicklund, and J.G. White, Phys. Rev. B, 11, No. 9: 3311 (1975).
  71. E.C. Van Reuth and R.M.Waterstrat, Acta Crystallogr. B, 24: 186 (1968).
  72. N.V. Ageev, N.E. Alekseevsky and V.F. Shamray, Izvestiya AN SSSR. Metals, 3: 171 (1970).
  73. Yu.A. Khon, V.P. Fadin, S.A. Beznosyuk and V.M. Kuznetsov, Dokl. IV Vsesoyuzn. Confer. on the Ordering of Atoms and Its Effect on the Properties of Alloys (Tomsk: Tomsk State University: 1974), 1, p. 309.
  74. N.V. Ageev, N.E. Alekseevsky and V.F. Shamray, Izv. AN USSR. Metals, 1: 170 (1976).
  75. V.S. Belovol and V.A. Finkel, Questions of Atomic Science and Technology. Ser. Foundation and Applied Superconductivity (Kharkiv: KhFTI of the Academy of Sciences of the Ukrainian SSR: 1977), vol. 1, p. 6.
  76. N.N. Degtyarenko, V.F. Yelesin and Yu.P. Skopintsev, Ordering of Atoms and Its Effect on the Properties of Alloys: Tez. Dokl. VII Vsezoyuzn. Conf., (Sverdlovsk: UNC of the USSR Academy of Sciences: 1983), 2, p. 42.
  77. A.A. Smirnov, Phys. Met. Metallogr., 58, No. 4: 667 (1984).
  78. A.A. Smirnov, Generalized Theory of Ordering Alloys, (Kyiv: Naukova Dumka: 1986).
  79. Z.A. Matysina, D.V. Seriy, and V.A. Bondarenko, Atomic ordering. The solubility of the impurity, Izv.vuzov. Physics, 1: 127 (1996).
  80. Z.A. Matysina, S.Yu. Zaginaichenko, D.V. Schur, and V.K. Pishuk, Proc. 11th World Hydrogen Energy Conf. (Germany: Stuttgard: 1996) 2: 1091.
  81. Z.A. Matysina, S.Yu. Zaginaichenko, D.V. Seryi, and D.V. Schur, Int. J. Hydrogen Energy, 21, Nos. 11–12: 1065 (1996).
  82. W. Gorsky, Zs. Phys., 50, Nos. 1–2: 64 (1928).
  83. S.Yu. Zaginaichenko, Z.A. Matysina, and M.I. Milyan, The Solubility of Impurities in Alloys, 2597: 186 (1989).
  84. Z.A. Matysina and M.I. Milyan, Theory of Solubility of Impurities in Ordered Phases (Dnipropetrovsk: Publishing House of DSU: 1991), p. 180.
  85. K.H. Levchuk, T.M. Radchenko, and V.A. Tatarenko, Metallofiz. Noveishie Tekhnol., 43, No. 1: 1 (2021); https://doi.org/10.15407/mfint.43.01.0001
  86. T.M. Radchenko, O.S. Gatsenko, V.V. Lizunov, and V.A. Tatarenko, Prog. Phys. Met., 21, No. 4: 580 (2020); https://doi.org/10.15407/ufm.21.04.580
  87. I.M. Melnyk, T.M. Radchenko, and V.A. Tatarenko, Metallofiz. Noveishie Tekhnol., 32, No. 9: 1191 (2010).
  88. V.A. Tatarenko, S.M. Bokoch, V.M. Nadutov, T.M. Radchenko, and Y.B. Park, Defect Diffus. Forum, 280–281: 29 (2008); https://doi.org/10.4028/www.scientific.net/DDF.280-281.29
  89. T.M. Radchenko, V.A. Tatarenko, and H. Zapolsky, Solid State Phenom., 138: 283 (2008); https://doi.org/10.4028/www.scientific.net/ssp.138.283
  90. V.A. Tatarenko and C.L. Tsynman, Solid State Ionics, 101–103, Pt. 2: 1061 (1997); https://doi.org/10.1016/s0167-2738(97)00376-7
  91. T.M. Radchenko and V.A. Tatarenko, Carbon Nanomaterials in Clean Energy Hydrogen Systems. NATO Science for Peace and Security Series C: Environmental Security (Eds. B. Baranowsky, S.Y. Zaginaichenko, D.V. Schur, V.V. Skorokhod, and A. Veziroglu) (Springer Science  Business Media B.V.: 2008), p. 489; https://doi.org/10.1007/978-1-4020-8898-8_62
  92. T.M. Radchenko and V.A. Tatarenko, Hydrogen Materials Science and Chemistry of Carbon Nanomaterials. NATO Security through Science Series A: Chemistry and Biology (Eds. T.N. Veziroglu, S.Yu. Zaginaichenko, D.V. Schur, B. Baranowski, A.P. Shpak, V.V. Skorokhod, and A. Kale) (Dordrecht: Springer: 2007), p. 229; https://doi.org/10.1007/978-1-4020-5514-0_28
  93. V.A. Tatarenko and T.M. Radchenko, Hydrogen Materials Science and Chemistry of Metal Hydrides: NATO Science Series, Series II: Mathematics, Physics and Chemistry (Eds. T.N. Veziroglu, S.Yu. Zaginaichenko, D.V. Schur, and V.I. Trefilov) (Dordrecht, The Netherlands: Kluwer Academic Publishers: 2002), vol. 82, p. 123.
  94. T.M. Radchenko and V.A. Tatarenko, Int. J. Hydrogen Energy, 36, No. 1: 1338 (2011); https://doi.org/10.1016/j.ijhydene.2010.06.112
  95. T. Radchenko, H. Zapolsky, D. Blavette, and V. Tatarenko, Acta Cryst., A60: s71 (2004); https://doi.org/10.1107/S0108767304098599
  96. S.P. Repetsky, E.G. Len, and V.V. Lizunov, Metallofiz. Noveishie Tekhnol., 28, No. 8: 989 (2006).
  97. S.P. Repetsky, T.S. Len, and V.V. Lizunov, Metallofiz. Noveishie Tekhnol., 28, No. 9: 1143 (2006).
  98. P. Prysyazhnyuk and D. Di Tommaso, Mater. Adv., 4, No. 17: 3822 (2023); https://doi.org/10.1039/d3ma00313b
  99. P. Szroeder, I.Yu. Sagalianov, T.M. Radchenko, V.A. Tatarenko, Yu.I. Prylutskyy, and W. Strupiński, Appl. Surf. Sci., 442: 185 (2018); https://doi.org/10.1016/j.apsusc.2018.02.150
  100. S.M. Bokoch, M.P. Kulish, T.M. Radchenko, and V.A. Tatarenko, Metallofiz. Noveishie Tekhnol., 26, No. 3: 387 (2004).
  101. S.M. Bokoch, M.P. Kulish, V.A. Tatarenko, and T.M. Radchenko, Metallofiz. Noveishie Tekhnol., 26, No. 4: 541 (2004).
  102. A.G. Solomenko, R.M. Balabai, T.M. Radchenko, and V.A. Tatarenko, Prog. Phys. Met., 23, No. 2: 147 (2022); https://doi.org/10.15407/ufm.23.02.147
  103. Т.М. Radchenko, Metallofiz. Noveishie Tekhnol., 30, Spec. Iss.: 195 (2008); Metal Physics and Advanced Technologies, 19, No. 2: 211 (2001).
  104. D.S. Leonov, T.M. Radchenko, V.A. Tatarenko, and Yu.A. Kunitsky, Defect Diffus. Forum, 273–276: 520 (2008); https://doi.org/10.4028/www.scientific.net/DDF.273-276.520
  105. K. Cornell, H. Wipf, U. Stuhr, and A.V. Skripov, Solid State Communications, 101, No. 8: 569 (1997); https://doi.org/10.1016/S0038-1098(96)00653-9
  106. F. Mebtouche, T. Zergoug, S.E.H. Abaidia, J. Bertsch, A. Seddik Kebaili, and A. Nedjar, Comput. Theor. Chem., 1178, No. 15: 112781 (2020); https://doi.org/10.1016/j.comptc.2020.112781
  107. Chunlei Shen, Yunping Jia, Canhui Xu, Shuanglin Hu, Xiaosong Zhou, and Xinggui Long, Surface Science, 725: 122149 (2022); https://doi.org/10.1016/j.susc.2022.122149
  108. Q. Liu, Z. Zhang, S. Liu, and H. Yang, Adv. Eng. Mater, 20, No. 5: 1700679 (2018), https://doi.org/10.1002/adem.201700679
  109. J. Wang and H. Gong, Int. J. Hydrog. Energy, 39, No. 11: 6068 (2014); https://doi.org/10.1016/j.ijhydene.2014.01.126
  110. M. Schlereth and H. Wipf, J. Phys.: Cond. Matt., 2, No. 33: 6929; https://doi.org/10.1088/0953-8984/2/33/005
  111. L. Chen, Q. Wang, W. Jiang, and H. Gong, Metals, 2019, 9, No. 2: 121; https://doi.org/10.3390/met9020121
  112. S. Zhu, R.J. Zhang, L. Wan, Y.K. Guo, R.Y. Zhou, and T. Gao, Mater. Chem. Phys., 277: 125549 (2022); https://doi.org/10.1016/j.matchemphys.2021.125549
  113. Y.J. Choi, J.W. Choi, H.Y. Sohn, T. Ryu, K.S. Hwang, and Z.Z. Fang, Int. J. Hydrog. Energy, 34, No. 18: 7700 (2009); https://doi.org/10.1016/j.ijhydene.2009.07.033
  114. M. Calizzi, D. Chericoni, L.H. Jepsen, T.R. Jensen, and L. Pasquini, Int. J. Hydrog. Energy, 41, No. 32: 14447 (2016); https://doi.org/10.1016/j.ijhydene.2016.03.071
  115. F. Yan, I. Mouton, L.T. Stephenson, A.J. Breen, Y. Chang, D. Ponge, D. Raabe, and B. Gault, Scr. Mater., 162: 321 (2019); https://doi.org/10.1016/j.scriptamat.2018.11.040
  116. M. Pozzo and D. Alfè, Int. J. Hydrog. Energy, 34, No. 4: 1922 (2009); https://doi.org/10.1016/j.ijhydene.2008.11.109.
  117. M.W. Davids, M. Lototskyy, A. Nechaev, Q. Naidoo, M. Williams, and Y. Klochko, Int. J. Hydrog. Energy, 36, No. 16: 9743 (2011); https://doi.org/10.1016/j.ijhydene.2011.05.036
  118. V.N. Bugayev, V.G. Gavrilyuk, V.M. Nadutov, and V.A. Tatarenko, Fiz. Met. Metalloved., 68, No. 5: 931 (1989).