Hydrogen in Compounds and Alloys with A15 Structure
An. D. Zolotarenko$^{1,2}$, Ol. D. Zolotarenko$^{1,2}$, Z. A. Matysina$^1$, N. A. Shvachko$^{1,3}$, N. Y. Akhanova$^{4,5}$, M. Ualkhanova$^5$, D. V. Schur$^{1,6}$, M. T. Gabdullin$^4$, M. T. Kartel$^2$, Yu. M. Solonin$^1$, Yu. I. Zhirko$^6$, D. V. Ismailov$^{5,7}$, A. D. Zolotarenko$^1$, and I. V. Zagorulko$^8$
$^1$I. M. Frantsevych Institute for Problems of Materials Science of the N.A.S. of Ukraine, Omeljan Pritsak Str., UA-03142 Kyiv, Ukraine
$^2$O. O. Chuiko Institute of Surface Chemistry of the N.A.S. of Ukraine, 17 General Naumov Str., UA-03164 Kyiv, Ukraine
$^3$Kyiv National University of Construction and Architecture, 31 Povitroflotskyi Ave., UA-03037 Kyiv, Ukraine
$^4$Kazakh–British Technical University, 59 Tole bi Str., 050000 Almaty, Kazakhstan
$^5$Al-Farabi Kazakh National University, 71 Al-Farabi Ave., 050040 Almaty, Kazakhstan
$^6$Institute of Applied Physics of the N.A.S. of Ukraine, 58 Petropavlivska Str., UA-40000 Sumy, Ukraine
$^7$NJSC ‘K. I. Satbayev Kazakh National Research Technical University’, 22a Satbaev Str., 050013 Almaty, Kazakhstan
$^8$G. V. Kurdyumov Institute for Metal Physics of the N.A.S. of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine
Received 28.09.2023; final version — 17.11.2023
Download PDF
Abstract
In the present work, a theoretical study of atomic ordering in the A3BCx alloy is carried out. The mutual influence of the ordering and solubility of impurity C in the A3B alloy is studied. The dependences of solubility on the composition of the alloy, temperature, degree of long-range order are found and studied. In addition, the criteria for the manifestation of extremity in the concentration and temperature dependences of solubility are obtained. The atomic ordering is studied using the average-energies’ method; the features of the C impurity solubility in the A3B alloy are elucidated using the configuration method. Experiments confirming the results of the theory are currently unknown to authors. However, the available experimental data on determining the temperatures of martensitic transformation (Tm) and superconducting transition (Tc) for the Nb3SnHx alloy allow us to hope and assert a possible agreement between the data of theory and experiment.
Keywords: crystal structure, A15-type structure, alloys, compounds, metal hydrides, hydrogen, phase transformations, order–disorder transitions, solubility.
DOI:
https://doi.org/10.15407/ufm.24.04.654
Citation:
An. D. Zolotarenko, Ol. D. Zolotarenko, Z. A. Matysina, N. A. Shvachko, N. Y. Akhanova, M. Ualkhanova, D. V. Schur, M. T. Gabdullin, M. T. Kartel, Yu. M. Solonin, Yu. I. Zhirko, D. V. Ismailov, A. D. Zolotarenko, and I. V. Zagorulko, Hydrogen in Compounds and Alloys with A15 Structure, Progress in Physics of Metals, 24, No. 4: 654–685 (2023)
References
- Z.A. Matysina, An.D. Zolotarenko, Al.D. Zolotarenko, N.A. Gavrylyuk, A. Veziroglu, T.N. Veziroglu, A.P. Pomytkin, D.V. Schur, and M.T. Gabdullin, Features of the Interaction of Hydrogen with Metals, Alloys and Compounds. Hydrogen Atoms in Crystalline Solids (KIM Publishing House: Kyiv: 2022); http://www.aheu.com.ua/Hydrogen.html
- D.V. Schur, M.T. Gabdullin, V.A. Bogolepov, A. Veziroglu, S.Y. Zaginaichenko, A.F. Savenko,and K.A. Meleshevich, Int. J. Hydrogen Energy, 41, No. 3: 1811 (2016); https://doi.org/10.1016/j.ijhydene.2015.10.011
- Z.A. Matysina, O.S. Pogorelova, and S.Yu. Zaginaichenko, J. Phy. Chem. Solids, 56, No. 1: 9 (1995); https://doi.org/10.1016/0022-3697(94)00106-5
- Z.A. Matysina and S.Yu. Zaginaichenko, Int. J. Hydrogen Energy, 21, Nos. 11–12: 1085 (1996); https://doi.org/10.1016/S0360-3199(96)00050-X
- S.Yu. Zaginaichenko, Z.A. Matysina, I. Smityukh, and V.K. Pishuk, J. Alloys Compd., 330–332: 70 (2002); https://doi.org/10.1016/S0925-8388(01)01661-9
- Z.A. Matysina and S.Y. Zaginaichenko, Rus. Phys. J., 59, No.2: 177 (2016); https://doi.org/10.1007/s11182-016-0757-0
- S.Y. Zaginaichenko, D.A. Zaritskii, Z.A. Matysina, T.N. Veziroglu, and L.I. Kopylova, Int. J. Hydrogen Energy, 40, No. 24: 7644 (2015); https://doi.org/10.1016/j.ijhydene.2015.01.089
- Z.A. Matysina and S.Y. Zaginaichenko, Phys. Met. Metallogr., 114, No. 4: 308 (2013); https://doi.org/10.1134/S0031918X13010079
- Z.A. Matysina, N.A. Gavrylyuk, M. Kartel, A. Veziroglu, T.N. Veziroglu, A.P. Pomytkin, D.V. Schur, T.S. Ramazanov, M.T. Gabdullin, A.D. Zolotarenko, A.D. Zolotarenko, and N.A. Shvachko, Int. J. Hydrogen Energy, 46, No. 50: 25520 (2021); https://doi.org/0.1016/j.ijhydene.2021.05.069
- D.V. Shchur, S.Y. Zaginaichenko, A. Veziroglu, T.N. Veziroglu, N.A. Gavrylyuk, A.D. Zolotarenko, M.T. Gabdullin, T.S. Ramazanov, A.D. Zolotarenko, and A.D. Zolotarenko, Rus. Phys. J., 64, No. 1: 89 (2021); https://doi.org/10.1007/s11182-021-02304-7
- S.Yu. Zaginaichenko, Z.A. Matysina, D.V. Schur, and A.D. Zolotarenko, Int. J. Hydrogen Energy, 37, No. 9: 7565 (2012);
https://doi.org/10.1016/j.ijhydene.2012.01.006
- Z.A. Matysina, S.Y. Zaginaichenko, D.V. Schur, T.N. Veziroglu, A. Veziroglu, M.T. Gabdullin, Al.D. Zolotarenko, and An.D. Zolotarenko, Int. J. Hydrogen Energy, 43, No. 33: 16092 (2018);
https://doi.org/10.1016/j.ijhydene.2018.06.168
- Z.A. Matysina, S.Y. Zaginaichenko, D.V. Schur, A.D. Zolotarenko, A.D. Zolotarenko, M.T. Gabdulin, L.I. Kopylova, and T.I. Shaposhnikova, Rus. Phys. J., 61, No. 12: 2244 (2019); https://doi.org/10.1007/s11182-019-01662-7
- D.V. Schur, A. Veziroglu, S.Yu Zaginaychenko, Z.A. Matysina, T.N. Veziroglu, M.T. Gabdullin, T.S. Ramazanov, An.D. Zolonarenko, and Al.D. Zolonarenko, Int. J. Hydrogen Energy, 44, No. 45: 24810 (2019); https://doi.org/10.1016/j.ijhydene.2019.07.205
- Z.A. Matysina, S.Yu. Zaginaichenko, D.V. Schur, Al.D. Zolotarenko, An.D. Zolotarenko, and M.T. Gabdulin, Rus. Phys. J., 61, No. 2: 253 (2018);
https://doi.org/10.1007/s11182-018-1395-5
- Z.A. Matysinaa, An.D. Zolotarenko, Al.D. Zolotarenko, M.T. Kartel, A. Veziroglu, T.N. Veziroglu, N.A. Gavrylyuk, D.V. Schur, M.T. Gabdullin, N.E. Akhanova, T.S. Ramazanov, M. Ualkhanova, and N.A. Shvachko, Int. J. Hydrogen Energy, 48, No. 6: 2271;
https://doi.org/10.1016/j.ijhydene.2022.09.225
- Z.A. Matysina, An.D. Zolotarenko, Ol.D. Zolotarenko, T.V. Myronenko, D.V. Schur, E.P. Rudakova, M.V. Chymbai, A.D. Zolotarenko, I.V. Zagorulko, and O.O. Havryliuk, Chem., Phys. Technol. Surf., 14, No. 2: 210 (2023); https://doi.org/10.15407/hftp14.02.210
- Z.A. Matysina and D.V. Shchur, Rus. Phys. J., 44, No. 11: 1237 (2001); https://doi.org/10.1023/A:1015318110874
- V.I. Trefilov, D.V. Shchur, V.K. Pishuk, S.Yu. Zaginaichenko, A.V. Choba, and N.R. Nagornaya, Renewable Energy, 16, Nos. 1–4: 757 (1999);
https://doi.org/10.1016/S0960-1481(98)00273-0
- Yu.M. Lytvynenko and D.V. Shchur, Renewable Energy, 16, No. 1–4: 753 (1999); https://doi.org/10.1016/S0960-1481(98)00272-9
- D.V. Schur, A.A. Lyashenko, V.M. Adejev, V.B. Voitovich, and S.Yu. Zaginaichenko, Int. J. Hydrogen Energy, 20, No. 5: 405 (1995);
https://doi.org/10.1016/0360-3199(94)00077-D
- D.V. Schur, V.A. Lavrenko, V.M. Adejev, and I.E. Kirjakova, Int. J. Hydrogen Energy, 19, No. 3: 265 (1994);
https://doi.org/10.1016/0360-3199(94)90096-5
- S.Y. Zaginaichenko, Z.A. Matysina, D.V. Schur, L.O. Teslenko, A. Veziroglu, Int. J. Hydrogen Energy, 36, No. 1: 1152 (2011); https://doi.org/10.1016/j.ijhydene.2010.06.088
- S.A. Tikhotskii, I.V. Fokin, and D.V. Schur, Phys. Solid Earth, 47, No. 4: 327 (2011); https://doi.org/10.1134/S1069351311030062
- A.D. Zolotarenko, A.D. Zolotarenko, A. Veziroglu, T.N. Veziroglu, N.A. Shvachko, A.P. Pomytkin, D.V. Schur, N.A. Gavrylyuk, T.S. Ramazanov, N.Y. Akhanova, and M.T. Gabdullin, Int. J. Hydrogen Energy, 47, No. 11: 7310 (2022); https://doi.org/10.1016/j.ijhydene.2021.03.065
- An.D. Zolotarenko, Al.D. Zolotarenko, A. Veziroglu, T.N. Veziroglu, N.A. Shvachko, A.P. Pomytkin, N.A. Gavrylyuk, D.V. Schur, T.S. Ramazanov, and M.T. Gabdullin, Int. J. Hydrogen Energy, 47, No. 11: 7281 (2021); https://doi.org/10.1016/j.ijhydene.2021.03.025
- D.V. Schur, S.Y. Zaginaichenko, E.A. Lysenko, T.N. Golovchenko, and N.F. Javadov, NATO Science for Peace and Security Series C: Environmental Security: 53 (Springer Science + Business Media B.V: 2008); https://doi.org/10.1007/978-1-4020-8898-8_5
- D.V. Schur, S.Y. Zaginaichenko, A.D. Zolotarenko, and T.N. Veziroglu, NATO Science for Peace and Security Series C: Environmental Security: 85 (Springer Science + Business Media B.V: 2008); https://doi.org/10.1007/978-1-4020-8898-8_7
- O.D. Zolotarenko, O.P. Rudakova, M.T. Kartel, H.O. Kaleniuk, A.D. Zolotarenko, D.V. Schur, and Y.O. Tarasenko, Surface, 12, No. 27: 263 (2020);
https://doi.org/10.15407/Surface.2020.12.263
- Ol.D. Zolotarenko, O.P. Rudakova, N.E. Akhanova, An.D. Zolotarenko, D.V. Shchur, Z.A. Matysina, M.T. Gabdullin, M. Ualkhanova, N.A. Gavrilyuk, O.D. Zolotarenko, M.V. Chymbai, and I.V. Zagorulko, Nanosistemi, Nanomateriali, Nanotehnologii, 20, No. 3: 725 (2022);
https://doi.org/10.15407/nnn.20.03.725
- D.S. Kerimbekov, N.E. Akhanova, M.T. Gabdullin, Kh.A. Abdullin, D.G. Batryshev, A.D. Zolotarenko, N.A. Gavrylyuk, O,D. Zolotarenko, and D.V. Shchur, J. Problems in the Evolution of Open Systems, 24, Nos. 3–4: 79 (2023); https://doi.org/10.26577/JPEOS.2022.v24.i2.i6
- V.M. Gun’ko, V.V. Turov, V.I. Zarko, G.P. Prykhod’ko, T.V. Krupska, A.P. Golovan, J. Skubiszewska-Zięba, B. Charmas, and M.T. Kartel, Chem. Phys., 459: 172 (2015); https://doi.org/10.1016/j.chemphys.2015.08.016
- M.M. Nishchenko, S.P. Likhtorovich, A.G. Dubovoy, and T.A. Rashevskaya, Carbon, 41, No. 7: 1381 (2003); https://doi.org/10.1016/S0008-6223(03)00065-4
- N.Y. Akhanova, D.V. Schur, N.A. Gavrylyuk, M.T. Gabdullin, N.S. Anikina, An.D. Zolotarenko, O.Ya. Krivushchenko, Ol.D. Zolotarenko, B.M. Gorelov, E. Erlanuli, and D.G. Batrishev, Chem., Phys. Technol. Surf., 11, No. 3: 429 (2020); https://doi.org/10.15407/hftp11.03.429
- Z.A. Matysina, Ol.D. Zolotarenko, O.P. Rudakova, N.Y. Akhanova, A.P. Pomytkin, An.D. Zolotarenko, D.V. Shchur, M.T. Gabdullin, M. Ualkhanova, N.A. Gavrylyuk, A.D. Zolotarenko, M.V. Chymbai, and I.V. Zagorulko, Prog. Phys. Met., 23, No. 3: 510 (2022); https://doi.org/10.15407/ufm.23.03.510
- N.Ye. Akhanova, D.V. Shchur, A.P. Pomytkin, Al.D. Zolotarenko, An.D. Zolotarenko, N.A. Gavrylyuk, M. Ualkhanova, W. Bo, and D. Ang, J. Nanosci. Nanotechnol., 21: 2435 (2021);
https://doi.org/10.1166/jnn.2021.18970
- O.D. Zolotarenko, E.P. Rudakova, A.D. Zolotarenko, N.Y. Akhanova, M.N. Ualkhanova, D.V. Shchur, M.T. Gabdullin, N.A. Gavrylyuk, T.V. Myronenko, A.D. Zolotarenko, M.V. Chymbai, I.V. Zagorulko, Yu.O. Tarasenko, and O.O. Havryliuk, Chem., Phys. Technol. Surf., 13, No. 3: 259 (2022); https://doi.org/10.15407/hftp13.03.259
- D.V. Schur, A.D. Zolotarenko, A.D. Zolotarenko, O.P. Zolotarenko, and M.V. Chimbai, Phys. Sci. Technol., 6, Nos. 1–2: 46 (2019);
https://doi.org/10.26577/phst-2019-1-p9
- M. Baibarac, I. Baltog, S. Frunza, A. Magrez, D. Schur, and S.Y. Zaginaichenko, Diamond and Related Materials, 32: 72 (2013);
https://doi.org/10.1016/j.diamond.2012.12.006
- Al.D. Zolotarenko, An.D. Zolotarenko, V.A. Lavrenko, S.Yu. Zaginaichenko, N.A. Shvachko, O.V. Milto, V.B. Molodkin, A.E. Perekos, V.M. Nadutov, and Yu.A. Tarasenko, Carbon Nanomaterials in Clean Energy Hydrogen Systems-II, (Springer, Dordrecht: 2011) p. 127; https://doi.org/10.1007/978-94-007-0899-0_10
- M. Ualkhanova, A.Y. Perekos, A.G. Dubovoy, D.V. Schur, Al.D. Zolotarenko, An.D. Zolotarenko, N.A. Gavrylyuk, M.T. Gabdullin, T.S. Ramazanov, N. Akhanova and S. Orazbayev, J. Nanosci. Nanotechnol. Applications, 3, No. 3: 1 (2019); https://doi.org/10.18875/2577-7920.3.302
- D.V. Schur, S.Y. Zaginaichenko, A.F. Savenko, V.A. Bogolepov, and N.S. Anikina., Int. J. Hydrogen Energ., 36, No. 1: 1143 (2011);
https://doi.org/10.1016/j.ijhydene.2010.06.087
- A.F. Savenko, V.A. Bogolepov, K.A. Meleshevich, S.Yu. Zaginaichenko, M.V. Lototsky, V.K. Pishuk, L.O. Teslenko, and V.V. Skorokhod, NATO Security through Science Series A: Chemistry and Biology, (Springer: Dordrecht: 2007) p. 365;
https://doi.org/10.1007/978-1-4020-5514-0_47
- D.V. Schur, S. Zaginaichenko, and T.N. Veziroglu, Int. J. Hydrogen Energy,33, No. 13: 3330 (2008);
https://doi.org/10.1016/j.ijhydene.2008.03.064
- S.Yu. Zaginaichenko, T.N. Veziroglu, M.V. Lototsky, V.A. Bogolepov, and A.F. Savenko, Int. J. Hydrogen Energy, 41, No. 1: 401 (2016); https://doi.org/10.1016/j.ijhydene.2015.08.087
- D.V. Schur, S.Y. Zaginaichenko, and T.N. Veziroglu, Int. J. Hydrogen Energy, 40, No. 6: 2742 (2015); https://doi.org/10.1016/j.ijhydene.2014.12.092
- Z.A. Matysina, S.Yu. Zaginaichenko, D.V. Shchur, A. Viziroglu, T.N. Viziroglu, M.T. Gabdullin, N.F. Javadov, An.D. Zolotarenko, and Al.D. Zolotarenko, Hydrogen in Crystals (KIM Publishing House: Kyiv: 2017).
- D.V. Schur, S.Y. Zaginaichenko, A.F. Savenko, V.A. Bogolepov, N.S. Anikina, A.D. Zolotarenko, Z.A. Matysina, T.N. Veziroglu, and N.E. Skryabina, NATO Science for Peace and Security Series C: Environmental Security, (Dordrecht: Springer: 2011), p. 87; https://doi.org/10.1007/978-94-007-0899-0_7
- V.A. Lavrenko, I.A. Podchernyaeva, D.V. Shchur, An.D. Zolotarenko, and Al.D. Zolotarenko, Powder Metallurgy and Metal Ceramics, 56: 504 (2018);
https://doi.org/10.1007/s11106-018-9922-z
- Ol.D. Zolotarenko, M.N. Ualkhanova, E.P. Rudakova, N.Y. Akhanova, An.D. Zolotarenko, D.V. Shchur, M.T. Gabdullin, N.A. Gavrylyuk, A.D. Zolotarenko, M.V. Chymbai, I.V. Zagorulko, and O.O. Havryliuk, Chem., Phys. Technol. Surf., 13, No. 2: 209 (2022); https://doi.org/10.15407/hftp13.02.209
- Z.A. Matysina, Ol.D. Zolotarenko, M. Ualkhanova, O.P. Rudakova, N.Y. Akhanova, An.D. Zolotarenko, D.V. Shchur, M.T. Gabdullin, N.A. Gavrylyuk, O.D. Zolotarenko, M.V. Chymbai, and I.V. Zagorulko, Prog. Phys. Met., 23, No. 3: 528 (2022); https://doi.org/10.15407/ufm.23.03.528
- A.D. Zolotarenko, A.D. Zolotarenko, E.P. Rudakova, S.Y. Zaginaichenko, A.G. Dubovoy, D.V. Schur, and Y.A. Tarasenko, Carbon Nanomaterials in Clean Energy Hydrogen Systems-II (Dordrecht: Springer: 2011), p. 137;
https://doi.org/10.1007/978-94-007-0899-0_11
- D.V. Schur, A.G. Dubovoy, S.Yu. Zaginaichenko, V.M. Adejev, A.V. Kotko, V.A. Bogolepov, A.F. Savenko, A.D. Zolotarenko, S.A. Firstov, and V.V. Skorokhod, NATO Security through Science Series A: Chemistry and Biology (Springer: Dordrecht: 2007), p. 199; https://doi.org/10.1007/978-1-4020-5514-0_25
- M.N. Ualkhanova, A.S. Zhakypov, R.R. Nemkayeva, M.B. Aitzhanov, B.Y. Kurbanov, N.Y. Akhanova, Y. Yerlanuly, S.A. Orazbayev, D. Shchur, A. Zolotarenko, and M.T. Gabdullin, Energies, 16, No. 3: 1450 (2023); https://doi.org/10.3390/en16031450
- S.Y. Zaginaichenko and Z.A. Matysina, Carbon, 41, No. 7: 1349 (2003);
https://doi.org/10.1016/S0008-6223(03)00059-9
- V.A. Lavrenko, D.V. Shchur, A.D. Zolotarenko, and A.D. Zolotarenko, Powder Metallurgy and Metal Ceramics, 57, No. 9: 596 (2019);
https://doi.org/10.1007/s11106-019-00021-y
- Ol.D. Zolotarenko, E.P. Rudakova, I.V. Zagorulko, N.Y. Akhanova, An.D. Zolotarenko, D.V. Schur, M.T. Gabdullin, M. Ualkhanova, T.V. Myronenko, A.D. Zolotarenko, M.V. Chymbai, and O.E. Dubrova, Ukr. J. Phys., 68, No. 1: 57 (2023); https://doi.org/10.15407/ujpe68.1.57
- Ol.D. Zolotarenko, An.D. Zolotarenko, E.P. Rudakova, N.Y. Akhanova, M.Ualkhanova, D.V. Schur, M.T. Gabdullin, T.V. Myronenko, A.D. Zolotarenko, M.V. Chymbai, I.V. Zagorulko, and O.O. Havryliuk, Chem., Phys. Technol. Surf., 14, No. 2: 191 (2023);
https://doi.org/10.15407/hftp14.02.191
- Ol.D. Zolotarenko, E.P. Rudakova, N.Y. Akhanova, An.D. Zolotarenko, D.V. Shchur, M.T. Gabdullin, M. Ualkhanova, N.A. Gavrylyuk, M.V. Chymbai, Yu.O. Tarasenko, I.V. Zagorulko, andA. D. Zolotarenko, Metallofiz. Noveishie Tekhnol., 43, No. 10: 1417 (2021);
https://doi.org/10.15407/mfint.43.10.1417
- Ol.D. Zolotarenko, E.P. Rudakova, N.Y. Akhanova, An.D. Zolotarenko, D.V. Shchur, M.T. Gabdullin, M. Ualkhanova, М. Sultangazina, N.A. Gavrylyuk, M.V. Chymbai, A.D. Zolotarenko, I.V. Zagorulko, and Yu.O. Tarasenko, Metallofiz. Noveishie Tekhnol., 44, No. 3: 343 (2022);
https://doi.org/10.15407/mfint.44.03.0343
- Ol.D. Zolotarenko, E.P. Rudakova, N.Y. Akhanova, An.D. Zolotarenko, D.V. Shchur, M.T. Gabdullin, M. Ualkhanova, N.A. Gavrylyuk, M.V. Chymbai, T.V. Myronenko, I.V. Zagorulko, A.D. Zolotarenko, andO.O. Havryliuk, Chem. Phys. Tekhnol. Sci., 13, No. 4: 415 (2022);
https://doi.org/10.15407/hftp13.04.415
- Ol.D. Zolotarenko, E. P. Rudakova, An.D. Zolotarenko, N.Y. Akhanova, M. Ualkhanova, D.V. Shchur, M.T. Gabdullin, T.V. Myronenko, A.D. Zolotarenko, M.V. Chymbai, and I.V. Zagorulko, Metallofiz. Noveishie Tekhnol., 45, No. 2: 199 (2023); https://doi.org/10.15407/mfint.45.02.019
- E.M. Savitsky, V.V. Baron, Yu.V. Efimov, M.I. Bychkova, and L.F. Myzenkova, Metallovedenie Sverkhprovodyashchikh Materialov (Moskva: Nauka: 1969), p. 265.
- Yu.A. Izyumov and E.Z. Kurmaev, Ukr. Phys. J., 2: 193 (1974).
- A.S. Chaves, F.C.S. Barreto, R.A. Nogueira, and B.Zẽks, Phys. Rev. B, 13, No. 1: 207 (1976); https://doi.org/10.1103/PhysRevB.13.207
- L. Testardi, M. Weger and I. Goldberg, Superconducting Compounds with the Structure of -Tungsten (Moskva, Mir: 1977), p. 436.
- S.V. Vonsovsky, Yu.A. Izyumov, and E.Z. Kurmaev, Superconductivity of Transition Metals, Their Alloys and Compounds (Moskva: Nauka: 1977), p. 384.
- V.I. Surikov, V.I. Pryadein, A.K. Stolts, A.P. Stepanov, A.F. Prekuya, and P.V. Geld, Phys. Met. Metallogr., 34, No. 4: 724 (1972).
- A.I. Medvedev, A.K. Stolts, P.V. Geld, and G.N. Vorobyova, Ordering of Atoms and Its Influence on the Properties of Alloys: Tez. Dokl. VII Vsesoyuzn. Conf.: UNC of the USSR Academy of Sciences (Sverdlovsk: 1983), 2: 117.
- L.J. Vieland, A.W. Wicklund, and J.G. White, Phys. Rev. B, 11, No. 9: 3311 (1975).
- E.C. Van Reuth and R.M.Waterstrat, Acta Crystallogr. B, 24: 186 (1968).
- N.V. Ageev, N.E. Alekseevsky and V.F. Shamray, Izvestiya AN SSSR. Metals, 3: 171 (1970).
- Yu.A. Khon, V.P. Fadin, S.A. Beznosyuk and V.M. Kuznetsov, Dokl. IV Vsesoyuzn. Confer. on the Ordering of Atoms and Its Effect on the Properties of Alloys (Tomsk: Tomsk State University: 1974), 1, p. 309.
- N.V. Ageev, N.E. Alekseevsky and V.F. Shamray, Izv. AN USSR. Metals, 1: 170 (1976).
- V.S. Belovol and V.A. Finkel, Questions of Atomic Science and Technology. Ser. Foundation and Applied Superconductivity (Kharkiv: KhFTI of the Academy of Sciences of the Ukrainian SSR: 1977), vol. 1, p. 6.
- N.N. Degtyarenko, V.F. Yelesin and Yu.P. Skopintsev, Ordering of Atoms and Its Effect on the Properties of Alloys: Tez. Dokl. VII Vsezoyuzn. Conf., (Sverdlovsk: UNC of the USSR Academy of Sciences: 1983), 2, p. 42.
- A.A. Smirnov, Phys. Met. Metallogr., 58, No. 4: 667 (1984).
- A.A. Smirnov, Generalized Theory of Ordering Alloys, (Kyiv: Naukova Dumka: 1986).
- Z.A. Matysina, D.V. Seriy, and V.A. Bondarenko, Atomic ordering. The solubility of the impurity, Izv.vuzov. Physics, 1: 127 (1996).
- Z.A. Matysina, S.Yu. Zaginaichenko, D.V. Schur, and V.K. Pishuk, Proc. 11th World Hydrogen Energy Conf. (Germany: Stuttgard: 1996) 2: 1091.
- Z.A. Matysina, S.Yu. Zaginaichenko, D.V. Seryi, and D.V. Schur, Int. J. Hydrogen Energy, 21, Nos. 11–12: 1065 (1996).
- W. Gorsky, Zs. Phys., 50, Nos. 1–2: 64 (1928).
- S.Yu. Zaginaichenko, Z.A. Matysina, and M.I. Milyan, The Solubility of Impurities in Alloys, 2597: 186 (1989).
- Z.A. Matysina and M.I. Milyan, Theory of Solubility of Impurities in Ordered Phases (Dnipropetrovsk: Publishing House of DSU: 1991), p. 180.
- K.H. Levchuk, T.M. Radchenko, and V.A. Tatarenko, Metallofiz. Noveishie Tekhnol., 43, No. 1: 1 (2021); https://doi.org/10.15407/mfint.43.01.0001
- T.M. Radchenko, O.S. Gatsenko, V.V. Lizunov, and V.A. Tatarenko, Prog. Phys. Met., 21, No. 4: 580 (2020); https://doi.org/10.15407/ufm.21.04.580
- I.M. Melnyk, T.M. Radchenko, and V.A. Tatarenko, Metallofiz. Noveishie Tekhnol., 32, No. 9: 1191 (2010).
- V.A. Tatarenko, S.M. Bokoch, V.M. Nadutov, T.M. Radchenko, and Y.B. Park, Defect Diffus. Forum, 280–281: 29 (2008); https://doi.org/10.4028/www.scientific.net/DDF.280-281.29
- T.M. Radchenko, V.A. Tatarenko, and H. Zapolsky, Solid State Phenom., 138: 283 (2008); https://doi.org/10.4028/www.scientific.net/ssp.138.283
- V.A. Tatarenko and C.L. Tsynman, Solid State Ionics, 101–103, Pt. 2: 1061 (1997); https://doi.org/10.1016/s0167-2738(97)00376-7
- T.M. Radchenko and V.A. Tatarenko, Carbon Nanomaterials in Clean Energy Hydrogen Systems. NATO Science for Peace and Security Series C: Environmental Security (Eds. B. Baranowsky, S.Y. Zaginaichenko, D.V. Schur, V.V. Skorokhod, and A. Veziroglu) (Springer Science Business Media B.V.: 2008), p. 489; https://doi.org/10.1007/978-1-4020-8898-8_62
- T.M. Radchenko and V.A. Tatarenko, Hydrogen Materials Science and Chemistry of Carbon Nanomaterials. NATO Security through Science Series A: Chemistry and Biology (Eds. T.N. Veziroglu, S.Yu. Zaginaichenko, D.V. Schur, B. Baranowski, A.P. Shpak, V.V. Skorokhod, and A. Kale) (Dordrecht: Springer: 2007), p. 229; https://doi.org/10.1007/978-1-4020-5514-0_28
- V.A. Tatarenko and T.M. Radchenko, Hydrogen Materials Science and Chemistry of Metal Hydrides: NATO Science Series, Series II: Mathematics, Physics and Chemistry (Eds. T.N. Veziroglu, S.Yu. Zaginaichenko, D.V. Schur, and V.I. Trefilov) (Dordrecht, The Netherlands: Kluwer Academic Publishers: 2002), vol. 82, p. 123.
- T.M. Radchenko and V.A. Tatarenko, Int. J. Hydrogen Energy, 36, No. 1: 1338 (2011); https://doi.org/10.1016/j.ijhydene.2010.06.112
- T. Radchenko, H. Zapolsky, D. Blavette, and V. Tatarenko, Acta Cryst., A60: s71 (2004); https://doi.org/10.1107/S0108767304098599
- S.P. Repetsky, E.G. Len, and V.V. Lizunov, Metallofiz. Noveishie Tekhnol., 28, No. 8: 989 (2006).
- S.P. Repetsky, T.S. Len, and V.V. Lizunov, Metallofiz. Noveishie Tekhnol., 28, No. 9: 1143 (2006).
- P. Prysyazhnyuk and D. Di Tommaso, Mater. Adv., 4, No. 17: 3822 (2023); https://doi.org/10.1039/d3ma00313b
- P. Szroeder, I.Yu. Sagalianov, T.M. Radchenko, V.A. Tatarenko, Yu.I. Prylutskyy, and W. Strupiński, Appl. Surf. Sci., 442: 185 (2018); https://doi.org/10.1016/j.apsusc.2018.02.150
- S.M. Bokoch, M.P. Kulish, T.M. Radchenko, and V.A. Tatarenko, Metallofiz. Noveishie Tekhnol., 26, No. 3: 387 (2004).
- S.M. Bokoch, M.P. Kulish, V.A. Tatarenko, and T.M. Radchenko, Metallofiz. Noveishie Tekhnol., 26, No. 4: 541 (2004).
- A.G. Solomenko, R.M. Balabai, T.M. Radchenko, and V.A. Tatarenko, Prog. Phys. Met., 23, No. 2: 147 (2022); https://doi.org/10.15407/ufm.23.02.147
- Т.М. Radchenko, Metallofiz. Noveishie Tekhnol., 30, Spec. Iss.: 195 (2008); Metal Physics and Advanced Technologies, 19, No. 2: 211 (2001).
- D.S. Leonov, T.M. Radchenko, V.A. Tatarenko, and Yu.A. Kunitsky, Defect Diffus. Forum, 273–276: 520 (2008); https://doi.org/10.4028/www.scientific.net/DDF.273-276.520
- K. Cornell, H. Wipf, U. Stuhr, and A.V. Skripov, Solid State Communications, 101, No. 8: 569 (1997); https://doi.org/10.1016/S0038-1098(96)00653-9
- F. Mebtouche, T. Zergoug, S.E.H. Abaidia, J. Bertsch, A. Seddik Kebaili, and A. Nedjar, Comput. Theor. Chem., 1178, No. 15: 112781 (2020); https://doi.org/10.1016/j.comptc.2020.112781
- Chunlei Shen, Yunping Jia, Canhui Xu, Shuanglin Hu, Xiaosong Zhou, and Xinggui Long, Surface Science, 725: 122149 (2022); https://doi.org/10.1016/j.susc.2022.122149
- Q. Liu, Z. Zhang, S. Liu, and H. Yang, Adv. Eng. Mater, 20, No. 5: 1700679 (2018), https://doi.org/10.1002/adem.201700679
- J. Wang and H. Gong, Int. J. Hydrog. Energy, 39, No. 11: 6068 (2014); https://doi.org/10.1016/j.ijhydene.2014.01.126
- M. Schlereth and H. Wipf, J. Phys.: Cond. Matt., 2, No. 33: 6929; https://doi.org/10.1088/0953-8984/2/33/005
- L. Chen, Q. Wang, W. Jiang, and H. Gong, Metals, 2019, 9, No. 2: 121; https://doi.org/10.3390/met9020121
- S. Zhu, R.J. Zhang, L. Wan, Y.K. Guo, R.Y. Zhou, and T. Gao, Mater. Chem. Phys., 277: 125549 (2022); https://doi.org/10.1016/j.matchemphys.2021.125549
- Y.J. Choi, J.W. Choi, H.Y. Sohn, T. Ryu, K.S. Hwang, and Z.Z. Fang, Int. J. Hydrog. Energy, 34, No. 18: 7700 (2009); https://doi.org/10.1016/j.ijhydene.2009.07.033
- M. Calizzi, D. Chericoni, L.H. Jepsen, T.R. Jensen, and L. Pasquini, Int. J. Hydrog. Energy, 41, No. 32: 14447 (2016); https://doi.org/10.1016/j.ijhydene.2016.03.071
- F. Yan, I. Mouton, L.T. Stephenson, A.J. Breen, Y. Chang, D. Ponge, D. Raabe, and B. Gault, Scr. Mater., 162: 321 (2019); https://doi.org/10.1016/j.scriptamat.2018.11.040
- M. Pozzo and D. Alfè, Int. J. Hydrog. Energy, 34, No. 4: 1922 (2009); https://doi.org/10.1016/j.ijhydene.2008.11.109.
- M.W. Davids, M. Lototskyy, A. Nechaev, Q. Naidoo, M. Williams, and Y. Klochko, Int. J. Hydrog. Energy, 36, No. 16: 9743 (2011); https://doi.org/10.1016/j.ijhydene.2011.05.036
- V.N. Bugayev, V.G. Gavrilyuk, V.M. Nadutov, and V.A. Tatarenko, Fiz. Met. Metalloved., 68, No. 5: 931 (1989).