Сучасні наповнювачі металевих і полімерних матриць
Ол. Д. Золотаренко$^{1,2}$, Н. В. Сігарьова$^1$, М. І. Терець$^1$, Н. А. Швачко$^{2,3}$, Н. А. Гаврилюк$^1$, Д. Л. Старокадомський$^1$, С. В. Шульга$^1$, О. В. Хора$^1$, Ан. Д. Золотаренко$^{1,2}$, Д. В. Щур$^{2,4}$, М. Т. Габдуллин$^5$, Д. В. Ісмаїлов$^{5,6}$, О. П. Рудакова$^{1,2}$, І. В. Загорулько$^8$
$^1$Інститут хімії поверхні ім. О. О. Чуйка НАН України, вул. Генерала Наумова, 17, 03164 Київ, Україна
$^2$Інститут проблем матеріалознавства ім. І. М. Францевича НАН України, вул. Омеляна Пріцака, 3, 03142 Київ, Україна
$^3$Київський національний університет будівництва і архітектури, просп. Повітрофлотський, 31, 03037 Київ, Україна
$^4$Інститут прикладної фізики НАН України, вул. Петропавлівська, 58, 40000 Суми, Україна
$^5$Казахстансько-британський технічний університет, вул. Толе бі, 59, 050040 Алмати, Казахстан
$^6$Казахський національний університет ім. Аль-Фарабі, просп. Аль-Фарабі, 71, 050040 Алмати, Казахстан
$^7$НАТ «Казахський національний дослідницький технічний університет імені К.І. Сатбаєва», вул. Сатбаєва, 22, 050013 Алмати, Казахстан
$^8$Інститут металофізики ім. Г. В. Курдюмова НАН України, бульв. Академіка Вернадського, 36, 03142 Київ, Україна
Отримано 13.07.2023; остаточна версія — 13.08.2023
Завантажити PDF
Анотація
Описано сучасні наповнювачі металевих і полімерних матриць, їхні властивості та галузі застосування. Обговорюються основні параметри наповнювачів, їхні переваги та недоліки, результати досліджень та експериментів, що може бути корисним для вчених та інженерів, які працюють у хемічних і матеріалознавчих галузях, займаючись розробкою нових перспективних матеріалів. Оглянуто різні матеріали, які використовуються в якості наповнювачів металевих і полімерних матриць. Для створення композитів нового покоління з поліпшеними властивостями використовуються наноструктурні матеріали, такі як графен, фуллерени, нанотрубки, нанопорошки металів та їхніх стопів. Вуглецеві наповнювачі можуть бути найсильнішим графітизатором, що важливо для чорної металурґії. Нанонаповнювачі мають ультрадисперсні розміри та високі значення питомої поверхні, що уможливлює значне змінення фізико-хемічних і функціональних характеристик матриці. Зазначається, що використання наповнювачів уможливлює контроль структурного складу розтопу та сприяє формуванню додаткових центрів кристалізації. Це, в свою чергу, може значно впливати на властивості матеріалу, такі як механічна міцність, термостійкість та інші.
Ключові слова: несуча матриця, нанокомпозити, двовимірні (2D) та тривимірні (3D) наповнювачі, метали, оксиди металів, наноструктури, кристалічні структури.
DOI:
https://doi.org/10.15407/ufm.24.03.493
Citation:
Ol. D. Zolotarenko, N. V. Sigareva, M. I. Terets, N. A. Shvachko, N. A. Gavrylyuk, D. L. Starokadomsky, S. V. Shulha, O. V. Hora, An. D. Zolotarenko, D. V. Schur, M. T. Gabdullin, D. V. Ismailov, E. P. Rudakova, and I. V. Zagorulko, Modern Fillers of Metal and Polymer Matrices, Progress in Physics of Metals, 24, No. 3: 493–529 (2023)
Цитована література
- A.M. Uskenbaeva and N.A. Shamelkhanov, Materials of International Practical Internet Conference ‘Challenges of Science’ (2018), p. 1; https://doi.org/10.31643/2018.023
- A. Memaran-Babakan, M. Davoodi, M. Shafaie, M. Sarparast, and H. Zhang, Research Square Preprint (2023); https://doi.org/10.21203/rs.3.rs-2921045/v1
- S.F. Al-Sarawi, D. Abbott, and P.D. Franzon, A Review of 3-D Packaging Technology, IEEE Transactions on Components, Packaging, and Manufacturing Technology: Part B, 21, No. 1: 2 (1998); https://doi.org/10.1109/96.659500
- Ol.D. Zolotarenko, E.P. Rudakova, N.Y. Akhanova, An.D. Zolotarenko, D.V. Shchur, M.T. Gabdullin, M. Ualkhanova, N.A. Gavrylyuk, M.V. Chymbai, Yu.O. Tarasenko, I.V. Zagorulko, and A.D. Zolotarenko, Electric Conductive Composites Based on Metal Oxides and Carbon Nanostructures, Metallofiz. Noveishie Tekhnol., 43, No. 10: 1417 (2021); https://doi.org/10.15407/mfint.43.10.1417
- Ol.D. Zolotarenko, E.P. Rudakova, N.Y. Akhanova, An.D. Zolotarenko, D.V. Shchur, M.T. Gabdullin, M. Ualkhanova, М. Sultangazina, N.A. Gavrylyuk, M.V. Chymbai, A.D. Zolotarenko, I.V. Zagorulko, and Yu.O. Tarasenko, Plasmochemical Synthesis of Platinum-Containing Carbon Nanostructures Suitable for 3D-Printing, Metallofiz. NoveishieTekhnol., 44, No. 3: 343 (2022); https://doi.org/10.15407/mfint.44.03.0343
- Ol.D. Zolotarenko, E.P. Rudakova, N.Y. Akhanova, An.D. Zolotarenko, D.V. Shchur, M.T. Gabdullin, M. Ualkhanova, N.A. Gavrylyuk, M.V. Chymbai, T.V. Myronenko, I.V. Zagorulko, A.D. Zolotarenko, and O.O. Havryliuk, Electrically Conductive Composites Based on TiO2 and Carbon Nanostructures Manufactured Using 3D Printing of CJP Technology, Chem., Phys. Technol. Surf., 13, No. 4: 415 (2022); https://doi.org/10.15407/hftp13.04.415
- Ol.D. Zolotarenko, E.P. Rudakova, An.D. Zolotarenko, N.Y. Akhanova, M. Ualkhanova, D.V. Shchur, M.T. Gabdullin, T.V. Myronenko, A.D. Zolotarenko, M.V. Chymbai, and I.V. Zagorulko, Creation and Comparison of Properties of Composites Based on Ceramics Filled with Straight or Helical Carbon Nanotubes for CJP 3D Printing Technology, Metallofiz. Noveishie Tekhnol., 45, No. 2: 199 (2023); https://doi.org/10.15407/mfint.45.02.0199
- V.A. Lavrenko, I.A. Podchernyaeva, D.V. Shchur, An.D. Zolotarenko, and Al.D. Zolotarenko, Features of Physical and Chemical Adsorption During Interaction of Polycrystalline and Nanocrystalline Materials with Gases, Powder Metallurgy and Metal Ceramics, 56: 504 (2018); https://doi.org/10.1007/s11106-018-9922-z
- Ol.D. Zolotarenko, M.N. Ualkhanova, E.P. Rudakova, N.Y. Akhanova, An.D. Zolotarenko, D.V. Shchur, M.T. Gabdullin, N.A. Gavrylyuk, A.D. Zolotarenko, M.V. Chymbai, I.V. Zagorulko, and O.O. Havryliuk, Advantages and disadvantages of electric arc methods for the synthesis of carbon nanostructures, Chem., Phys. Technol. Surf., 13, No. 2: 209 (2022); https://doi.org/10.15407/hftp13.02.209
- Z.A. Matysina, Ol.D. Zolotarenko, M. Ualkhanova, O.P. Rudakova, N.Y. Akhanova, An.D. Zolotarenko, D.V. Shchur, M.T. Gabdullin, N.A. Gavrylyuk, O.D. Zolotarenko, M.V. Chymbai, and I.V. Zagorulko, Electric Arc Methods to Synthesize Carbon Nanostructures, Prog. Phys. Met., 23, No. 3: 528 (2022); https://doi.org/10.15407/ufm.23.03.528
- A. Selvakumar, U. Sanjith, T.R. Tamilarasen, R. Muraliraja, W. Sha, and J. Sudagar, A Critical Review of Carbon Nanotube-Based Surface Coatings, Prog. Phys. Met., 23, No. 1: 3 (2022); https://doi.org/10.15407/ufm.23.01.003
- D.V. Schur, A.G. Dubovoy, S.Yu. Zaginaichenko, V.M. Adejev, A.V. Kotko, V.A. Bogolepov, A.F. Savenko, A.D. Zolotarenko, S.A. Firstov, and V.V. Skorokhod, Synthesis of carbon nanostructures in gaseous and liquid medium, NATO Security through Science Series A: Chemistry and Biology (Dordrecht: Springer: 2007), p. 199; https://doi.org/10.1007/978-1-4020-5514-0_25
- M.N. Ualkhanova, A.S. Zhakypov, R.R. Nemkayeva, M.B. Aitzhanov, B.Y. Kurbanov, N.Y. Akhanova, Y. Yerlanuly, S.A. Orazbayev, D. Shchur, A. Zolotarenko, and M.T. Gabdullin, Synthesis of carbon nanostructures in gaseous and liquid medium, Energies, 16, No. 3: 1450 (2023); https://doi.org/10.3390/en16031450
- S.Y. Zaginaichenko and Z.A. Matysina, The peculiarities of carbon interaction with catalysts during the synthesis of carbon nanomaterials, Carbon, 41, No. 7: 1349 (2003); https://doi.org/10.1016/S0008-6223(03)00059-9
- V.A. Lavrenko, D.V. Shchur, A.D. Zolotarenko, and A.D. Zolotarenko, Electrochemical synthesis of ammonium persulfate (NH4)2S2O8 using oxygen-depolarized porous silver cathodes produced by powder metallurgy methods, Powder Metallurgy and Metal Ceramics, 57, No. 9: 596 (2019); https://doi.org/10.1007/s11106-019-00021-y
- Ol.D. Zolotarenko, E.P. Rudakova, I.V. Zagorulko, N.Y. Akhanova, An.D. Zolotarenko, D.V. Schur, M.T. Gabdullin, M. Ualkhanova, T.V. Myronenko, A.D. Zolotarenko, M.V. Chymbai, and O.E. Dubrova, Comparative analysis of products of electric arc synthesis using graphite of different grades, Ukr. J. Phys., 68, No. 1: 57 (2023); https://doi.org/10.15407/ujpe68.1.57
- Ol.D. Zolotarenko, An.D. Zolotarenko, E.P. Rudakova, N.Y. Akhanova, M. Ualkhanova, D.V. Schur, M.T. Gabdullin, T.V. Myronenko, A.D. Zolotarenko, M.V. Chymbai, I.V. Zagorulko, and O.O. Havryliuk, Features of the synthesis of straight and spiral carbon nanotubes by the pyrolytic method, Chem., Phys. Technol. Surf., 14, No. 2: 191 (2023); https://doi.org/10.15407/hftp14.02.191
- D.V. Schur, S.Y. Zaginaichenko, E.A. Lysenko, T.N. Golovchenko, and N.F. Javadov, The forming peculiarities of C60 molecule, NATO Science for Peace and Security Series C: Environmental Security (Eds. B. Baranowski, S.Y. Zaginaichenko, D.V. Schur, V.V. Skorokhod, and A. Veziroglu) (2008), p. 53; https://doi.org/10.1007/978-1-4020-8898-8_5
- D.V. Schur, S.Y. Zaginaichenko, A.D. Zolotarenko, and T.N. Veziroglu, Solubility and transformation of fullerene C60 molecule, NATO Science for Peace and Security Series C: Environmental Security (Eds. B. Baranowski, S.Y. Zaginaichenko, D.V. Schur, V.V. Skorokhod, and A. Veziroglu) (2008), p. 85; https://doi.org/10.1007/978-1-4020-8898-8_7
- O.D. Zolotarenko, O.P. Rudakova, M.T. Kartel, H.O. Kaleniuk, A.D. Zolotarenko, D.V. Schur, and Y.O. Tarasenko, The mechanism of forming carbon nanostructures by electric arc-method, Surface, 12, No. 27: 263 (2020); https://doi.org/10.15407/Surface.2020.12.263
- Ol.D. Zolotarenko, O.P. Rudakova, N.E. Akhanova, An.D. Zolotarenko, D.V. Shchur, Z.A. Matysina, M.T. Gabdullin, M. Ualkhanova, N.A. Gavrilyuk, O.D. Zolotarenko, M.V. Chymbai, and I.V. Zagorulko, Comparative Analysis of Products of the Fullerenes’ and Carbon-Nanostructures’ Synthesis Using the SIGE and FGDG-7 Grades of Graphite, Nanosistemi, Nanomateriali, Nanotehnologii, 20, No. 3: 725 (2022); https://doi.org/10.15407/nnn.20.03.725
- D.S. Kerimbekov, N.E. Akhanova, M.T. Gabdullin, Kh.A. Abdullin, D.G. Batryshev, A.D. Zolotarenko, N.A. Gavrylyuk, O.D. Zolotarenko, and D.V. Shchur, Features of the synthesis of fullerenes and their derivatives, J. Problems in the Evolution of Open Systems, 24, Nos. 3–4: 79 (2023); https://doi.org/10.26577/JPEOS.2022.v24.i2.i6
- V.M. Gun’ko, V.V. Turov, V.I. Zarko, G.P. Prykhod’ko, T.V. Krupska, A.P. Golovan, J. Skubiszewska-Zięba, B. Charmas, and M.T. Kartel, Unusual interfacial phenomena at a surface of fullerite and carbon nanotubes, Chem. Phys., 459: 172 (2015); https://doi.org/10.1016/j.chemphys.2015.08.016
- M.M. Nishchenko, S.P. Likhtorovich, A.G. Dubovoy, and T.A. Rashevskaya, Positron annihilation in C60 fullerites and fullerene-like nanovoids, Carbon, 41, No. 7: 1381 (2003); https://doi.org/10.1016/S0008-6223(03)00065-4
- N.Y. Akhanova, D.V. Schur, N.A. Gavrylyuk, M.T. Gabdullin, N.S. Anikina, An.D. Zolotarenko, O.Ya. Krivushchenko, Ol.D. Zolotarenko, B.M. Gorelov, E. Erlanuli, and D. G. Batrishev, Use of absorption spectra for identification of endometallofullerenes, Chem., Phys. Technol. Surf., 11, No. 3: 429 (2020); https://doi.org/10.15407/hftp11.03.429
- Z.A. Matysina, Ol.D. Zolotarenko, O.P. Rudakova, N.Y. Akhanova, A.P. Pomytkin, An.D. Zolotarenko, D.V. Shchur, M.T. Gabdullin, M. Ualkhanova, N.A. Gavrylyuk, A.D. Zolotarenko, M.V. Chymbai, and I.V. Zagorulko, Iron in Endometallofullerenes, Prog. Phys. Met., 23, No. 3: 510 (2022); https://doi.org/10.15407/ufm.23.03.510
- N.Ye. Akhanova, D.V. Shchur, A.P. Pomytkin, Al.D. Zolotarenko, An.D. Zolotarenko, N.A. Gavrylyuk, M. Ualkhanova, W. Bo, and D. Ang, Gadolinium endofullerenes, J. Nanosci. Nanotechnol., 21: 2435 (2021); https://doi.org/10.1166/jnn.2021.18970
- O.D. Zolotarenko, E.P. Rudakova, A.D. Zolotarenko, N.Y. Akhanova, M.N. Ualkhanova, D.V. Shchur, M.T. Gabdullin, N.A. Gavrylyuk, T.V. Myronenko, A.D. Zolotarenko, M.V. Chymbai, I.V. Zagorulko, Yu.O. Tarasenko, and O.O. Havryliuk, Platinum-containing carbon nanostructures for the creation of electrically conductive ceramics using 3D printing of CJP technology, Chem., Phys. Technol. Surf., 13, No. 3: 259 (2022); https://doi.org/10.15407/hftp13.03.259
- D.V. Schur, A.D. Zolotarenko, A.D. Zolotarenko, O.P. Zolotarenko, and M.V. Chimbai, Analysis and identification of platinum-containing nanoproducts of plasma-chemical synthesis in a gaseous medium, Phys. Sci. Technol., 6, Nos. 1–2: 46 (2019); https://doi.org/10.26577/phst-2019-1-p9
- M. Baibarac, I. Baltog, S. Frunza, A. Magrez, D. Schur, and S.Y. Zaginaichenko, Single-walled carbon nanotubes functionalized with polydiphenylamine as active materials for applications in the supercapacitors field, Diamond Relat. Mater., 32: 72 (2013); https://doi.org/10.1016/j.diamond.2012.12.006
- A.D. Zolotarenko, A.D. Zolotarenko, E.P. Rudakova, S.Y. Zaginaichenko, A.G. Dubovoy, D.V. Schur, and Y.A. Tarasenko, The peculiarities of nanostructures formation in liquid phase, Carbon Nanomaterials in Clean Energy Hydrogen Systems-II (Dordrecht: Springer: 2011), p. 137; https://doi.org/10.1007/978-94-007-0899-0_11
- M. Ualkhanova, A.Y. Perekos, A.G. Dubovoy, D.V. Schur, Al.D. Zolotarenko, An.D. Zolotarenko, N.A. Gavrylyuk, M.T. Gabdullin, T.S. Ramazanov, N. Akhanova, and S. Orazbayev, The influence of magnetic field on synthesis of iron nanoparticles, J. Nanosci. Nanotechnol. Appl., 3, No. 3: 1 (2019); https://doi.org/10.18875/2577-7920.3.302
- Al.D. Zolotarenko, An.D. Zolotarenko, V.A. Lavrenko, S.Yu. Zaginaichenko, N.A. Shvachko, O.V. Milto, V.B. Molodkin, A.E. Perekos, V.M. Nadutov, and Yu.A. Tarasenko, Encapsulated ferromagnetic nanoparticles in carbon shells, Carbon Nanomaterials in Clean Energy Hydrogen Systems-II (Dordrecht: Springer: 2011), p. 127; https://doi.org/10.1007/978-94-007-0899-0_10
- D.V. Schur, S.Y. Zaginaichenko, A.F. Savenko, V.A. Bogolepov, and N.S. Anikina, Experimental evaluation of total hydrogen capacity for fullerite C60, Int. J. Hydrogen Energ., 36, No. 1: 1143 (2011); https://doi.org/10.1016/j.ijhydene.2010.06.087
- A.F. Savenko, V.A. Bogolepov, K.A. Meleshevich, S.Yu. Zaginaichenko, M.V. Lototsky, V.K. Pishuk, L.O. Teslenko, and V.V. Skorokhod, Structural and methodical features of the installation for investigations of hydrogen-sorption characteristics of carbon nanomaterials and their composites, NATO Security through Science Series A: Chemistry and Biology (Dordrecht: Springer: 2007), p. 365; https://doi.org/10.1007/978-1-4020-5514-0_47
- D.V. Schur, S. Zaginaichenko, and T.N. Veziroglu, Peculiarities of hydrogenation of pentatomic carbon molecules in the frame of fullerene molecule C60, Int. J. Hydrogen Energy, 33, No. 13: 3330 (2008); https://doi.org/10.1016/j.ijhydene.2008.03.064
- D.V. Schur, M.T. Gabdullin, S.Yu. Zaginaichenko, T.N. Veziroglu, M.V. Lototsky, V.A. Bogolepov, and A.F. Savenko, Experimental set-up for investigations of hydrogen-sorption characteristics of carbon nanomaterials, Int. J. Hydrogen Energy, 41, No. 1: 401 (2016); https://doi.org/10.1016/j.ijhydene.2015.08.087
- D.V. Schur, S.Y. Zaginaichenko, and T.N. Veziroglu, The hydrogenation process as a method of investigation of fullerene C60 molecule, Int. J. Hydrogen Energy, 40, No. 6: 2742 (2015); https://doi.org/10.1016/j.ijhydene.2014.12.092
- Z.A. Matysina, S.Yu. Zaginaichenko, D.V. Shchur, A. Viziroglu, T.N. Veziroglu, M.T. Gabdullin, N.F. Javadov, An.D. Zolotarenko, and Al.D. Zolotarenko, Hydrogen in Crystals (Kyiv: ‘KIM’ Publishing House: 2017), р. 1060.
- D.V. Schur, S.Y. Zaginaichenko, A.F. Savenko, V.A. Bogolepov, N.S. Anikina, A.D. Zolotarenko, Z.A. Matysina, T.N. Veziroglu, and N.E. Skryabina, Hydrogenation of fullerite C60 in gaseous phase, NATO Science for Peace and Security Series C: Environmental Security (Dordrecht: Springer: 2011), p. 87; https://doi.org/10.1007/978-94-007-0899-0_7
- Z.A. Matysina and D.V. Shchur, Phase transformations β γ δ ε in titanium hydride TiHx with increase in hydrogen concentration, Rus. Phys. J., 44, No. 11: 1237 (2001); https://doi.org/10.1023/A:1015318110874
- V.I. Trefilov, D.V. Schur, V.K. Pishuk, S.Yu. Zaginaichenko, A.V. Choba, and N.R. Nagornaya, The solar furnaces for scientific and technological investigation, Renewable Energy, 16, Nos. 1–4: 757 (1999); https://doi.org/10.1016/S0960-1481(98)00273-0
- Yu.M. Lytvynenko and D.V. Shchur, Utilization the concentrated solar energy for process of deformation of sheet metal, Renewable Energy, 16, Nos. 1–4: 753 (1999); https://doi.org/10.1016/S0960-1481(98)00272-9
- D.V. Schur, A.A. Lyashenko, V.M. Adejev, V.B. Voitovich, and S.Yu. Zaginaichenko, Niobium as a construction material for a hydrogen energy system, Int. J. Hydrogen Energy, 20, No. 5: 405 (1995); https://doi.org/10.1016/0360-3199(94)00077-D
- D.V. Schur, V.A. Lavrenko, V.M. Adejev, and I.E. Kirjakova, Studies of the hydride formation mechanism in metals, Int. J. Hydrogen Energy, 19, No. 3: 265 (1994); https://doi.org/10.1016/0360-3199(94)90096-5
- S.Y. Zaginaichenko, Z.A. Matysina, D.V. Schur, L.O. Teslenko, and A. Veziroglu, The structural vacancies in palladium hydride. Phase diagram, Int. J. Hydrogen Energy, 36, No. 1: 1152 (2011); https://doi.org/10.1016/j.ijhydene.2010.06.088
- S.A. Tikhotskii, I.V. Fokin, and D.V. Schur, Traveltime seismic tomography with adaptive wavelet parameterization, Phys. Solid Earth, 47, No. 4: 327 (2011); https://doi.org/10.1134/S1069351311030062
- A.D. Zolotarenko, A.D. Zolotarenko, A. Veziroglu, T.N. Veziroglu, N.A. Shvachko, A.P. Pomytkin, D.V. Schur, N.A. Gavrylyuk, T.S. Ramazanov, N.Y. Akhanova, and M.T. Gabdullin, Methods of theoretical calculations and of experimental researches of the system atomic hydrogen–metal, Int. J. Hydrogen Energy, 47, No. 11: 7310 (2022); https://doi.org/10.1016/j.ijhydene.2021.03.065
- An.D. Zolotarenko, Al.D. Zolotarenko, A. Veziroglu, T.N. Veziroglu, N.A. Shvachko, A.P. Pomytkin, N.A. Gavrylyuk, D.V. Schur, T.S. Ramazanov, and M.T. Gabdullin, The use of ultrapure molecular hydrogen enriched with atomic hydrogen in apparatuses of artificial lung ventilation in the fight against virus COVID-19, Int. J. Hydrogen Energy, 47, No. 11: 7281 (2021); https://doi.org/10.1016/j.ijhydene.2021.03.025
- Z.A. Matysina, An.D. Zolonarenko, Al.D. Zolonarenko, N.A. Gavrylyuk, A. Veziroglu, T.N. Veziroglu, A.P. Pomytkin, D.V. Schur, and M.T. Gabdullin, Features of the Interaction of Hydrogen with Metals, Alloys and Compounds (Hydrogen Atoms in Crystalline Solids) (Kyiv: ‘KIM’ Publishing House: 2022), p. 490.
- D.V. Schur, M.T. Gabdullin, V.A. Bogolepov, A. Veziroglu, S.Y. Zaginaichenko, A.F. Savenko, and K.A. Meleshevich, Selection of the hydrogen-sorbing material for hydrogen accumulators, Int. J. Hydrogen Energy, 41, No. 3: 1811 (2016); https://doi.org/10.1016/j.ijhydene.2015.10.011
- Z.A. Matysina, O.S. Pogorelova, and S.Yu. Zaginaichenko, The surface energy of crystalline CuZn and FeAl alloys, J. Phys. Chem. Solids, 56, No. 1: 9 (1995); https://doi.org/10.1016/0022-3697(94)00106-5
- Z.A. Matysina and S.Yu. Zaginaichenko, Hydrogen solubility in alloys under pressure, Int. J. Hydrogen Energy, 21, Nos. 11–12: 1085 (1996); https://doi.org/10.1016/S0360-3199(96)00050-X
- S.Yu. Zaginaichenko, Z.A. Matysina, I. Smityukh, and V.K. Pishuk, Hydrogen in lanthan–nickel storage alloys, J. Alloys and Comp., 330–332: 70 (2002); https://doi.org/10.1016/S0925-8388(01)01661-9
- Z.A. Matysina and S.Y. Zaginaichenko, Sorption properties of iron–magnesium and nickel–magnesium Mg2FeH6 and Mg2NiH4 hydrides, Rus. Phys. J., 59, No. 2: 177 (2016); https://doi.org/10.1007/s11182-016-0757-0
- S.Y. Zaginaichenko, D.A. Zaritskii, Z.A. Matysina, T.N. Veziroglu, and L.I. Kopylova, Theoretical study of hydrogen-sorption properties of lithium and magnesium borocarbides, Int. J. Hydrogen Energy, 40, No. 24: 7644 (2015); https://doi.org/10.1016/j.ijhydene.2015.01.089
- Z.A. Matysina, S.Y. Zaginaichenko, and D.V. Schur, Hydrogen-sorption properties of magnesium and its intermetallics with Ca7Ge-type structure, Phys. Met. Metallogr., 114, No. 4: 308 (2013); https://doi.org/10.1134/S0031918X13010079
- Z.A. Matysina, N.A. Gavrylyuk, M. Kartel, A. Veziroglu, T.N. Veziroglu, A.P. Pomytkin, D.V. Schur, T.S. Ramazanov, M.T. Gabdullin, A.D. Zolotarenko, A.D. Zolotarenko, and N.A. Shvachko, Hydrogen sorption properties of new magnesium intermetallic compounds with MgSnCu4 type structure, Int. J. Hydrogen Energy, 46, No. 50: 25520 (2021); https://doi.org/10.1016/j.ijhydene.2021.05.069
- D.V. Shchur, S.Y. Zaginaichenko, A. Veziroglu, T.N. Veziroglu, N.A. Gavrylyuk, A.D. Zolotarenko, M.T. Gabdullin, T.S. Ramazanov, A.D. Zolotarenko, and A.D. Zolotarenko, Prospects of producing hydrogen-ammonia fuel based on lithium aluminum amide, Rus. Phys. J., 64, No. 1: 89 (2021); https://doi.org/10.1007/s11182-021-02304-7
- S.Yu. Zaginaichenko, Z.A. Matysina, D.V. Schur, and A.D. Zolotarenko, Li–N–H system — Reversible accumulator and store of hydrogen, Int. J. Hydrogen Energy, 37, No. 9: 7565 (2012); https://doi.org/10.1016/j.ijhydene.2012.01.006
- Z.A. Matysina, S.Y. Zaginaichenko, D.V. Schur, T.N. Veziroglu, A. Veziroglu, M.T. Gabdullin, Al.D. Zolotarenko, and An.D. Zolotarenko, The mixed lithium–magnesium imide Li2Mg(NH)2 a promising and reliable hydrogen storage material, Int. J. Hydrogen Energy, 43, No. 33: 16092 (2018); https://doi.org/10.1016/j.ijhydene.2018.06.168
- Z.A. Matysina, S.Y. Zaginaichenko, D.V. Schur, A.D. Zolotarenko, A.D. Zolotarenko, M.T. Gabdulin, L.I. Kopylova, and T.I. Shaposhnikova, Phase transformations in the mixed lithium-magnesium imide Li2Mg(NH)2, Rus. Phys. J., 61, No. 12: 2244 (2019); https://doi.org/10.1007/s11182-019-01662-7
- D.V. Schur, A. Veziroglu, S.Yu Zaginaychenko, Z.A. Matysina, T.N. Veziroglu, M.T. Gabdullin, T.S. Ramazanov, An.D. Zolonarenko, and Al.D. Zolonarenko, Int. J. Hydrogen Energy, 44, No. 45: 24810 (2019); https://doi.org/10.1016/j.ijhydene.2019.07.205
- Z.A. Matysina, S.Yu. Zaginaichenko, D.V. Schur, Al.D. Zolotarenko, An.D. Zolotarenko, and M.T. Gabdulin, Hydrogen sorption properties of potassium alanate, Rus. Phys. J., 61, No. 2: 253 (2018); https://doi.org/10.1007/s11182-018-1395-5
- Z.A. Matysinaa, An.D. Zolotarenko, Al.D. Zolotarenko, M.T. Kartel, A. Veziroglu, T.N. Veziroglu, N.A. Gavrylyuk, D.V. Schur, M.T. Gabdullin, N.E. Akhanova, T.S. Ramazanov, M. Ualkhanova, and N.A. Shvachko, Hydrogen in magnesium alanate Mg(AlH4)2, aluminum and magnesium hydrides, Int. J. Hydrogen Energy, 48, No. 6: 2271 (2023); https://doi.org/10.1016/j.ijhydene.2022.09.225
- Z.A. Matysina, An.D. Zolotarenko, Ol.D. Zolotarenko, T.V. Myronenko, D.V. Schur, E.P. Rudakova, M.V. Chymbai, A.D. Zolotarenko, I.V. Zagorulko, and O.O. Havryliuk, Embedded atoms in a crystalline hexagonal structure, Chem., Phys. Technol. Surf., 14, No. 2: 210 (2023); https://doi.org/10.15407/hftp14.02.210
- B.M. Gorelov, О.V. Mischanchuk, N.V. Sigareva, S.V.Shulga, A.M. Gorb, O.I. Polovina, and V.O. Jukhymchuk, Structural and dipole-relaxation processes in epoxy–multilayer graphene composites with low filler content, Polymers, 13, No. 19: 3360 (2021); https://doi.org/10.3390/polym13193360
- Y. Li, J. Zhu, S. Wei, J. Ryu, L. Sun, and Z. Guo, Poly(propylene)/graphene nanoplatelet nanocomposites: melt rheological behavior and thermal, electrical, and electronic properties, Macromol. Chem. Phys., 212, No. 18: 1951 (2011); https://doi.org/10.1002/macp.201100263
- X. Chen, S. Wei, A. Yadav, R. Patil, J. Zhu, R. Ximenes, L. Sun, and Z. Guo, Poly(propylene)/carbon nanofiber nanocomposites: ex situ solvent-assisted preparation and analysis of electrical and electronic properties, Macromol. Mater. Eng., 296, No. 5: 434 (2011); https://doi.org/10.1002/mame.201000341
- K. Mallick, M.J. Witcomb, A. Dinsmore, and M.S. Scurrell, Langmuir, 21, No. 17: 7964 (2005); https://doi.org/10.1021/la050534j
- D. Feldman, Polymer nanocomposite barriers, J. Macromolecular Sci. A, 50, No. 4: 441 (2013); https://doi.org/10.1080/10601325.2013.768440
- S. Mondal, Polymer nano-composite membranes, J. Membrane Sci. Technol., 5, No. 1: 134 (2014); https://doi.org/10.4172/2155-9589.1000134
- W.A. Izzati, Y.Z. Arief, Z. Adzis, and M. Shafanizam, Partial discharge characteristics of polymer nanocomposite materials in electrical insulation: a review of sample preparation techniques, analysis methods, potential applications, and future trends, Sci. World J., 2014: 735070 (2014); https://doi.org/10.1155/2014/735070
- F. Shaoyun, S. Zheng, H. Pei, L. Yuanqing, and H. Ning, Nano Materials Science, 1, No. 1: 2 (2019); https://doi.org/10.1016/j.nanoms.2019.02.006
- M.M. Shameem, S.M. Sasikanth, R. Annamalai, and R.G. Raman, A brief review on polymer nanocomposites and its applications, Mater. Today: Proc., 45, No. 2: 2536 (2021); https://doi.org/10.1016/j.matpr.2020.11.254
- T. Morishita, M. Matsushita, Y. Katagiri and K. Fukumori, A novel morphological model for carbon nanotube/polymer composites having high thermal conductivity and electrical insulation, J. Mater. Chem., 21, No. 15: 5610 (2011); https://doi.org/10.1039/C0JM04007J
- J.R. Potts, D.R. Dreyer, C.W. Bielawski, and R.S. Ruoff, Graphene-based polymer nanocomposites, Polymer, 52, No. 1: 5 (2011); https://doi.org/10.1016/j.polymer.2010.11.042
- Z.F. Ren, Z.P. Huang, J.W. Xu, J.H. Wang, P. Bush, M.P. Siegal, and P.N. Provencio, Synthesis of large arrays of well-aligned carbon nanotubes on glass, Science, 282, No. 5391: 1105 (1998); https://doi.org/10.1126/science.282.5391.1105
- Y. Ou, F. Yang, and Z.-Z. Yu, A new conception on the toughness of nylon 6/silica nanocomposite prepared via in situ polymerization, J. Polym. Sci. B, 36, No. 5: 789 (2015); https://doi.org/10.1002/(SICI)1099-0488(19980415)36:5<789::AID-POLB6>3.0.CO;2-G
- Z. Zhu, Y. Yang, J. Yin, and Z. Qi, Preparation and properties of organosoluble polyimide/silica hybrid materials by sol–gel process, J. Appl. Polym. Sci., 73, No. 14: 2977 (1999); https://doi.org/10.1002/(SICI)1097-4628(19990929)73:14<2977::AID-APP22>3.0.CO;2-J
- J.E. Bruna, A. Peñaloza, A. Guarda, F. Rodríguez, and M.J. Galotto, Development of MtCu2+/LDPE nanocomposites with antimicrobial activity for potential use in food packaging, Appl. Clay Sci., 58: 79 (2012); https://doi.org/10.1016/j.clay.2012.01.016
- A. Kausar, A review of high performance polymer nanocomposites for packaging applications in electronics and food industries, J. Plastic Film & Sheeting, 36, No. 1: 94 (2020); https://doi.org/10.1177/8756087919849459
- N. Shahrubudin, T.C. Lee, and R. Ramlan, An overview on 3D printing technology: technological, materials, and applications, Procedia Manufacturing, 35: 1286 (2019); https://doi.org/10.1016/j.promfg.2019.06.089
- C. Chen, Y. Tang, Y.S. Ye, Z. Xue, Y. Xue, X. Xie, and Y.Mai, High-performance epoxy/silica coated silver nanowire composites as underfill material for electronic packaging, Composites Sci. Technol., 105: 80 (2014); https://doi.org/10.1016/j.compscitech.2014.10.002
- H. Gu, S. Tadakamalla, Y. Huang, H.A. Colorado, Z. Luo, N. Haldolaarachchige, D.P. Young, S. Wei, and Z. Guo, Polyaniline stabilized magnetite nanoparticle reinforced epoxy nanocomposites, ACS Appl. Mater. Interfaces, 4, No. 10: 5613 (2012); https://doi.org/10.1021/am301529t
- L.T. Yeh, Review of heat transfer technologies in electronic equipment, J. Electron. Packag., 117, No. 4: 333 (1995); https://doi.org/10.1115/1.2792113
- J. Zhu, S. Wei, P. Mavinakuli, and Z. Guo, Conductive polymer metacomposites with sphere- and rod-like nano-WO3, Conference: AIChE Annual Meeting, 114: 16335 (2010); https://www.researchgate.net/publication/267316180
- H. Wei, X. Yan, S. Wu, Z. Luo, S. Wei, and Z. Guo, Electropolymerized polyaniline stabilized tungsten oxide nanocomposite films: electrochromic behavior and electrochemical energy storage, J. Phys. Chem., 116, No. 47: 25052 (2012); https://doi.org/10.1021/jp3090777
- C. Zhan, G. Yu, Y. Lu, L. Wang, E. Wujcik, and S. Wei, Conductive polymer nanocomposites: a critical review of modern advanced devices, J. Mater. Chem. C, 5, No. 7: 1569 (2017); https://doi.org/10.1039/C6TC04269D
- M.Z. Rong, M.Q. Zhang, and W.H. Ruan, Surface modification of nanoscale fillers for improving properties of polymer nanocomposites: a review, Mater. Sci. Technol., 22, No. 7: 787 (2006); https://doi.org/10.1179/174328406X101247
- X. Zhang, X. Yan, J. Guo, Z. Liu, D. Jiang, Q. He, H. Wei, H. Gu, H.A. Colorado, X. Zhang, S. Wei, and Z. Guo, Polypyrrole doped epoxy resin nanocomposites with enhanced mechanical properties and reduced flammability, J. Mater. Chem. C, 3: 162 (2015); https://doi.org/10.1039/C4TC01978D
- X. Zhang, Q. He, H. Gu, H.A. Colorado, S. Wei, and Z. Guo, Flame-retardant electrical conductive nanopolymers based on bisphenol f epoxy resin reinforced with nano polyanilines, ACS Appl. Mater. Interfaces, 5, No. 3: 898 (2013); https://doi.org/10.1021/am302563w
- H. Huang and J.F. Lovell, Advanced functional nanomaterials for theranostics, Adv. Funct. Mater., 27, No. 2: 1603524 (2017); https://doi.org/10.1002/adfm.201603524
- A.P. Kumar and R.P. Singh, Biocomposites of cellulose reinforced starch: Improvement of properties by photo-induced crosslinking, Bioresource Technol., 99, No. 18: 8803 (2008); https://doi.org/10.1016/j.biortech.2008.04.045
- A. Svagan, A. Samir, My Ahmed Said, and B. Lars, Biomimetic polysaccharide nanocomposites of high cellulose content and high toughness, Biomacromolecules, 8, No 8: 2556 (2007); https://doi.org/10.1021/bm0703160
- H.P.S. A. Khalil, Y. Davoudpour, N.A.S. Aprilia, A. Mustapha, S. Hossain Md., N.I. Md., and R. Dungani, Nanocellulose-based polymer nanocomposite: isolation, characterization and applications, Nanocellulose Polymer Nanocomposites: Fundamentals and Applications (Ed. V.K. Thakur) (Wiley–Scrivener Publishing LLC: 2015), Ch. 11, p. 273 (2014); https://doi.org/10.1002/9781118872246.ch11
- M.-J. Cho and B.-D. Park, Tensile and thermal properties of nanocellulose-reinforced poly(vinyl alcohol) nanocomposites, J. Industrial Eng. Chem., 17, No. 1: 36 (2011); https://doi.org/10.1016/j.jiec.2010.10.006
- K.-Y. Lee, Y. Aitomäki, L.A. Berglund, K. Oksman, and A. Bismarck, On the use of nanocellulose as reinforcement in polymer matrix composites, Composites Sci. Technol., 105: 15 (2014); https://doi.org/10.1016/j.compscitech.2014.08.032
- N.D. Luong, J.T. Korhonen, A.J. Soininen, J. Ruokolainen, L.-S. Johansson, and J. Seppälä, Processable polyaniline suspensions through in situ polymerization onto nanocellulose, Eur. Polym. J., 49, No. 2: 335 (2013); https://doi.org/10.1016/j.eurpolymj.2012.10.026
- E. Abraham, P.A. Elbi, B. Deepa, P. Jyotishkumar, L.A. Pothen, S.S. Narine, and S. Thomas, X-ray diffraction and biodegradation analysis of green composites of natural rubber/nanocellulose, Polym. Degrad. Stab., 97, No. 11: 2378 (2012); https://doi.org/10.1016/j.polymdegradstab.2012.07.02
- J.H. Lee, T.G. Park, H.S. Park, D.S. Lee, Y.K. Lee, S.C. Yoon, and J.-D. Nam, Thermal and mechanical characteristics of poly(L-lactic acid) nanocomposite scaffold, Biomaterials, 24, No. 16: 2773 (2002); https://doi.org/10.1016/s0142-9612(03)00080-2
- M.A. Paul, M. Alexandre, P. Degee, C. Calberg, R. Jerome, and P. Dubois, Exfoliated polylactide/clay nanocomposites by in situ coordination–insertion polymerization, Macromol. Rapid Commun., 24, No. 9: 561 (2003); https://doi.org/10.1002/marc.200390082
- D. Bondeson and K. Oksman, Dispersion and characteristics of surfactant modified cellulose whiskers nanocomposites, Composite Interfaces, 14, Nos. 7–9: 617 (2007); https://doi.org/10.1163/156855407782106519
- S. Lee, I. Kang, G. Doh, H. Yoon, B. Park, and Q. Wu, Thermal and mechanical properties of wood flour/talc-filled polylactic acid composites: effect of filler content and coupling treatment, J. Thermoplastic Composite Mater., 21, No. 3: 209 (2008); https://doi.org/10.1177/0892705708089473
- S. Siddiquee, M.G.J. Hong, and M. Rahman, Nanotechnology: Applications in Energy, Drug and Food (Cham: Springer: 2019), p. 439.
- J.H. Wang, F. Chen, G.J. Wideman, M.J. Faulks, and M.M. Mleziva, Nanocomposite Packaging Film (2015).
- N. Basavegowda and K.-H. Baek, Advances in functional biopolymer-based nanocomposites for active food packaging applications, Polymers, 13, No. 23: 4198 (2021); https://doi.org/10.3390/polym13234198
- R. Aiyengar and J. Divecha, Experimental and statistical analysis of the effects of the processing parameters on the seal strength of heat sealed, biaxially oriented polypropylene film for flexible food packaging applications, J. Plastic Film & Sheeting, 28, No. 3: 244 (2012); https://doi.org/10.1177/8756087912440000
- G. Mittal, V. Dhand, K.Y. Rhee, S.-J. Park, and W.R. Lee, A review on carbon nanotubes and graphene as fillers in reinforced polymer nanocomposites, J. Ind. Eng. Chem., 21: 11 (2015); https://doi.org/10.1016/j.jiec.2014.03.022
- T. Morishita, M. Matsushita, Y. Katagiri, and K. Fukumori, Noncovalent functionalization of carbon nanotubes with maleimide polymers applicable to high-melting polymer-based composites, Carbon, 48, No. 8: 2308 (2010); https://doi.org/10.1016/J.CARBON.2010.03.007
- T. Morishita, M. Matsushita, Y. Katagiria, and K. Fukumori, A novel morphological model for carbon nanotube/polymer composites having high thermal conductivity and electrical insulation, J. Mater. Chem., 21, No. 15: 5610 (2011); https://doi.org/10.1039/C0JM04007J
- F. Guo, G. Silverberg, S.hin Bowers, S.-P. Kim, D. Datta, V. Shenoy, and R.H. Hurt, Graphene-based environmental barriers, Environ. Sci. Technol., 46, No. 14: 7717 (2012); https://doi.org/10.1021/es301377y
- J. Yang, L. Bai, G. Feng, X. Yang, M. Lv, C. Zhang, H. Hu, and X. Wang, Thermal reduced graphene based poly(ethylene vinyl alcohol) nanocomposites: enhanced mechanical properties, gas barrier, water resistance, and thermal stability, Ind. Eng. Chem. Res., 52, No. 47: 16745 (2013); https://doi.org/10.1021/ie401716n
- H.M. Kim, J.K. Lee, and H.S. Lee, Transparent and high gas barrier films based on poly(vinyl alcohol)/graphene oxide composites, Thin Solid Films, 519, No. 22: 7766 (2011); https://doi.org/10.1016/j.tsf.2011.06.016
- N. Bumbudsanpharokel and S. Ko, Nanoclays in food and beverage packaging, J. Nanomater., 2019: 8927167 (2019); https://doi.org/10.1155/2019/8927167
- Y. Zhou, L. Wang, H. Zhang, Y. Bai, Y. Niu, and H, Wang, Enhanced high thermal conductivity and low permittivity of polyimide based composites by core-shell Ag@SiO2 nanoparticle fillers, Appl. Phys., 101, No. 1: 012903 (2012); https://doi.org/10.1063/1.4733324
- Z. Lin, A. Mcnamara, Y. Liu, K. Moon, and C.-P. Wong, Exfoliated hexagonal boron nitride-based polymer nanocomposite with enhanced thermal conductivity for electronic encapsulation, Compos. Sci. Technol., 90: 123 (2014); https://doi.org/10.1016/j.compscitech.2013.10.018
- J.H. Li, R.Y. Hong, M.Y. Li, H.Z. Li, Y. Zheng, and J. Ding, Effects of ZnO nanoparticles on the mechanical and antibacterial properties of polyurethane coatings, Prog. Organic Coatings, 64, No. 4: 504 (2009); https://doi.org/10.1016/j.porgcoat.2008.08.013
- J. Seo, G. Jeon, E.S. Jang, S.B. Khan, and H. Han, J. Appl. Polymer Sci., 122, No. 2: 1101 (2011); https://doi.org/10.1002/app.34248
- X.H. Li, S.C. Tjong, Y.Z. Meng, and Q. Zhu, Fabrication and properties of poly(propylene carbonate)/calcium carbonate composites, J. Polymer Sci. B, 41, No. 15: 1806 (2003); https://doi.org/10.1002/polb.10546
- G. Rodionova, M. Lenes, Ø. Eriksen, and Ø. Gregersen, Surface chemical modification of microfibrillated cellulose: improvement of barrier properties for packaging applications, Cellulose, 18: 127 (2011); https://doi.org/10.1007/s10570-010-9474-y
- J. Lange and Y. Wyser, Recent innovations in barrier technologies for plastic packaging — a review, Packag Technol Sci., 16, No. 4: 149 (2003); https://doi.org/10.1002/pts.621
- T. Morishita, Y. Katagiri, T. Matsunaga, Y. Muraoka, and K. Fukumori, Design and fabrication of morphologically controlled carbon nanotube/polyamide-6-based composites as electrically insulating materials having enhanced thermal conductivity and elastic modulus, Compos. Sci. Technol., 142: 41 (2017); https://doi.org/10.1016/j.compscitech.2017.01.022
- S. Hameed, P. Predeep and M. R. Baiju, Adv. Mater. Sci., 26: 30 (2010).
- G. Yu, Y. Lu, L. Wang, E. Wujcik, and S. Wei, Conductive polymer nanocomposites: a critical review of modern advanced devices, J. Mater. Chem. C, 5: 1569 (2017); https://doi.org/10.1039/C6TC04269D
- D. Lee and D.-J. Jang, Charge-carrier relaxation dynamics of poly(3-hexylthiophene)-coated gold hybrid nanoparticles, Polymer, 55, No. 21: 5469 (2014); https://doi.org/10.1016/j.polymer.2014.08.069
- W.-J. Jiang, L. Gu, L. Li, Y. Zhang, X. Zhang, L.-J. Zhang, J.-Q. Wang, J.-S. Hu, Z. Wei, and L.-J. Wan, Understanding the high activity of Fe–N–C electrocatalysts in oxygen reduction: Fe/Fe3C nanoparticles boost the activity of Fe–Nx, J. Am. Chem. Soc., 138, No. 10: 3570 (2016); https://doi.org/10.1021/jacs.6b00757
- I.Yu. Sagalyanov, Yu.I. Prylutskyy, T.M. Radchenko, and V.A. Tatarenko, Graphene Systems: Methods of Fabrication and Treatment, Structure Formation, and Functional Properties, Usp. Fiz. Met., 11, No. 1: 95 (2010); https://doi.org/10.15407/ufm.11.01.095
- T.M. Radchenko, V.A. Tatarenko, and G. Cuniberti, Effects of External Mechanical or Magnetic Fields and Defects on Electronic and Transport Properties of Graphene, Mater. Today: Proc., 35, Pt. 4: 523 (2021); https://doi.org/10.1016/j.matpr.2019.10.014
- T.M. Radchenko, I.Yu. Sahalianov, V.A. Tatarenko, Yu.I. Prylutskyy, P. Szroeder, M. Kempiński, and W. Kempiński, The Impact of Uniaxial Strain and Defect Pattern on Magnetoelectronic and Transport Properties of Graphene, Handbook of Graphene: Growth, Synthesis, and Functionalization (Eds. E. Celasco and A. Chaika) (Beverly, MA: Scrivener Publishing LLC: 2019), Vol. 1, Ch. 14, p. 451; https://doi.org/10.1002/9781119468455.ch14
- T.M. Radchenko, I.Yu. Sahalianov, V.A. Tatarenko, Yu.I. Prylutskyy, P. Szroeder, M. Kempiński, and W. Kempiński, Strain- and Adsorption-Dependent Electronic States and Transport or Localization in Graphene, Springer Proceedings in Physics: Nanooptics, Nanophotonics, Nanostructures, and Their Applications (Eds. O. Fesenko and L. Yatsenko) (Cham, Switzerland: Springer: 2018), vol. 210, Ch. 3, p. 25; https://doi.org/10.1007/978-3-319-91083-3_3
- T.M. Radchenko, V.A. Tatarenko, I.Yu. Sagalianov, and Yu.I. Prylutskyy, Configurations of Structural Defects in Graphene and Their Effects on Its Transport Properties, Graphene: Mechanical Properties, Potential Applications and Electrochemical Performance (Ed. B.T. Edwards) (New York: Nova Science Publishers: 2014), Ch. 7, p. 219.
- T.M. Radchenko, V.A. Tatarenko, V.V. Lizunov, V.B. Molodkin, I.E. Golentus, I.Yu. Sahalianov, and Yu.I. Prylutskyy, Defect-Pattern-Induced Fingerprints in the Electron Density of States of Strained Graphene Layers: Diffraction and Simulation Methods, Phys. Status Solidi B, 256, No. 5: 1800406 (2019); https://doi.org/10.1002/pssb.201800406
- D.M.A. Mackenzie, M. Galbiati, X.D. de Cerio, I.Y. Sahalianov, T.M. Radchenko, J. Sun, D. Peña, L. Gammelgaard, B.S. Jessen, J.D. Thomsen, P. Bøggild, A. Garcia-Lekue, L. Camilli, and J.M. Caridad, Unraveling the Electronic Properties of Graphene with Substitutional Oxygen, 2D Materials, 8, No. 4: 045035 (2021); https://doi.org/10.1088/2053-1583/ac28ab
- I.Yu. Sahalianov, T.M. Radchenko, V.A. Tatarenko, and Yu.I. Prylutskyy, Magnetic Field-, Strain-, and Disorder-Induced Responses in an Energy Spectrum of Graphene, Ann. Phys., 398: 80 (2018); https://doi.org/10.1016/j.aop.2018.09.004
- I.Yu. Sagalianov, T.M. Radchenko, V.A. Tatarenko, and G. Cuniberti, Sensitivity to Strains and Defects for Manipulating the Conductivity of Graphene, EPL, 132: 48002 (2020); https://doi.org/10.1209/0295-5075/132/48002
- T.M. Radchenko and V.A. Tatarenko, A Statistical-Thermodynamic Analysis of Stably Ordered Substitutional Structures in Graphene, Physica E, 42, No. 8: 2047 (2010); https://doi.org/10.1016/j.physe.2010.03.024
- T.M. Radchenko and V.A. Tatarenko, Kinetics of Atomic Ordering in Metal-Doped Graphene, Solid State Sci., 12, No. 2: 204 (2010); https://doi.org/10.1016/j.solidstatesciences.2009.05.027
- T.M. Radchenko and V.A. Tatarenko, Statistical Thermodynamics and Kinetics of Long-Range Order in Metal-Doped Graphene, Solid State Phenom., 150: 43 (2009); https://doi.org/10.4028/www.scientific.net/SSP.150.43
- T.M. Radchenko and V.A. Tatarenko, Stable Superstructures in a Binary Honeycomb-Lattice Gas, Int. J. Hydrogen Energy, 36, No. 1: 1338 (2011); https://doi.org/10.1016/j.ijhydene.2010.06.112
- P. Szroeder, I.Yu. Sagalianov, T.M. Radchenko, V.A. Tatarenko, Yu.I. Prylutskyy, and W. Strupiński, Effect of Uniaxial Stress on the Electrochemical Properties of Graphene with Point Defects, Appl. Surf. Sci., 442: 185 (2018); https://doi.org/10.1016/j.apsusc.2018.02.150
- P. Szroeder, I. Sahalianov, T. Radchenko, V. Tatarenko, and Yu. Prylutskyy, The Strain- and Impurity-Dependent Electron States and Catalytic Activity of Graphene in a Static Magnetic Field, Optical Mater., 96: 109284 (2019); https://doi.org/10.1016/j.optmat.2019.109284
- T.M. Radchenko, V.A. Tatarenko, I.Yu. Sagalyanov, and Yu.I. Prylutskyy, Configurational Effects in an Electrical Conductivity of a Graphene Layer with the Distributed Adsorbed Atoms (K), Nanosistemi, Nanomateriali, Nanotehnologii, 13, No. 2: 201 (2015).
- Т.М. Radchenko, Substitutional Superstructures in Doped Graphene Lattice, Metallofiz. Noveishie Tekhnol., 30, No. 8: 1021 (2008).
- І.Yu. Sagalianov, Yu.І. Prylutskyy, Т.М. Radchenko, and V.А. Tatarenko, Energies of Graphene-Based Substitutional Structures with Impurities of Nitrogen or Boron Atoms, Metallofiz. Noveishie Tekhnol., 33, No. 12: 1569 (2011).
- T.M. Radchenko and V.A. Tatarenko, Ordering Kinetics of Dopant Atoms in Graphene Lattice with Stoichiometric Compositions of 1/3 and 1/6, Materialwissenschaft und Werkstofftechnik, 44, Nos. 2–3: 231 (2013); https://doi.org/10.1002/mawe.201300094
- I.Y. Sagalianov, Y.I. Prylutskyy, V.A. Tatarenko, T.M. Radchenko, O.O. Sudakov, U. Ritter, P. Scharff, and F. Le Normand, Influence of Impurity Defects on Vibrational and Electronic Structure of Graphene, Materialwissenschaft und Werkstofftechnik, 44, Nos. 2–3: 183 (2013); https://doi.org/10.1002/mawe.201300086
- T.M. Radchenko, A.A. Shylau, and I.V. Zozoulenko, Conductivity of Epitaxial and CVD Graphene with Correlated Line Defects, Solid State Commun., 195: 88 (2014); https://doi.org/10.1016/j.ssc.2014.07.012
- T.M. Radchenko, V.A. Tatarenko, I.Yu. Sagalianov, and Yu.I. Prylutskyy, Effects of Nitrogen-Doping Configurations with Vacancies on Conductivity in Graphene, Phys. Lett. A, 378, Nos. 30–31: 2270 (2014); https://doi.org/10.1016/j.physleta.2014.05.022
- T.M. Radchenko, V.A. Tatarenko, I.Yu. Sagalianov, Yu.I. Prylutskyy, P. Szroeder, and S. Biniak, On Adatomic-Configuration-Mediated Correlation Between Electrotransport and Electrochemical Properties of Graphene, Carbon, 101: 37 (2016); https://doi.org/10.1016/j.carbon.2016.01.067
- I.Yu. Sagalianov, T.M. Radchenko, Yu.I. Prylutskyy, V.A. Tatarenko, and P. Szroeder, Mutual Influence of Uniaxial Tensile Strain and Point Defect Pattern on Electronic States in Graphene, Eur. Phys. J. B, 90, No. 6: 112 (2017); https://doi.org/10.1140/epjb/e2017-80091-x
- I.Yu. Sahalianov, T.M. Radchenko, V.A. Tatarenko, G. Cuniberti, and Yu.I. Prylutskyy, Straintronics in Graphene: Extra Large Electronic Band Gap Induced by Tensile and Shear Strains, J. Appl. Phys., 126, No. 5: 054302 (2019); https://doi.org/10.1063/1.5095600
- S.P. Repetsky, I.G. Vyshyvana, S.P. Kruchinin, V.B. Molodkin, and V.V. Lizunov, Influence of the Adsorbed Atoms of Potassium on an Energy Spectrum of Graphene, Metallofiz. Noveishie Tekhnol., 39, No. 8: 1017 (2017); https://doi.org/10.15407/mfint.39.08.1017
- O.S. Skakunova, S.I. Olikhovskii, T.M. Radchenko, S.V. Lizunova, T.P. Vladimirova, and V.V. Lizunov, X-Ray Dynamical Diffraction by Quasi-Monolayer Graphene, Scientific Reports, 13: 15950 (2023); https://doi.org/10.1038/s41598-023-43269-6
- O.V. Khomenko, A.A. Biesiedina, K.P. Khomenko, and R.R. Chernushchenko, Computer Modelling of Metal Nanoparticles Adsorbed on Graphene, Prog. Phys. Met., 23, No. 2: 239 (2022); https://doi.org/10.15407/ufm.23.02.239
- A.I. Denissova, A.V. Volokitin, and I.E. Volokitina, Prospects of Application and Global Significance of Graphene, Prog. Phys. Met., 23, No. 2: 268 (2022); https://doi.org/10.15407/ufm.23.02.268
- S.O. Kotrechko, Eu.V. Kolyvoshko, A.M. Timoshevskii, N.M. Stetsenko, and O.V. Ovsiannikov, Atomism of the Force-Field Influence on the Durability of Carbyne–Graphene Nanoelements and Similar Two-Dimensional Nanostructures, Nanosistemi, Nanomateriali, Nanotehnologii, 21, No. 1: 9 (2023); https://doi.org/10.15407/nnn.21.01.009
- N.V. Krishna Prasad, K. Chandra Babu Naidu, T. Anil Babu, S. Ramesh, and N. Madhavi, Electrochemical Sensors Based on Carbon Allotrope Graphene: a Review on Their Environmental Applications, Nanosistemi, Nanomateriali, Nanotehnologii, 21, No. 1: 185 (2023); https://doi.org/10.15407/nnn.21.01.185
- I.B. Olenych, Yu.Yu. Horbenko, L.S. Monastyrskii, O.I. Aksimentyeva, and B.R. Tsizh, Humidity Sensor Element Based on Porous Silicon–Graphene Nanosystem, Nanosistemi, Nanomateriali, Nanotehnologii, 20, No. 2: 449 (2022); https://doi.org/10.15407/nnn.20.02.449
- S.O. Zelinskyi, N.G. Stryzhakova, and Yu.A. Maletin, Graphene vs Activated Carbon in Supercapacitors, Nanosistemi, Nanomateriali, Nanotehnologii, 18, No. 1: 1 (2020); https://doi.org/10.15407/nnn.18.01.001
- Yu.I. Andrusyshyn, Theoretical Method of Determining the Physical Parameters of Graphene, Nanosistemi, Nanomateriali, Nanotehnologii, 20, No. 1: 1 (2022); https://doi.org/10.15407/nnn.20.01.001
- S.Ya. Brychka, N.P. Suprun, and D.S. Leonov, Graphene Carbon Nanomaterials Structural Properties, Nanosistemi, Nanomateriali, Nanotehnologii, 19, No. 3: 639 (2021); https://doi.org/10.15407/nnn.19.03.639
- P. Szroeder, I. Sahalianov, and T. Radchenko, Tuning the Electron Band Structure of Graphene for Optoelectronics, 2019 21st International Conference on Transparent Optical Networks (ICTON) (9–13 July 2019, Angers, France), p. 1–6; https://doi.org/10.1109/ICTON.2019.8840470
- I.Yu. Sagalianov, Yu.I. Prylutskyy, T.M. Radchenko, and V.A. Tatarenko, Effect of Weak Impurities on Conductivity of Uniaxially Strained Graphene, 2017 IEEE International Young Scientists Forum on Applied Physics and Engineering (YSF) (17–20 October 2017, Lviv, Ukraine), p. 151; https://doi.org/10.1109/YSF.2017.8126607
- T.M. Radchenko, A.A. Shylau, and I.V. Zozoulenko, Influence of Correlated Impurities on Conductivity of Graphene Sheets: Time-Dependent Real-Space Kubo Approach, Phys. Rev. B, 86, No. 3: 035418 (2012); https://doi.org/10.1103/PhysRevB.86.035418
- T.M. Radchenko, A.A. Shylau, I.V. Zozoulenko, and A. Ferreira, Effect of Charged Line Defects on Conductivity in Graphene: Numerical Kubo and Analytical Boltzmann Approaches, Phys. Rev. B, 87, No. 19: 195448 (2013); https://doi.org/10.1103/PhysRevB.87.195448
- S.K. Mahadeva, S. Yun, and J. Kim, Flexible humidity and temperature sensor based on cellulose–polypyrrole nanocomposite, Sens. Actuators A, 165, No. 2: 194 (2011); https://doi.org/10.1016/j.sna.2010.10.018
- E.P. Giannelis, R. Krishnamoorti, and E. Manias, Polymer-silicate nanocomposites: model systems for confined polymers and polymer brushes, Polymers in Confined Environments, 138: 107 (1999); https://doi.org/10.1007/3-540-69711-X_3
- M. Alexandre and P. Dubois, Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials, Mater. Sci. Eng. R, 28, Nos. 1–2: 1 (2000); https://doi.org/10.1016/S0927-796X(00)00012-7
- S.S. Ray and M. Okamoto, Polymer/layered silicate nanocomposites: a review from preparation to processing, Prog. Polym. Sci., 28, No. 11: 1539 (2003); https://doi.org/10.1016/j.progpolymsci.2003.08.002
- J.N. Coleman, M. Lotya, A. O’neill, S.D. Bergin, P.J. King, U. Khan, K. Young, A. Gaucher, S. de, R.J. Smith, I.V. Shvets, S.K. Arora, G. Stanton, H.-Y. Kim, K. Lee, G.T. Kim, G.S. Duesberg, T. Hallam, J.J. Boland, J.J. Wang, J.F. Donegan, J.C. Grunlan, G. Moriarty, A. Shmeliov, R.J. Nicholls, J.M. Perkins, E.M. Grieveson, K. Theuwissen, D.W. Mccomb, P.D. Nellist, and V. Nicolosi, Two-dimensional nanosheets produced by liquid exfoliation of layered materials, Science, 331, No. 6017: 568 (2011); https://doi.org/10.1126/science.1194975
- S. Lijima and T. Ichihashi, Single-shell carbon nanotubes of 1-nm diameter, Nature, 364: 603 (1993); https://doi.org/10.1038/363603a0
- S. Lijima, Helical microtubules of graphitic carbon, Nature, 354: 56 (1991); https://doi.org/10.1038/354056a0
- M.M.J. Treacy, T.W. Ebbesen, and J.M. Gibson, Exceptionally high Young’s modulus observed for individual carbon nanotubes, Nature, 381: 678 (1996); https://doi.org/10.1038/381678a0
- E.W. Wong, P.E. Sheehan, and C.M. Lieber, Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes, Science, 277, No. 5334: 1971 (1997); https://doi.org/10.1126/science.277.5334.1971
- S. Mondal, Review on nanocellulose polymer nanocomposites, Polym.-Plast. Technol. Eng., 57, No. 13: 1377 (2018); https://doi.org/10.1080/03602559.2017.1381253
- A. Dufresne, Nanocellulose: a new ageless bionanomaterial, Mater. Today, 16, No. 6: 220 (2013); https://doi.org/10.1016/j.mattod.2013.06.004
- D.J. Gardner, G.S. Oporto, R. Mills, and M.A.S.A. Samir, Adhesion and surface issues in cellulose and nanocellulose, J. Adhes. Sci. Technol., 22, Nos. 5–6: 545 (2008); https://doi.org/10.1163/156856108X295509
- E. Espino-Perez, S. Domenek, N. Belgacem, C. Sillard, and J. Bras, Green process for chemical functionalization of nanocellulose with carboxylic acids, Biomacromolecules, 15, No. 12: 4551 (2014); https://doi.org/10.1021/bm5013458
- J.H. Bae and S.H. Kim, Alkylation of mixed micro- and nanocellulose to improve dispersion in polylactide, Polym. Int., 64, No. 6: 821 (2015); https://doi.org/10.1002/pi.4858
- S.O. Adeosun, G.I. Lawal, S.A. Balogun, and E.I. Akpan, Review of green polymer nanocomposites, J. Miner. Mater. Characteriz. Eng., 11, No. 4: 385 (2012); https://doi.org/10.4236/jmmce.2012.114028
- J.K. Pandey, W.S. Chu, C.S. Lee, and S.H. Ahn, BioEnvironmental Polymer Society (BEPS), 11, No. 4: 17 (2007).
- M.J. John and S. Thomas, Biofibres and biocomposites, Carbohyd. Polym., 71, No. 3: 343 (2008); https://doi.org/10.1016/j.carbpol.2007.05.040
- A. Royani, C. Verma, M. Hanafi, V.S. Aigbodion, and A. Manaf, Green Synthesized Plant-Based Metallic Nanoparticles for Antimicrobial and Anti-Corrosion Applications, Prog. Phys. Met., 24, No. 1: 197 (2023); https://doi.org/10.15407/ufm.24.01.197
- P. Qu, Y. Gao, G. Wu, and L. Zhang, Nanocomposites of poly(lactic acid) reinforced with cellulose nanofibrils, BioResources, 5, No. 3: 1811 (2010); https://doi.org/10.15376/biores.5.3.1811-1823
- M.Z. Rong, M.Q. Zhang, Y. Liu, G.C. Yang, and H.M. Zeng, Biofibres and biocompositesThe effect of fiber treatment on the mechanical properties of unidirectional sisal-reinforced epoxy composites, Compos. Sci. Technol., 61, No. 10: 1437 (2001); https://doi.org/10.1016/S0266-3538(01)00046-X
- C. Weng, W. Li, J. Wu, L. Shen, W. Yang, C. Deng, and N. Bao, Thermal shock exfoliated and siloxane cross-linked graphene framework for high performance epoxy-based thermally conductive composites, J. Mater. Sci., 56: 17601 (2021); https://doi.org/10.1007/s10853-021-06147-y
- S. Mondal and J.L. Hu, Microstructure and water vapor transport properties of functionalized carbon nanotube-reinforced dense-segmented polyurethane composite membranes, Polym. Eng. Sci., 48, No. 9: 1718 (2008); https://doi.org/10.1002/pen.21093
- F. Liu, N. Hu, J. Zhang, S. Atobe, S. Weng, H. Ning, Y. Liu, L. Wu, Y. Zhao, F. Mo, S. Fu, C. Xu, A. Yuanf, and W. Yuanf, The interfacial mechanical properties of functionalized graphene–polymer nanocomposites, RSC Adv., 6, No. 71: 66658 (2016); https://doi.org/10.1039/C6RA09292F
- L. Guoping, N. Zhicheng, L. Shengnan, D. Haoxue, X. Min, and L. Yunjun, Thermal decomposition of ammonium perchlorate by black phosphorus and graphene oxide composite aerogel, J. Mater. Sci., 56, No. 31: 17632 (2021); https://doi.org/10.1007/s10853-021-06289-z
- A.G. Solomenko, R.M. Balabai, T.M. Radchenko, V.A. Tatarenko, Functionalization of Quasi-Two-Dimensional Materials: Chemical and Strain-Induced Modifications, Prog. Phys. Met., 23, No. 2: 147 (2022); https://doi.org/10.15407/ufm.23.02.147
- R.M. Balabaі and A.G. Solomenko, Use of the Adsorbed Organic Molecules as Dopants for Creation of the Built-In Lateral p-n Junctions in a Sheet of Black Phosphorene, J. Nano- Electron. Phys., 11, No. 5: 05033 (2019); https://doi.org/10.21272/jnep.11(5).05033
- A.G. Solomenko, I.Y. Sahalianov, T.M. Radchenko, and V.A. Tatarenko, Straintronics in phosphorene via tensile vs shear strains and their combinations for manipulating the band gap, Scientific Reports, 13: 13444 (2023); https://doi.org/10.1038/s41598-023-40541-7
- S. Sudhindra, F. Rashvand, D. Wright, Z. Barani, A.D. Drozdov, S. Baraghani, C. Backes, F. Kargar, and A.A. Balandin, Specifics of thermal transport in graphene composites: effect of lateral dimensions of graphene fillers, ACS Appl. Mater. Interfaces, 13, No. 44: 53073 (2021); https://doi.org/10.1021/acsami.1c15346
- R.M. Balabaі and A.G. Lubenets, Lateral Junctions Based on Graphene with Different Doping Regions, J. Nano- Electron. Phys., 9, No. 5: 05017 (2017); https://doi.org/10.21272/jnep.9(5).05017
- R. Balabai, A. Solomenko, and D. Kravtsova, Electronic and Photonic Properties of Lateral Heterostructures Based on Functionalized Graphene Depending on the Degree of Fluorination, Mol. Cryst. Liquid Cryst., 673, No. 1: 125 (2018); https://doi.org/10.1080/15421406.2019.1578502
- K. Kanari, Thermal conductivity of composite materials, Kobunshi, 26, No. 8: 557 (1977); https://doi.org/10.1295/kobunshi.26.557
- F. Liu, N. Hu, J. Zhang, S. Atobe, S. Weng, H. Ning, Y. Liu, L. Wu, Y. Zhao, F. Mo, S. Fu, C. Xu, A. Yuan and W. Yuan, The interfacial mechanical properties of functionalized graphene–polymer nanocomposites, RSC Adv., 6, No. 71: 66658 (2016); https://doi.org/10.1039/C6RA09292F
- S. Zhai, P. Zhang, Y. Xian, J. Zeng, and B. Shi, Effective thermal conductivity of polymer composites: Theoretical models and simulation models, Int. J. Heat Mass Transfer, 117: 358 (2018); https://doi.org/10.1016/j.ijheatmasstransfer.2017.09.067
- V. Favier, G.R. Canova, S.C. Shrivastava, and J.Y. Cavaille, Mechanical percolation in cellulose whisker nanocomposites, Polym. Eng. Sci., 37, No. 10: 1732 (1997); https://doi.org/10.1002/pen.11821