Modern Fillers of Metal and Polymer Matrices

Ol. D. Zolotarenko$^{1,2}$, N. V. Sigareva$^1$, M. I. Terets$^1$, N. A. Shvachko$^{2,3}$, N. A. Gavrylyuk$^1$, D. L. Starokadomsky$^1$, S. V. Shulha$^1$, O. V. Hora$^1$, An. D. Zolotarenko$^{1,2}$, D. V. Schur$^{2,4}$, M. T. Gabdullin$^5$, D. V. Ismailov$^{5,6}$, E. P. Rudakova$^{1,2}$, and I. V. Zagorulko$^8$

$^1$O. O. Chuiko Institute of Surface Chemistry of the N.A.S. of Ukraine, 17 General Naumov Str., UA-03164 Kyiv, Ukraine
$^2$I. M. Frantsevych Institute for Problems of Materials Science of the N.A.S. of Ukraine, Omeljan Pritsak Str., UA-03142 Kyiv, Ukraine
$^3$Kyiv National University of Construction and Architecture, 31 Povitroflotskyi Ave., UA-03037 Kyiv, Ukraine
$^4$Institute of Applied Physics of the N.A.S. of Ukraine, 58 Petropavlivska Str., UA-40000 Sumy, Ukraine
$^5$Kazakh–British Technical University, 59 Tole bi Str., 050000 Almaty, Kazakhstan
$^6$Al-Farabi Kazakh National University, 71 Al-Farabi Ave., 050040 Almaty, Kazakhstan
$^7$NJSC ‘K. I. Satbayev Kazakh National Research Technical University’, 22a Satbaev Str., 050013 Almaty, Kazakhstan
$^8$G. V. Kurdyumov Institute for Metal Physics of the N.A.S. of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine

Received 13.07.2023; final version — 13.08.2023 Download PDF logo PDF

Abstract
The review article describes modern fillers of metal and polymer matrices, their properties and applications. We discuss the main parameters of fillers, their advantages and disadvantages, the results of investigations and experiments, which may be useful for scientists and engineers working in the fields of chemistry and materials science and developing new promising materials. Different materials used as the fillers for metal and polymer matrices are reviewed. To create composites of the new generation with improved properties, nanostructured materials such as graphene, fullerenes, nanotubes, nanopowders of metals and their alloys are used. Carbon fillers can be the strongest graphitizer, which is important for ferrous metallurgy. Nanofillers have the ultradispersed dimensions and high specific-surface values, which allows for changing significantly the physicochemical and functional characteristics of the matrix. As noted in the article, the use of fillers allows controlling the structural composition of the melt and helps to form additional crystallization centres. This, in turn, can affect significantly the properties of the material, such as mechanical strength, heat resistance, etc.

Keywords: carrier matrix, nanocomposites, two-dimensional (2D) and three-dimensional (3D) fillers, metals, metal oxides, nanostructures, crystal structures.

DOI: https://doi.org/10.15407/ufm.24.03.493

Citation: Ol. D. Zolotarenko, N. V. Sigareva, M. I. Terets, N. A. Shvachko, N. A. Gavrylyuk, D. L. Starokadomsky, S. V. Shulha, O. V. Hora, An. D. Zolotarenko, D. V. Schur, M. T. Gabdullin, D. V. Ismailov, E. P. Rudakova, and I. V. Zagorulko, Modern Fillers of Metal and Polymer Matrices, Progress in Physics of Metals, 24, No. 3: 493–529 (2023)


References  
  1. A.M. Uskenbaeva and N.A. Shamelkhanov, Materials of International Practical Internet Conference ‘Challenges of Science’ (2018), p. 1; https://doi.org/10.31643/2018.023
  2. A. Memaran-Babakan, M. Davoodi, M. Shafaie, M. Sarparast, and H. Zhang, Research Square Preprint (2023); https://doi.org/10.21203/rs.3.rs-2921045/v1
  3. S.F. Al-Sarawi, D. Abbott, and P.D. Franzon, A Review of 3-D Packaging Technology, IEEE Transactions on Components, Packaging, and Manufacturing Technology: Part B, 21, No. 1: 2 (1998); https://doi.org/10.1109/96.659500
  4. Ol.D. Zolotarenko, E.P. Rudakova, N.Y. Akhanova, An.D. Zolotarenko, D.V. Shchur, M.T. Gabdullin, M. Ualkhanova, N.A. Gavrylyuk, M.V. Chymbai, Yu.O. Tarasenko, I.V. Zagorulko, and A.D. Zolotarenko, Electric Conductive Composites Based on Metal Oxides and Carbon Nanostructures, Metallofiz. Noveishie Tekhnol., 43, No. 10: 1417 (2021); https://doi.org/10.15407/mfint.43.10.1417
  5. Ol.D. Zolotarenko, E.P. Rudakova, N.Y. Akhanova, An.D. Zolotarenko, D.V. Shchur, M.T. Gabdullin, M. Ualkhanova, М. Sultangazina, N.A. Gavrylyuk, M.V. Chymbai, A.D. Zolotarenko, I.V. Zagorulko, and Yu.O. Tarasenko, Plasmochemical Synthesis of Platinum-Containing Carbon Nanostructures Suitable for 3D-Printing, Metallofiz. NoveishieTekhnol., 44, No. 3: 343 (2022); https://doi.org/10.15407/mfint.44.03.0343
  6. Ol.D. Zolotarenko, E.P. Rudakova, N.Y. Akhanova, An.D. Zolotarenko, D.V. Shchur, M.T. Gabdullin, M. Ualkhanova, N.A. Gavrylyuk, M.V. Chymbai, T.V. Myronenko, I.V. Zagorulko, A.D. Zolotarenko, and O.O. Havryliuk, Electrically Conductive Composites Based on TiO2 and Carbon Nanostructures Manufactured Using 3D Printing of CJP Technology, Chem., Phys. Technol. Surf., 13, No. 4: 415 (2022); https://doi.org/10.15407/hftp13.04.415
  7. Ol.D. Zolotarenko, E.P. Rudakova, An.D. Zolotarenko, N.Y. Akhanova, M. Ualkhanova, D.V. Shchur, M.T. Gabdullin, T.V. Myronenko, A.D. Zolotarenko, M.V. Chymbai, and I.V. Zagorulko, Creation and Comparison of Properties of Composites Based on Ceramics Filled with Straight or Helical Carbon Nanotubes for CJP 3D Printing Technology, Metallofiz. Noveishie Tekhnol., 45, No. 2: 199 (2023); https://doi.org/10.15407/mfint.45.02.0199
  8. V.A. Lavrenko, I.A. Podchernyaeva, D.V. Shchur, An.D. Zolotarenko, and Al.D. Zolotarenko, Features of Physical and Chemical Adsorption During Interaction of Polycrystalline and Nanocrystalline Materials with Gases, Powder Metallurgy and Metal Ceramics, 56: 504 (2018); https://doi.org/10.1007/s11106-018-9922-z
  9. Ol.D. Zolotarenko, M.N. Ualkhanova, E.P. Rudakova, N.Y. Akhanova, An.D. Zolotarenko, D.V. Shchur, M.T. Gabdullin, N.A. Gavrylyuk, A.D. Zolotarenko, M.V. Chymbai, I.V. Zagorulko, and O.O. Havryliuk, Advantages and disadvantages of electric arc methods for the synthesis of carbon nanostructures, Chem., Phys. Technol. Surf., 13, No. 2: 209 (2022); https://doi.org/10.15407/hftp13.02.209
  10. Z.A. Matysina, Ol.D. Zolotarenko, M. Ualkhanova, O.P. Rudakova, N.Y. Akhanova, An.D. Zolotarenko, D.V. Shchur, M.T. Gabdullin, N.A. Gavrylyuk, O.D. Zolotarenko, M.V. Chymbai, and I.V. Zagorulko, Electric Arc Methods to Synthesize Carbon Nanostructures, Prog. Phys. Met., 23, No. 3: 528 (2022); https://doi.org/10.15407/ufm.23.03.528
  11. A. Selvakumar, U. Sanjith, T.R. Tamilarasen, R. Muraliraja, W. Sha, and J. Sudagar, A Critical Review of Carbon Nanotube-Based Surface Coatings, Prog. Phys. Met., 23, No. 1: 3 (2022); https://doi.org/10.15407/ufm.23.01.003
  12. D.V. Schur, A.G. Dubovoy, S.Yu. Zaginaichenko, V.M. Adejev, A.V. Kotko, V.A. Bogolepov, A.F. Savenko, A.D. Zolotarenko, S.A. Firstov, and V.V. Skorokhod, Synthesis of carbon nanostructures in gaseous and liquid medium, NATO Security through Science Series A: Chemistry and Biology (Dordrecht: Springer: 2007), p. 199; https://doi.org/10.1007/978-1-4020-5514-0_25
  13. M.N. Ualkhanova, A.S. Zhakypov, R.R. Nemkayeva, M.B. Aitzhanov, B.Y. Kurbanov, N.Y. Akhanova, Y. Yerlanuly, S.A. Orazbayev, D. Shchur, A. Zolotarenko, and M.T. Gabdullin, Synthesis of carbon nanostructures in gaseous and liquid medium, Energies, 16, No. 3: 1450 (2023); https://doi.org/10.3390/en16031450
  14. S.Y. Zaginaichenko and Z.A. Matysina, The peculiarities of carbon interaction with catalysts during the synthesis of carbon nanomaterials, Carbon, 41, No. 7: 1349 (2003); https://doi.org/10.1016/S0008-6223(03)00059-9
  15. V.A. Lavrenko, D.V. Shchur, A.D. Zolotarenko, and A.D. Zolotarenko, Electrochemical synthesis of ammonium persulfate (NH4)2S2O8 using oxygen-depolarized porous silver cathodes produced by powder metallurgy methods, Powder Metallurgy and Metal Ceramics, 57, No. 9: 596 (2019); https://doi.org/10.1007/s11106-019-00021-y
  16. Ol.D. Zolotarenko, E.P. Rudakova, I.V. Zagorulko, N.Y. Akhanova, An.D. Zolotarenko, D.V. Schur, M.T. Gabdullin, M. Ualkhanova, T.V. Myronenko, A.D. Zolotarenko, M.V. Chymbai, and O.E. Dubrova, Comparative analysis of products of electric arc synthesis using graphite of different grades, Ukr. J. Phys., 68, No. 1: 57 (2023); https://doi.org/10.15407/ujpe68.1.57
  17. Ol.D. Zolotarenko, An.D. Zolotarenko, E.P. Rudakova, N.Y. Akhanova, M. Ualkhanova, D.V. Schur, M.T. Gabdullin, T.V. Myronenko, A.D. Zolotarenko, M.V. Chymbai, I.V. Zagorulko, and O.O. Havryliuk, Features of the synthesis of straight and spiral carbon nanotubes by the pyrolytic method, Chem., Phys. Technol. Surf., 14, No. 2: 191 (2023); https://doi.org/10.15407/hftp14.02.191
  18. D.V. Schur, S.Y. Zaginaichenko, E.A. Lysenko, T.N. Golovchenko, and N.F. Javadov, The forming peculiarities of C60 molecule, NATO Science for Peace and Security Series C: Environmental Security (Eds. B. Baranowski, S.Y. Zaginaichenko, D.V. Schur, V.V. Skorokhod, and A. Veziroglu) (2008), p. 53; https://doi.org/10.1007/978-1-4020-8898-8_5
  19. D.V. Schur, S.Y. Zaginaichenko, A.D. Zolotarenko, and T.N. Veziroglu, Solubility and transformation of fullerene C60 molecule, NATO Science for Peace and Security Series C: Environmental Security (Eds. B. Baranowski, S.Y. Zaginaichenko, D.V. Schur, V.V. Skorokhod, and A. Veziroglu) (2008), p. 85; https://doi.org/10.1007/978-1-4020-8898-8_7
  20. O.D. Zolotarenko, O.P. Rudakova, M.T. Kartel, H.O. Kaleniuk, A.D. Zolotarenko, D.V. Schur, and Y.O. Tarasenko, The mechanism of forming carbon nanostructures by electric arc-method, Surface, 12, No. 27: 263 (2020); https://doi.org/10.15407/Surface.2020.12.263
  21. Ol.D. Zolotarenko, O.P. Rudakova, N.E. Akhanova, An.D. Zolotarenko, D.V. Shchur, Z.A. Matysina, M.T. Gabdullin, M. Ualkhanova, N.A. Gavrilyuk, O.D. Zolotarenko, M.V. Chymbai, and I.V. Zagorulko, Comparative Analysis of Products of the Fullerenes’ and Carbon-Nanostructures’ Synthesis Using the SIGE and FGDG-7 Grades of Graphite, Nanosistemi, Nanomateriali, Nanotehnologii, 20, No. 3: 725 (2022); https://doi.org/10.15407/nnn.20.03.725
  22. D.S. Kerimbekov, N.E. Akhanova, M.T. Gabdullin, Kh.A. Abdullin, D.G. Batryshev, A.D. Zolotarenko, N.A. Gavrylyuk, O.D. Zolotarenko, and D.V. Shchur, Features of the synthesis of fullerenes and their derivatives, J. Problems in the Evolution of Open Systems, 24, Nos. 3–4: 79 (2023); https://doi.org/10.26577/JPEOS.2022.v24.i2.i6
  23. V.M. Gun’ko, V.V. Turov, V.I. Zarko, G.P. Prykhod’ko, T.V. Krupska, A.P. Golovan, J. Skubiszewska-Zięba, B. Charmas, and M.T. Kartel, Unusual interfacial phenomena at a surface of fullerite and carbon nanotubes, Chem. Phys., 459: 172 (2015); https://doi.org/10.1016/j.chemphys.2015.08.016
  24. M.M. Nishchenko, S.P. Likhtorovich, A.G. Dubovoy, and T.A. Rashevskaya, Positron annihilation in C60 fullerites and fullerene-like nanovoids, Carbon, 41, No. 7: 1381 (2003); https://doi.org/10.1016/S0008-6223(03)00065-4
  25. N.Y. Akhanova, D.V. Schur, N.A. Gavrylyuk, M.T. Gabdullin, N.S. Anikina, An.D. Zolotarenko, O.Ya. Krivushchenko, Ol.D. Zolotarenko, B.M. Gorelov, E. Erlanuli, and D. G. Batrishev, Use of absorption spectra for identification of endometallofullerenes, Chem., Phys. Technol. Surf., 11, No. 3: 429 (2020); https://doi.org/10.15407/hftp11.03.429
  26. Z.A. Matysina, Ol.D. Zolotarenko, O.P. Rudakova, N.Y. Akhanova, A.P. Pomytkin, An.D. Zolotarenko, D.V. Shchur, M.T. Gabdullin, M. Ualkhanova, N.A. Gavrylyuk, A.D. Zolotarenko, M.V. Chymbai, and I.V. Zagorulko, Iron in Endometallofullerenes, Prog. Phys. Met., 23, No. 3: 510 (2022); https://doi.org/10.15407/ufm.23.03.510
  27. N.Ye. Akhanova, D.V. Shchur, A.P. Pomytkin, Al.D. Zolotarenko, An.D. Zolotarenko, N.A. Gavrylyuk, M. Ualkhanova, W. Bo, and D. Ang, Gadolinium endofullerenes, J. Nanosci. Nanotechnol., 21: 2435 (2021); https://doi.org/10.1166/jnn.2021.18970
  28. O.D. Zolotarenko, E.P. Rudakova, A.D. Zolotarenko, N.Y. Akhanova, M.N. Ualkhanova, D.V. Shchur, M.T. Gabdullin, N.A. Gavrylyuk, T.V. Myronenko, A.D. Zolotarenko, M.V. Chymbai, I.V. Zagorulko, Yu.O. Tarasenko, and O.O. Havryliuk, Platinum-containing carbon nanostructures for the creation of electrically conductive ceramics using 3D printing of CJP technology, Chem., Phys. Technol. Surf., 13, No. 3: 259 (2022); https://doi.org/10.15407/hftp13.03.259
  29. D.V. Schur, A.D. Zolotarenko, A.D. Zolotarenko, O.P. Zolotarenko, and M.V. Chimbai, Analysis and identification of platinum-containing nanoproducts of plasma-chemical synthesis in a gaseous medium, Phys. Sci. Technol., 6, Nos. 1–2: 46 (2019); https://doi.org/10.26577/phst-2019-1-p9
  30. M. Baibarac, I. Baltog, S. Frunza, A. Magrez, D. Schur, and S.Y. Zaginaichenko, Single-walled carbon nanotubes functionalized with polydiphenylamine as active materials for applications in the supercapacitors field, Diamond Relat. Mater., 32: 72 (2013); https://doi.org/10.1016/j.diamond.2012.12.006
  31. A.D. Zolotarenko, A.D. Zolotarenko, E.P. Rudakova, S.Y. Zaginaichenko, A.G. Dubovoy, D.V. Schur, and Y.A. Tarasenko, The peculiarities of nanostructures formation in liquid phase, Carbon Nanomaterials in Clean Energy Hydrogen Systems-II (Dordrecht: Springer: 2011), p. 137; https://doi.org/10.1007/978-94-007-0899-0_11
  32. M. Ualkhanova, A.Y. Perekos, A.G. Dubovoy, D.V. Schur, Al.D. Zolotarenko, An.D. Zolotarenko, N.A. Gavrylyuk, M.T. Gabdullin, T.S. Ramazanov, N. Akhanova, and S. Orazbayev, The influence of magnetic field on synthesis of iron nanoparticles, J. Nanosci. Nanotechnol. Appl., 3, No. 3: 1 (2019); https://doi.org/10.18875/2577-7920.3.302
  33. Al.D. Zolotarenko, An.D. Zolotarenko, V.A. Lavrenko, S.Yu. Zaginaichenko, N.A. Shvachko, O.V. Milto, V.B. Molodkin, A.E. Perekos, V.M. Nadutov, and Yu.A. Tarasenko, Encapsulated ferromagnetic nanoparticles in carbon shells, Carbon Nanomaterials in Clean Energy Hydrogen Systems-II (Dordrecht: Springer: 2011), p. 127; https://doi.org/10.1007/978-94-007-0899-0_10
  34. D.V. Schur, S.Y. Zaginaichenko, A.F. Savenko, V.A. Bogolepov, and N.S. Anikina, Experimental evaluation of total hydrogen capacity for fullerite C60, Int. J. Hydrogen Energ., 36, No. 1: 1143 (2011); https://doi.org/10.1016/j.ijhydene.2010.06.087
  35. A.F. Savenko, V.A. Bogolepov, K.A. Meleshevich, S.Yu. Zaginaichenko, M.V. Lototsky, V.K. Pishuk, L.O. Teslenko, and V.V. Skorokhod, Structural and methodical features of the installation for investigations of hydrogen-sorption characteristics of carbon nanomaterials and their composites, NATO Security through Science Series A: Chemistry and Biology (Dordrecht: Springer: 2007), p. 365; https://doi.org/10.1007/978-1-4020-5514-0_47
  36. D.V. Schur, S. Zaginaichenko, and T.N. Veziroglu, Peculiarities of hydrogenation of pentatomic carbon molecules in the frame of fullerene molecule C60, Int. J. Hydrogen Energy, 33, No. 13: 3330 (2008); https://doi.org/10.1016/j.ijhydene.2008.03.064
  37. D.V. Schur, M.T. Gabdullin, S.Yu. Zaginaichenko, T.N. Veziroglu, M.V. Lototsky, V.A. Bogolepov, and A.F. Savenko, Experimental set-up for investigations of hydrogen-sorption characteristics of carbon nanomaterials, Int. J. Hydrogen Energy, 41, No. 1: 401 (2016); https://doi.org/10.1016/j.ijhydene.2015.08.087
  38. D.V. Schur, S.Y. Zaginaichenko, and T.N. Veziroglu, The hydrogenation process as a method of investigation of fullerene C60 molecule, Int. J. Hydrogen Energy, 40, No. 6: 2742 (2015); https://doi.org/10.1016/j.ijhydene.2014.12.092
  39. Z.A. Matysina, S.Yu. Zaginaichenko, D.V. Shchur, A. Viziroglu, T.N. Veziroglu, M.T. Gabdullin, N.F. Javadov, An.D. Zolotarenko, and Al.D. Zolotarenko, Hydrogen in Crystals (Kyiv: ‘KIM’ Publishing House: 2017), р. 1060.
  40. D.V. Schur, S.Y. Zaginaichenko, A.F. Savenko, V.A. Bogolepov, N.S. Anikina, A.D. Zolotarenko, Z.A. Matysina, T.N. Veziroglu, and N.E. Skryabina, Hydrogenation of fullerite C60 in gaseous phase, NATO Science for Peace and Security Series C: Environmental Security (Dordrecht: Springer: 2011), p. 87; https://doi.org/10.1007/978-94-007-0899-0_7
  41. Z.A. Matysina and D.V. Shchur, Phase transformations   β  γ  δ  ε in titanium hydride TiHx with increase in hydrogen concentration, Rus. Phys. J., 44, No. 11: 1237 (2001); https://doi.org/10.1023/A:1015318110874
  42. V.I. Trefilov, D.V. Schur, V.K. Pishuk, S.Yu. Zaginaichenko, A.V. Choba, and N.R. Nagornaya, The solar furnaces for scientific and technological investigation, Renewable Energy, 16, Nos. 1–4: 757 (1999); https://doi.org/10.1016/S0960-1481(98)00273-0
  43. Yu.M. Lytvynenko and D.V. Shchur, Utilization the concentrated solar energy for process of deformation of sheet metal, Renewable Energy, 16, Nos. 1–4: 753 (1999); https://doi.org/10.1016/S0960-1481(98)00272-9
  44. D.V. Schur, A.A. Lyashenko, V.M. Adejev, V.B. Voitovich, and S.Yu. Zaginaichenko, Niobium as a construction material for a hydrogen energy system, Int. J. Hydrogen Energy, 20, No. 5: 405 (1995); https://doi.org/10.1016/0360-3199(94)00077-D
  45. D.V. Schur, V.A. Lavrenko, V.M. Adejev, and I.E. Kirjakova, Studies of the hydride formation mechanism in metals, Int. J. Hydrogen Energy, 19, No. 3: 265 (1994); https://doi.org/10.1016/0360-3199(94)90096-5
  46. S.Y. Zaginaichenko, Z.A. Matysina, D.V. Schur, L.O. Teslenko, and A. Veziroglu, The structural vacancies in palladium hydride. Phase diagram, Int. J. Hydrogen Energy, 36, No. 1: 1152 (2011); https://doi.org/10.1016/j.ijhydene.2010.06.088
  47. S.A. Tikhotskii, I.V. Fokin, and D.V. Schur, Traveltime seismic tomography with adaptive wavelet parameterization, Phys. Solid Earth, 47, No. 4: 327 (2011); https://doi.org/10.1134/S1069351311030062
  48. A.D. Zolotarenko, A.D. Zolotarenko, A. Veziroglu, T.N. Veziroglu, N.A. Shvachko, A.P. Pomytkin, D.V. Schur, N.A. Gavrylyuk, T.S. Ramazanov, N.Y. Akhanova, and M.T. Gabdullin, Methods of theoretical calculations and of experimental researches of the system atomic hydrogen–metal, Int. J. Hydrogen Energy, 47, No. 11: 7310 (2022); https://doi.org/10.1016/j.ijhydene.2021.03.065
  49. An.D. Zolotarenko, Al.D. Zolotarenko, A. Veziroglu, T.N. Veziroglu, N.A. Shvachko, A.P. Pomytkin, N.A. Gavrylyuk, D.V. Schur, T.S. Ramazanov, and M.T. Gabdullin, The use of ultrapure molecular hydrogen enriched with atomic hydrogen in apparatuses of artificial lung ventilation in the fight against virus COVID-19, Int. J. Hydrogen Energy, 47, No. 11: 7281 (2021); https://doi.org/10.1016/j.ijhydene.2021.03.025
  50. Z.A. Matysina, An.D. Zolonarenko, Al.D. Zolonarenko, N.A. Gavrylyuk, A. Veziroglu, T.N. Veziroglu, A.P. Pomytkin, D.V. Schur, and M.T. Gabdullin, Features of the Interaction of Hydrogen with Metals, Alloys and Compounds (Hydrogen Atoms in Crystalline Solids) (Kyiv: ‘KIM’ Publishing House: 2022), p. 490.
  51. D.V. Schur, M.T. Gabdullin, V.A. Bogolepov, A. Veziroglu, S.Y. Zaginaichenko, A.F. Savenko, and K.A. Meleshevich, Selection of the hydrogen-sorbing material for hydrogen accumulators, Int. J. Hydrogen Energy, 41, No. 3: 1811 (2016); https://doi.org/10.1016/j.ijhydene.2015.10.011
  52. Z.A. Matysina, O.S. Pogorelova, and S.Yu. Zaginaichenko, The surface energy of crystalline CuZn and FeAl alloys, J. Phys. Chem. Solids, 56, No. 1: 9 (1995); https://doi.org/10.1016/0022-3697(94)00106-5
  53. Z.A. Matysina and S.Yu. Zaginaichenko, Hydrogen solubility in alloys under pressure, Int. J. Hydrogen Energy, 21, Nos. 11–12: 1085 (1996); https://doi.org/10.1016/S0360-3199(96)00050-X
  54. S.Yu. Zaginaichenko, Z.A. Matysina, I. Smityukh, and V.K. Pishuk, Hydrogen in lanthan–nickel storage alloys, J. Alloys and Comp., 330–332: 70 (2002); https://doi.org/10.1016/S0925-8388(01)01661-9
  55. Z.A. Matysina and S.Y. Zaginaichenko, Sorption properties of iron–magnesium and nickel–magnesium Mg2FeH6 and Mg2NiH4 hydrides, Rus. Phys. J., 59, No. 2: 177 (2016); https://doi.org/10.1007/s11182-016-0757-0
  56. S.Y. Zaginaichenko, D.A. Zaritskii, Z.A. Matysina, T.N. Veziroglu, and L.I. Kopylova, Theoretical study of hydrogen-sorption properties of lithium and magnesium borocarbides, Int. J. Hydrogen Energy, 40, No. 24: 7644 (2015); https://doi.org/10.1016/j.ijhydene.2015.01.089
  57. Z.A. Matysina, S.Y. Zaginaichenko, and D.V. Schur, Hydrogen-sorption properties of magnesium and its intermetallics with Ca7Ge-type structure, Phys. Met. Metallogr., 114, No. 4: 308 (2013); https://doi.org/10.1134/S0031918X13010079
  58. Z.A. Matysina, N.A. Gavrylyuk, M. Kartel, A. Veziroglu, T.N. Veziroglu, A.P. Pomytkin, D.V. Schur, T.S. Ramazanov, M.T. Gabdullin, A.D. Zolotarenko, A.D. Zolotarenko, and N.A. Shvachko, Hydrogen sorption properties of new magnesium intermetallic compounds with MgSnCu4 type structure, Int. J. Hydrogen Energy, 46, No. 50: 25520 (2021); https://doi.org/10.1016/j.ijhydene.2021.05.069
  59. D.V. Shchur, S.Y. Zaginaichenko, A. Veziroglu, T.N. Veziroglu, N.A. Gavrylyuk, A.D. Zolotarenko, M.T. Gabdullin, T.S. Ramazanov, A.D. Zolotarenko, and A.D. Zolotarenko, Prospects of producing hydrogen-ammonia fuel based on lithium aluminum amide, Rus. Phys. J., 64, No. 1: 89 (2021); https://doi.org/10.1007/s11182-021-02304-7
  60. S.Yu. Zaginaichenko, Z.A. Matysina, D.V. Schur, and A.D. Zolotarenko, Li–N–H system — Reversible accumulator and store of hydrogen, Int. J. Hydrogen Energy, 37, No. 9: 7565 (2012); https://doi.org/10.1016/j.ijhydene.2012.01.006
  61. Z.A. Matysina, S.Y. Zaginaichenko, D.V. Schur, T.N. Veziroglu, A. Veziroglu, M.T. Gabdullin, Al.D. Zolotarenko, and An.D. Zolotarenko, The mixed lithium–magnesium imide Li2Mg(NH)2 a promising and reliable hydrogen storage material, Int. J. Hydrogen Energy, 43, No. 33: 16092 (2018); https://doi.org/10.1016/j.ijhydene.2018.06.168
  62. Z.A. Matysina, S.Y. Zaginaichenko, D.V. Schur, A.D. Zolotarenko, A.D. Zolotarenko, M.T. Gabdulin, L.I. Kopylova, and T.I. Shaposhnikova, Phase transformations in the mixed lithium-magnesium imide Li2Mg(NH)2, Rus. Phys. J., 61, No. 12: 2244 (2019); https://doi.org/10.1007/s11182-019-01662-7
  63. D.V. Schur, A. Veziroglu, S.Yu Zaginaychenko, Z.A. Matysina, T.N. Veziroglu, M.T. Gabdullin, T.S. Ramazanov, An.D. Zolonarenko, and Al.D. Zolonarenko, Int. J. Hydrogen Energy, 44, No. 45: 24810 (2019); https://doi.org/10.1016/j.ijhydene.2019.07.205
  64. Z.A. Matysina, S.Yu. Zaginaichenko, D.V. Schur, Al.D. Zolotarenko, An.D. Zolotarenko, and M.T. Gabdulin, Hydrogen sorption properties of potassium alanate, Rus. Phys. J., 61, No. 2: 253 (2018); https://doi.org/10.1007/s11182-018-1395-5
  65. Z.A. Matysinaa, An.D. Zolotarenko, Al.D. Zolotarenko, M.T. Kartel, A. Veziroglu, T.N. Veziroglu, N.A. Gavrylyuk, D.V. Schur, M.T. Gabdullin, N.E. Akhanova, T.S. Ramazanov, M. Ualkhanova, and N.A. Shvachko, Hydrogen in magnesium alanate Mg(AlH4)2, aluminum and magnesium hydrides, Int. J. Hydrogen Energy, 48, No. 6: 2271 (2023); https://doi.org/10.1016/j.ijhydene.2022.09.225
  66. Z.A. Matysina, An.D. Zolotarenko, Ol.D. Zolotarenko, T.V. Myronenko, D.V. Schur, E.P. Rudakova, M.V. Chymbai, A.D. Zolotarenko, I.V. Zagorulko, and O.O. Havryliuk, Embedded atoms in a crystalline hexagonal structure, Chem., Phys. Technol. Surf., 14, No. 2: 210 (2023); https://doi.org/10.15407/hftp14.02.210
  67. B.M. Gorelov, О.V. Mischanchuk, N.V. Sigareva, S.V.Shulga, A.M. Gorb, O.I. Polovina, and V.O. Jukhymchuk, Structural and dipole-relaxation processes in epoxy–multilayer graphene composites with low filler content, Polymers, 13, No. 19: 3360 (2021); https://doi.org/10.3390/polym13193360
  68. Y. Li, J. Zhu, S. Wei, J. Ryu, L. Sun, and Z. Guo, Poly(propylene)/graphene nanoplatelet nanocomposites: melt rheological behavior and thermal, electrical, and electronic properties, Macromol. Chem. Phys., 212, No. 18: 1951 (2011); https://doi.org/10.1002/macp.201100263
  69. X. Chen, S. Wei, A. Yadav, R. Patil, J. Zhu, R. Ximenes, L. Sun, and Z. Guo, Poly(propylene)/carbon nanofiber nanocomposites: ex situ solvent-assisted preparation and analysis of electrical and electronic properties, Macromol. Mater. Eng., 296, No. 5: 434 (2011); https://doi.org/10.1002/mame.201000341
  70. K. Mallick, M.J. Witcomb, A. Dinsmore, and M.S. Scurrell, Langmuir, 21, No. 17: 7964 (2005); https://doi.org/10.1021/la050534j
  71. D. Feldman, Polymer nanocomposite barriers, J. Macromolecular Sci. A, 50, No. 4: 441 (2013); https://doi.org/10.1080/10601325.2013.768440
  72. S. Mondal, Polymer nano-composite membranes, J. Membrane Sci. Technol., 5, No. 1: 134 (2014); https://doi.org/10.4172/2155-9589.1000134
  73. W.A. Izzati, Y.Z. Arief, Z. Adzis, and M. Shafanizam, Partial discharge characteristics of polymer nanocomposite materials in electrical insulation: a review of sample preparation techniques, analysis methods, potential applications, and future trends, Sci. World J., 2014: 735070 (2014); https://doi.org/10.1155/2014/735070
  74. F. Shaoyun, S. Zheng, H. Pei, L. Yuanqing, and H. Ning, Nano Materials Science, 1, No. 1: 2 (2019); https://doi.org/10.1016/j.nanoms.2019.02.006
  75. M.M. Shameem, S.M. Sasikanth, R. Annamalai, and R.G. Raman, A brief review on polymer nanocomposites and its applications, Mater. Today: Proc., 45, No. 2: 2536 (2021); https://doi.org/10.1016/j.matpr.2020.11.254
  76. T. Morishita, M. Matsushita, Y. Katagiri and K. Fukumori, A novel morphological model for carbon nanotube/polymer composites having high thermal conductivity and electrical insulation, J. Mater. Chem., 21, No. 15: 5610 (2011); https://doi.org/10.1039/C0JM04007J
  77. J.R. Potts, D.R. Dreyer, C.W. Bielawski, and R.S. Ruoff, Graphene-based polymer nanocomposites, Polymer, 52, No. 1: 5 (2011); https://doi.org/10.1016/j.polymer.2010.11.042
  78. Z.F. Ren, Z.P. Huang, J.W. Xu, J.H. Wang, P. Bush, M.P. Siegal, and P.N. Provencio, Synthesis of large arrays of well-aligned carbon nanotubes on glass, Science, 282, No. 5391: 1105 (1998); https://doi.org/10.1126/science.282.5391.1105
  79. Y. Ou, F. Yang, and Z.-Z. Yu, A new conception on the toughness of nylon 6/silica nanocomposite prepared via in situ polymerization, J. Polym. Sci. B, 36, No. 5: 789 (2015); https://doi.org/10.1002/(SICI)1099-0488(19980415)36:5<789::AID-POLB6>3.0.CO;2-G
  80. Z. Zhu, Y. Yang, J. Yin, and Z. Qi, Preparation and properties of organosoluble polyimide/silica hybrid materials by sol–gel process, J. Appl. Polym. Sci., 73, No. 14: 2977 (1999); https://doi.org/10.1002/(SICI)1097-4628(19990929)73:14<2977::AID-APP22>3.0.CO;2-J
  81. J.E. Bruna, A. Peñaloza, A. Guarda, F. Rodríguez, and M.J. Galotto, Development of MtCu2+/LDPE nanocomposites with antimicrobial activity for potential use in food packaging, Appl. Clay Sci., 58: 79 (2012); https://doi.org/10.1016/j.clay.2012.01.016
  82. A. Kausar, A review of high performance polymer nanocomposites for packaging applications in electronics and food industries, J. Plastic Film & Sheeting, 36, No. 1: 94 (2020); https://doi.org/10.1177/8756087919849459
  83. N. Shahrubudin, T.C. Lee, and R. Ramlan, An overview on 3D printing technology: technological, materials, and applications, Procedia Manufacturing, 35: 1286 (2019); https://doi.org/10.1016/j.promfg.2019.06.089
  84. C. Chen, Y. Tang, Y.S. Ye, Z. Xue, Y. Xue, X. Xie, and Y.Mai, High-performance epoxy/silica coated silver nanowire composites as underfill material for electronic packaging, Composites Sci. Technol., 105: 80 (2014); https://doi.org/10.1016/j.compscitech.2014.10.002
  85. H. Gu, S. Tadakamalla, Y. Huang, H.A. Colorado, Z. Luo, N. Haldolaarachchige, D.P. Young, S. Wei, and Z. Guo, Polyaniline stabilized magnetite nanoparticle reinforced epoxy nanocomposites, ACS Appl. Mater. Interfaces, 4, No. 10: 5613 (2012); https://doi.org/10.1021/am301529t
  86. L.T. Yeh, Review of heat transfer technologies in electronic equipment, J. Electron. Packag., 117, No. 4: 333 (1995); https://doi.org/10.1115/1.2792113
  87. J. Zhu, S. Wei, P. Mavinakuli, and Z. Guo, Conductive polymer metacomposites with sphere- and rod-like nano-WO3, Conference: AIChE Annual Meeting, 114: 16335 (2010); https://www.researchgate.net/publication/267316180
  88. H. Wei, X. Yan, S. Wu, Z. Luo, S. Wei, and Z. Guo, Electropolymerized polyaniline stabilized tungsten oxide nanocomposite films: electrochromic behavior and electrochemical energy storage, J. Phys. Chem., 116, No. 47: 25052 (2012); https://doi.org/10.1021/jp3090777
  89. C. Zhan, G. Yu, Y. Lu, L. Wang, E. Wujcik, and S. Wei, Conductive polymer nanocomposites: a critical review of modern advanced devices, J. Mater. Chem. C, 5, No. 7: 1569 (2017); https://doi.org/10.1039/C6TC04269D
  90. M.Z. Rong, M.Q. Zhang, and W.H. Ruan, Surface modification of nanoscale fillers for improving properties of polymer nanocomposites: a review, Mater. Sci. Technol., 22, No. 7: 787 (2006); https://doi.org/10.1179/174328406X101247
  91. X. Zhang, X. Yan, J. Guo, Z. Liu, D. Jiang, Q. He, H. Wei, H. Gu, H.A. Colorado, X. Zhang, S. Wei, and Z. Guo, Polypyrrole doped epoxy resin nanocomposites with enhanced mechanical properties and reduced flammability, J. Mater. Chem. C, 3: 162 (2015); https://doi.org/10.1039/C4TC01978D
  92. X. Zhang, Q. He, H. Gu, H.A. Colorado, S. Wei, and Z. Guo, Flame-retardant electrical conductive nanopolymers based on bisphenol f epoxy resin reinforced with nano polyanilines, ACS Appl. Mater. Interfaces, 5, No. 3: 898 (2013); https://doi.org/10.1021/am302563w
  93. H. Huang and J.F. Lovell, Advanced functional nanomaterials for theranostics, Adv. Funct. Mater., 27, No. 2: 1603524 (2017); https://doi.org/10.1002/adfm.201603524
  94. A.P. Kumar and R.P. Singh, Biocomposites of cellulose reinforced starch: Improvement of properties by photo-induced crosslinking, Bioresource Technol., 99, No. 18: 8803 (2008); https://doi.org/10.1016/j.biortech.2008.04.045
  95. A. Svagan, A. Samir, My Ahmed Said, and B. Lars, Biomimetic polysaccharide nanocomposites of high cellulose content and high toughness, Biomacromolecules, 8, No 8: 2556 (2007); https://doi.org/10.1021/bm0703160
  96. H.P.S. A. Khalil, Y. Davoudpour, N.A.S. Aprilia, A. Mustapha, S. Hossain Md., N.I. Md., and R. Dungani, Nanocellulose-based polymer nanocomposite: isolation, characterization and applications, Nanocellulose Polymer Nanocomposites: Fundamentals and Applications (Ed. V.K. Thakur) (Wiley–Scrivener Publishing LLC: 2015), Ch. 11, p. 273 (2014); https://doi.org/10.1002/9781118872246.ch11
  97. M.-J. Cho and B.-D. Park, Tensile and thermal properties of nanocellulose-reinforced poly(vinyl alcohol) nanocomposites, J. Industrial Eng. Chem., 17, No. 1: 36 (2011); https://doi.org/10.1016/j.jiec.2010.10.006
  98. K.-Y. Lee, Y. Aitomäki, L.A. Berglund, K. Oksman, and A. Bismarck, On the use of nanocellulose as reinforcement in polymer matrix composites, Composites Sci. Technol., 105: 15 (2014); https://doi.org/10.1016/j.compscitech.2014.08.032
  99. N.D. Luong, J.T. Korhonen, A.J. Soininen, J. Ruokolainen, L.-S. Johansson, and J. Seppälä, Processable polyaniline suspensions through in situ polymerization onto nanocellulose, Eur. Polym. J., 49, No. 2: 335 (2013); https://doi.org/10.1016/j.eurpolymj.2012.10.026
  100. E. Abraham, P.A. Elbi, B. Deepa, P. Jyotishkumar, L.A. Pothen, S.S. Narine, and S. Thomas, X-ray diffraction and biodegradation analysis of green composites of natural rubber/nanocellulose, Polym. Degrad. Stab., 97, No. 11: 2378 (2012); https://doi.org/10.1016/j.polymdegradstab.2012.07.02
  101. J.H. Lee, T.G. Park, H.S. Park, D.S. Lee, Y.K. Lee, S.C. Yoon, and J.-D. Nam, Thermal and mechanical characteristics of poly(L-lactic acid) nanocomposite scaffold, Biomaterials, 24, No. 16: 2773 (2002); https://doi.org/10.1016/s0142-9612(03)00080-2
  102. M.A. Paul, M. Alexandre, P. Degee, C. Calberg, R. Jerome, and P. Dubois, Exfoliated polylactide/clay nanocomposites by in situ coordination–insertion polymerization, Macromol. Rapid Commun., 24, No. 9: 561 (2003); https://doi.org/10.1002/marc.200390082
  103. D. Bondeson and K. Oksman, Dispersion and characteristics of surfactant modified cellulose whiskers nanocomposites, Composite Interfaces, 14, Nos. 7–9: 617 (2007); https://doi.org/10.1163/156855407782106519
  104. S. Lee, I. Kang, G. Doh, H. Yoon, B. Park, and Q. Wu, Thermal and mechanical properties of wood flour/talc-filled polylactic acid composites: effect of filler content and coupling treatment, J. Thermoplastic Composite Mater., 21, No. 3: 209 (2008); https://doi.org/10.1177/0892705708089473
  105. S. Siddiquee, M.G.J. Hong, and M. Rahman, Nanotechnology: Applications in Energy, Drug and Food (Cham: Springer: 2019), p. 439.
  106. J.H. Wang, F. Chen, G.J. Wideman, M.J. Faulks, and M.M. Mleziva, Nanocomposite Packaging Film (2015).
  107. N. Basavegowda and K.-H. Baek, Advances in functional biopolymer-based nanocomposites for active food packaging applications, Polymers, 13, No. 23: 4198 (2021); https://doi.org/10.3390/polym13234198
  108. R. Aiyengar and J. Divecha, Experimental and statistical analysis of the effects of the processing parameters on the seal strength of heat sealed, biaxially oriented polypropylene film for flexible food packaging applications, J. Plastic Film & Sheeting, 28, No. 3: 244 (2012); https://doi.org/10.1177/8756087912440000
  109. G. Mittal, V. Dhand, K.Y. Rhee, S.-J. Park, and W.R. Lee, A review on carbon nanotubes and graphene as fillers in reinforced polymer nanocomposites, J. Ind. Eng. Chem., 21: 11 (2015); https://doi.org/10.1016/j.jiec.2014.03.022
  110. T. Morishita, M. Matsushita, Y. Katagiri, and K. Fukumori, Noncovalent functionalization of carbon nanotubes with maleimide polymers applicable to high-melting polymer-based composites, Carbon, 48, No. 8: 2308 (2010); https://doi.org/10.1016/J.CARBON.2010.03.007
  111. T. Morishita, M. Matsushita, Y. Katagiria, and K. Fukumori, A novel morphological model for carbon nanotube/polymer composites having high thermal conductivity and electrical insulation, J. Mater. Chem., 21, No. 15: 5610 (2011); https://doi.org/10.1039/C0JM04007J
  112. F. Guo, G. Silverberg, S.hin Bowers, S.-P. Kim, D. Datta, V. Shenoy, and R.H. Hurt, Graphene-based environmental barriers, Environ. Sci. Technol., 46, No. 14: 7717 (2012); https://doi.org/10.1021/es301377y
  113. J. Yang, L. Bai, G. Feng, X. Yang, M. Lv, C. Zhang, H. Hu, and X. Wang, Thermal reduced graphene based poly(ethylene vinyl alcohol) nanocomposites: enhanced mechanical properties, gas barrier, water resistance, and thermal stability, Ind. Eng. Chem. Res., 52, No. 47: 16745 (2013); https://doi.org/10.1021/ie401716n
  114. H.M. Kim, J.K. Lee, and H.S. Lee, Transparent and high gas barrier films based on poly(vinyl alcohol)/graphene oxide composites, Thin Solid Films, 519, No. 22: 7766 (2011); https://doi.org/10.1016/j.tsf.2011.06.016
  115. N. Bumbudsanpharokel and S. Ko, Nanoclays in food and beverage packaging, J. Nanomater., 2019: 8927167 (2019); https://doi.org/10.1155/2019/8927167
  116. Y. Zhou, L. Wang, H. Zhang, Y. Bai, Y. Niu, and H, Wang, Enhanced high thermal conductivity and low permittivity of polyimide based composites by core-shell Ag@SiO2 nanoparticle fillers, Appl. Phys., 101, No. 1: 012903 (2012); https://doi.org/10.1063/1.4733324
  117. Z. Lin, A. Mcnamara, Y. Liu, K. Moon, and C.-P. Wong, Exfoliated hexagonal boron nitride-based polymer nanocomposite with enhanced thermal conductivity for electronic encapsulation, Compos. Sci. Technol., 90: 123 (2014); https://doi.org/10.1016/j.compscitech.2013.10.018
  118. J.H. Li, R.Y. Hong, M.Y. Li, H.Z. Li, Y. Zheng, and J. Ding, Effects of ZnO nanoparticles on the mechanical and antibacterial properties of polyurethane coatings, Prog. Organic Coatings, 64, No. 4: 504 (2009); https://doi.org/10.1016/j.porgcoat.2008.08.013
  119. J. Seo, G. Jeon, E.S. Jang, S.B. Khan, and H. Han, J. Appl. Polymer Sci., 122, No. 2: 1101 (2011); https://doi.org/10.1002/app.34248
  120. X.H. Li, S.C. Tjong, Y.Z. Meng, and Q. Zhu, Fabrication and properties of poly(propylene carbonate)/calcium carbonate composites, J. Polymer Sci. B, 41, No. 15: 1806 (2003); https://doi.org/10.1002/polb.10546
  121. G. Rodionova, M. Lenes, Ø. Eriksen, and Ø. Gregersen, Surface chemical modification of microfibrillated cellulose: improvement of barrier properties for packaging applications, Cellulose, 18: 127 (2011); https://doi.org/10.1007/s10570-010-9474-y
  122. J. Lange and Y. Wyser, Recent innovations in barrier technologies for plastic packaging — a review, Packag Technol Sci., 16, No. 4: 149 (2003); https://doi.org/10.1002/pts.621
  123. T. Morishita, Y. Katagiri, T. Matsunaga, Y. Muraoka, and K. Fukumori, Design and fabrication of morphologically controlled carbon nanotube/polyamide-6-based composites as electrically insulating materials having enhanced thermal conductivity and elastic modulus, Compos. Sci. Technol., 142: 41 (2017); https://doi.org/10.1016/j.compscitech.2017.01.022
  124. S. Hameed, P. Predeep and M. R. Baiju, Adv. Mater. Sci., 26: 30 (2010).
  125. G. Yu, Y. Lu, L. Wang, E. Wujcik, and S. Wei, Conductive polymer nanocomposites: a critical review of modern advanced devices, J. Mater. Chem. C, 5: 1569 (2017); https://doi.org/10.1039/C6TC04269D
  126. D. Lee and D.-J. Jang, Charge-carrier relaxation dynamics of poly(3-hexylthiophene)-coated gold hybrid nanoparticles, Polymer, 55, No. 21: 5469 (2014); https://doi.org/10.1016/j.polymer.2014.08.069
  127. W.-J. Jiang, L. Gu, L. Li, Y. Zhang, X. Zhang, L.-J. Zhang, J.-Q. Wang, J.-S. Hu, Z. Wei, and L.-J. Wan, Understanding the high activity of Fe–N–C electrocatalysts in oxygen reduction: Fe/Fe3C nanoparticles boost the activity of Fe–Nx, J. Am. Chem. Soc., 138, No. 10: 3570 (2016); https://doi.org/10.1021/jacs.6b00757
  128. I.Yu. Sagalyanov, Yu.I. Prylutskyy, T.M. Radchenko, and V.A. Tatarenko, Graphene Systems: Methods of Fabrication and Treatment, Structure Formation, and Functional Properties, Usp. Fiz. Met., 11, No. 1: 95 (2010); https://doi.org/10.15407/ufm.11.01.095
  129. T.M. Radchenko, V.A. Tatarenko, and G. Cuniberti, Effects of External Mechanical or Magnetic Fields and Defects on Electronic and Transport Properties of Graphene, Mater. Today: Proc., 35, Pt. 4: 523 (2021); https://doi.org/10.1016/j.matpr.2019.10.014
  130. T.M. Radchenko, I.Yu. Sahalianov, V.A. Tatarenko, Yu.I. Prylutskyy, P. Szroeder, M. Kempiński, and W. Kempiński, The Impact of Uniaxial Strain and Defect Pattern on Magnetoelectronic and Transport Properties of Graphene, Handbook of Graphene: Growth, Synthesis, and Functionalization (Eds. E. Celasco and A. Chaika) (Beverly, MA: Scrivener Publishing LLC: 2019), Vol. 1, Ch. 14, p. 451; https://doi.org/10.1002/9781119468455.ch14
  131. T.M. Radchenko, I.Yu. Sahalianov, V.A. Tatarenko, Yu.I. Prylutskyy, P. Szroeder, M. Kempiński, and W. Kempiński, Strain- and Adsorption-Dependent Electronic States and Transport or Localization in Graphene, Springer Proceedings in Physics: Nanooptics, Nanophotonics, Nanostructures, and Their Applications (Eds. O. Fesenko and L. Yatsenko) (Cham, Switzerland: Springer: 2018), vol. 210, Ch. 3, p. 25; https://doi.org/10.1007/978-3-319-91083-3_3
  132. T.M. Radchenko, V.A. Tatarenko, I.Yu. Sagalianov, and Yu.I. Prylutskyy, Configurations of Structural Defects in Graphene and Their Effects on Its Transport Properties, Graphene: Mechanical Properties, Potential Applications and Electrochemical Performance (Ed. B.T. Edwards) (New York: Nova Science Publishers: 2014), Ch. 7, p. 219.
  133. T.M. Radchenko, V.A. Tatarenko, V.V. Lizunov, V.B. Molodkin, I.E. Golentus, I.Yu. Sahalianov, and Yu.I. Prylutskyy, Defect-Pattern-Induced Fingerprints in the Electron Density of States of Strained Graphene Layers: Diffraction and Simulation Methods, Phys. Status Solidi B, 256, No. 5: 1800406 (2019); https://doi.org/10.1002/pssb.201800406
  134. D.M.A. Mackenzie, M. Galbiati, X.D. de Cerio, I.Y. Sahalianov, T.M. Radchenko, J. Sun, D. Peña, L. Gammelgaard, B.S. Jessen, J.D. Thomsen, P. Bøggild, A. Garcia-Lekue, L. Camilli, and J.M. Caridad, Unraveling the Electronic Properties of Graphene with Substitutional Oxygen, 2D Materials, 8, No. 4: 045035 (2021); https://doi.org/10.1088/2053-1583/ac28ab
  135. I.Yu. Sahalianov, T.M. Radchenko, V.A. Tatarenko, and Yu.I. Prylutskyy, Magnetic Field-, Strain-, and Disorder-Induced Responses in an Energy Spectrum of Graphene, Ann. Phys., 398: 80 (2018); https://doi.org/10.1016/j.aop.2018.09.004
  136. I.Yu. Sagalianov, T.M. Radchenko, V.A. Tatarenko, and G. Cuniberti, Sensitivity to Strains and Defects for Manipulating the Conductivity of Graphene, EPL, 132: 48002 (2020); https://doi.org/10.1209/0295-5075/132/48002
  137. T.M. Radchenko and V.A. Tatarenko, A Statistical-Thermodynamic Analysis of Stably Ordered Substitutional Structures in Graphene, Physica E, 42, No. 8: 2047 (2010); https://doi.org/10.1016/j.physe.2010.03.024
  138. T.M. Radchenko and V.A. Tatarenko, Kinetics of Atomic Ordering in Metal-Doped Graphene, Solid State Sci., 12, No. 2: 204 (2010); https://doi.org/10.1016/j.solidstatesciences.2009.05.027
  139. T.M. Radchenko and V.A. Tatarenko, Statistical Thermodynamics and Kinetics of Long-Range Order in Metal-Doped Graphene, Solid State Phenom., 150: 43 (2009); https://doi.org/10.4028/www.scientific.net/SSP.150.43
  140. T.M. Radchenko and V.A. Tatarenko, Stable Superstructures in a Binary Honeycomb-Lattice Gas, Int. J. Hydrogen Energy, 36, No. 1: 1338 (2011); https://doi.org/10.1016/j.ijhydene.2010.06.112
  141. P. Szroeder, I.Yu. Sagalianov, T.M. Radchenko, V.A. Tatarenko, Yu.I. Prylutskyy, and W. Strupiński, Effect of Uniaxial Stress on the Electrochemical Properties of Graphene with Point Defects, Appl. Surf. Sci., 442: 185 (2018); https://doi.org/10.1016/j.apsusc.2018.02.150
  142. P. Szroeder, I. Sahalianov, T. Radchenko, V. Tatarenko, and Yu. Prylutskyy, The Strain- and Impurity-Dependent Electron States and Catalytic Activity of Graphene in a Static Magnetic Field, Optical Mater., 96: 109284 (2019); https://doi.org/10.1016/j.optmat.2019.109284
  143. T.M. Radchenko, V.A. Tatarenko, I.Yu. Sagalyanov, and Yu.I. Prylutskyy, Configurational Effects in an Electrical Conductivity of a Graphene Layer with the Distributed Adsorbed Atoms (K), Nanosistemi, Nanomateriali, Nanotehnologii, 13, No. 2: 201 (2015).
  144. Т.М. Radchenko, Substitutional Superstructures in Doped Graphene Lattice, Metallofiz. Noveishie Tekhnol., 30, No. 8: 1021 (2008).
  145. І.Yu. Sagalianov, Yu.І. Prylutskyy, Т.М. Radchenko, and V.А. Tatarenko, Energies of Graphene-Based Substitutional Structures with Impurities of Nitrogen or Boron Atoms, Metallofiz. Noveishie Tekhnol., 33, No. 12: 1569 (2011).
  146. T.M. Radchenko and V.A. Tatarenko, Ordering Kinetics of Dopant Atoms in Graphene Lattice with Stoichiometric Compositions of 1/3 and 1/6, Materialwissenschaft und Werkstofftechnik, 44, Nos. 2–3: 231 (2013); https://doi.org/10.1002/mawe.201300094
  147. I.Y. Sagalianov, Y.I. Prylutskyy, V.A. Tatarenko, T.M. Radchenko, O.O. Sudakov, U. Ritter, P. Scharff, and F. Le Normand, Influence of Impurity Defects on Vibrational and Electronic Structure of Graphene, Materialwissenschaft und Werkstofftechnik, 44, Nos. 2–3: 183 (2013); https://doi.org/10.1002/mawe.201300086
  148. T.M. Radchenko, A.A. Shylau, and I.V. Zozoulenko, Conductivity of Epitaxial and CVD Graphene with Correlated Line Defects, Solid State Commun., 195: 88 (2014); https://doi.org/10.1016/j.ssc.2014.07.012
  149. T.M. Radchenko, V.A. Tatarenko, I.Yu. Sagalianov, and Yu.I. Prylutskyy, Effects of Nitrogen-Doping Configurations with Vacancies on Conductivity in Graphene, Phys. Lett. A, 378, Nos. 30–31: 2270 (2014); https://doi.org/10.1016/j.physleta.2014.05.022
  150. T.M. Radchenko, V.A. Tatarenko, I.Yu. Sagalianov, Yu.I. Prylutskyy, P. Szroeder, and S. Biniak, On Adatomic-Configuration-Mediated Correlation Between Electrotransport and Electrochemical Properties of Graphene, Carbon, 101: 37 (2016); https://doi.org/10.1016/j.carbon.2016.01.067
  151. I.Yu. Sagalianov, T.M. Radchenko, Yu.I. Prylutskyy, V.A. Tatarenko, and P. Szroeder, Mutual Influence of Uniaxial Tensile Strain and Point Defect Pattern on Electronic States in Graphene, Eur. Phys. J. B, 90, No. 6: 112 (2017); https://doi.org/10.1140/epjb/e2017-80091-x
  152. I.Yu. Sahalianov, T.M. Radchenko, V.A. Tatarenko, G. Cuniberti, and Yu.I. Prylutskyy, Straintronics in Graphene: Extra Large Electronic Band Gap Induced by Tensile and Shear Strains, J. Appl. Phys., 126, No. 5: 054302 (2019); https://doi.org/10.1063/1.5095600
  153. S.P. Repetsky, I.G. Vyshyvana, S.P. Kruchinin, V.B. Molodkin, and V.V. Lizunov, Influence of the Adsorbed Atoms of Potassium on an Energy Spectrum of Graphene, Metallofiz. Noveishie Tekhnol., 39, No. 8: 1017 (2017); https://doi.org/10.15407/mfint.39.08.1017
  154. O.S. Skakunova, S.I. Olikhovskii, T.M. Radchenko, S.V. Lizunova, T.P. Vladimirova, and V.V. Lizunov, X-Ray Dynamical Diffraction by Quasi-Monolayer Graphene, Scientific Reports, 13: 15950 (2023); https://doi.org/10.1038/s41598-023-43269-6
  155. O.V. Khomenko, A.A. Biesiedina, K.P. Khomenko, and R.R. Chernushchenko, Computer Modelling of Metal Nanoparticles Adsorbed on Graphene, Prog. Phys. Met., 23, No. 2: 239 (2022); https://doi.org/10.15407/ufm.23.02.239
  156. A.I. Denissova, A.V. Volokitin, and I.E. Volokitina, Prospects of Application and Global Significance of Graphene, Prog. Phys. Met., 23, No. 2: 268 (2022); https://doi.org/10.15407/ufm.23.02.268
  157. S.O. Kotrechko, Eu.V. Kolyvoshko, A.M. Timoshevskii, N.M. Stetsenko, and O.V. Ovsiannikov, Atomism of the Force-Field Influence on the Durability of Carbyne–Graphene Nanoelements and Similar Two-Dimensional Nanostructures, Nanosistemi, Nanomateriali, Nanotehnologii, 21, No. 1: 9 (2023); https://doi.org/10.15407/nnn.21.01.009
  158. N.V. Krishna Prasad, K. Chandra Babu Naidu, T. Anil Babu, S. Ramesh, and N. Madhavi, Electrochemical Sensors Based on Carbon Allotrope Graphene: a Review on Their Environmental Applications, Nanosistemi, Nanomateriali, Nanotehnologii, 21, No. 1: 185 (2023); https://doi.org/10.15407/nnn.21.01.185
  159. I.B. Olenych, Yu.Yu. Horbenko, L.S. Monastyrskii, O.I. Aksimentyeva, and B.R. Tsizh, Humidity Sensor Element Based on Porous Silicon–Graphene Nanosystem, Nanosistemi, Nanomateriali, Nanotehnologii, 20, No. 2: 449 (2022); https://doi.org/10.15407/nnn.20.02.449
  160. S.O. Zelinskyi, N.G. Stryzhakova, and Yu.A. Maletin, Graphene vs Activated Carbon in Supercapacitors, Nanosistemi, Nanomateriali, Nanotehnologii, 18, No. 1: 1 (2020); https://doi.org/10.15407/nnn.18.01.001
  161. Yu.I. Andrusyshyn, Theoretical Method of Determining the Physical Parameters of Graphene, Nanosistemi, Nanomateriali, Nanotehnologii, 20, No. 1: 1 (2022); https://doi.org/10.15407/nnn.20.01.001
  162. S.Ya. Brychka, N.P. Suprun, and D.S. Leonov, Graphene Carbon Nanomaterials Structural Properties, Nanosistemi, Nanomateriali, Nanotehnologii, 19, No. 3: 639 (2021); https://doi.org/10.15407/nnn.19.03.639
  163. P. Szroeder, I. Sahalianov, and T. Radchenko, Tuning the Electron Band Structure of Graphene for Optoelectronics, 2019 21st International Conference on Transparent Optical Networks (ICTON) (9–13 July 2019, Angers, France), p. 1–6; https://doi.org/10.1109/ICTON.2019.8840470
  164. I.Yu. Sagalianov, Yu.I. Prylutskyy, T.M. Radchenko, and V.A. Tatarenko, Effect of Weak Impurities on Conductivity of Uniaxially Strained Graphene, 2017 IEEE International Young Scientists Forum on Applied Physics and Engineering (YSF) (17–20 October 2017, Lviv, Ukraine), p. 151; https://doi.org/10.1109/YSF.2017.8126607
  165. T.M. Radchenko, A.A. Shylau, and I.V. Zozoulenko, Influence of Correlated Impurities on Conductivity of Graphene Sheets: Time-Dependent Real-Space Kubo Approach, Phys. Rev. B, 86, No. 3: 035418 (2012); https://doi.org/10.1103/PhysRevB.86.035418
  166. T.M. Radchenko, A.A. Shylau, I.V. Zozoulenko, and A. Ferreira, Effect of Charged Line Defects on Conductivity in Graphene: Numerical Kubo and Analytical Boltzmann Approaches, Phys. Rev. B, 87, No. 19: 195448 (2013); https://doi.org/10.1103/PhysRevB.87.195448
  167. S.K. Mahadeva, S. Yun, and J. Kim, Flexible humidity and temperature sensor based on cellulose–polypyrrole nanocomposite, Sens. Actuators A, 165, No. 2: 194 (2011); https://doi.org/10.1016/j.sna.2010.10.018
  168. E.P. Giannelis, R. Krishnamoorti, and E. Manias, Polymer-silicate nanocomposites: model systems for confined polymers and polymer brushes, Polymers in Confined Environments, 138: 107 (1999); https://doi.org/10.1007/3-540-69711-X_3
  169. M. Alexandre and P. Dubois, Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials, Mater. Sci. Eng. R, 28, Nos. 1–2: 1 (2000); https://doi.org/10.1016/S0927-796X(00)00012-7
  170. S.S. Ray and M. Okamoto, Polymer/layered silicate nanocomposites: a review from preparation to processing, Prog. Polym. Sci., 28, No. 11: 1539 (2003); https://doi.org/10.1016/j.progpolymsci.2003.08.002
  171. J.N. Coleman, M. Lotya, A. O’neill, S.D. Bergin, P.J. King, U. Khan, K. Young, A. Gaucher, S. de, R.J. Smith, I.V. Shvets, S.K. Arora, G. Stanton, H.-Y. Kim, K. Lee, G.T. Kim, G.S. Duesberg, T. Hallam, J.J. Boland, J.J. Wang, J.F. Donegan, J.C. Grunlan, G. Moriarty, A. Shmeliov, R.J. Nicholls, J.M. Perkins, E.M. Grieveson, K. Theuwissen, D.W. Mccomb, P.D. Nellist, and V. Nicolosi, Two-dimensional nanosheets produced by liquid exfoliation of layered materials, Science, 331, No. 6017: 568 (2011); https://doi.org/10.1126/science.1194975
  172. S. Lijima and T. Ichihashi, Single-shell carbon nanotubes of 1-nm diameter, Nature, 364: 603 (1993); https://doi.org/10.1038/363603a0
  173. S. Lijima, Helical microtubules of graphitic carbon, Nature, 354: 56 (1991); https://doi.org/10.1038/354056a0
  174. M.M.J. Treacy, T.W. Ebbesen, and J.M. Gibson, Exceptionally high Young’s modulus observed for individual carbon nanotubes, Nature, 381: 678 (1996); https://doi.org/10.1038/381678a0
  175. E.W. Wong, P.E. Sheehan, and C.M. Lieber, Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes, Science, 277, No. 5334: 1971 (1997); https://doi.org/10.1126/science.277.5334.1971
  176. S. Mondal, Review on nanocellulose polymer nanocomposites, Polym.-Plast. Technol. Eng., 57, No. 13: 1377 (2018); https://doi.org/10.1080/03602559.2017.1381253
  177. A. Dufresne, Nanocellulose: a new ageless bionanomaterial, Mater. Today, 16, No. 6: 220 (2013); https://doi.org/10.1016/j.mattod.2013.06.004
  178. D.J. Gardner, G.S. Oporto, R. Mills, and M.A.S.A. Samir, Adhesion and surface issues in cellulose and nanocellulose, J. Adhes. Sci. Technol., 22, Nos. 5–6: 545 (2008); https://doi.org/10.1163/156856108X295509
  179. E. Espino-Perez, S. Domenek, N. Belgacem, C. Sillard, and J. Bras, Green process for chemical functionalization of nanocellulose with carboxylic acids, Biomacromolecules, 15, No. 12: 4551 (2014); https://doi.org/10.1021/bm5013458
  180. J.H. Bae and S.H. Kim, Alkylation of mixed micro- and nanocellulose to improve dispersion in polylactide, Polym. Int., 64, No. 6: 821 (2015); https://doi.org/10.1002/pi.4858
  181. S.O. Adeosun, G.I. Lawal, S.A. Balogun, and E.I. Akpan, Review of green polymer nanocomposites, J. Miner. Mater. Characteriz. Eng., 11, No. 4: 385 (2012); https://doi.org/10.4236/jmmce.2012.114028
  182. J.K. Pandey, W.S. Chu, C.S. Lee, and S.H. Ahn, BioEnvironmental Polymer Society (BEPS), 11, No. 4: 17 (2007).
  183. M.J. John and S. Thomas, Biofibres and biocomposites, Carbohyd. Polym., 71, No. 3: 343 (2008); https://doi.org/10.1016/j.carbpol.2007.05.040
  184. A. Royani, C. Verma, M. Hanafi, V.S. Aigbodion, and A. Manaf, Green Synthesized Plant-Based Metallic Nanoparticles for Antimicrobial and Anti-Corrosion Applications, Prog. Phys. Met., 24, No. 1: 197 (2023); https://doi.org/10.15407/ufm.24.01.197
  185. P. Qu, Y. Gao, G. Wu, and L. Zhang, Nanocomposites of poly(lactic acid) reinforced with cellulose nanofibrils, BioResources, 5, No. 3: 1811 (2010); https://doi.org/10.15376/biores.5.3.1811-1823
  186. M.Z. Rong, M.Q. Zhang, Y. Liu, G.C. Yang, and H.M. Zeng, Biofibres and biocompositesThe effect of fiber treatment on the mechanical properties of unidirectional sisal-reinforced epoxy composites, Compos. Sci. Technol., 61, No. 10: 1437 (2001); https://doi.org/10.1016/S0266-3538(01)00046-X
  187. C. Weng, W. Li, J. Wu, L. Shen, W. Yang, C. Deng, and N. Bao, Thermal shock exfoliated and siloxane cross-linked graphene framework for high performance epoxy-based thermally conductive composites, J. Mater. Sci., 56: 17601 (2021); https://doi.org/10.1007/s10853-021-06147-y
  188. S. Mondal and J.L. Hu, Microstructure and water vapor transport properties of functionalized carbon nanotube-reinforced dense-segmented polyurethane composite membranes, Polym. Eng. Sci., 48, No. 9: 1718 (2008); https://doi.org/10.1002/pen.21093
  189. F. Liu, N. Hu, J. Zhang, S. Atobe, S. Weng, H. Ning, Y. Liu, L. Wu, Y. Zhao, F. Mo, S. Fu, C. Xu, A. Yuanf, and W. Yuanf, The interfacial mechanical properties of functionalized graphene–polymer nanocomposites, RSC Adv., 6, No. 71: 66658 (2016); https://doi.org/10.1039/C6RA09292F
  190. L. Guoping, N. Zhicheng, L. Shengnan, D. Haoxue, X. Min, and L. Yunjun, Thermal decomposition of ammonium perchlorate by black phosphorus and graphene oxide composite aerogel, J. Mater. Sci., 56, No. 31: 17632 (2021); https://doi.org/10.1007/s10853-021-06289-z
  191. A.G. Solomenko, R.M. Balabai, T.M. Radchenko, V.A. Tatarenko, Functionalization of Quasi-Two-Dimensional Materials: Chemical and Strain-Induced Modifications, Prog. Phys. Met., 23, No. 2: 147 (2022); https://doi.org/10.15407/ufm.23.02.147
  192. R.M. Balabaі and A.G. Solomenko, Use of the Adsorbed Organic Molecules as Dopants for Creation of the Built-In Lateral p-n Junctions in a Sheet of Black Phosphorene, J. Nano- Electron. Phys., 11, No. 5: 05033 (2019); https://doi.org/10.21272/jnep.11(5).05033
  193. A.G. Solomenko, I.Y. Sahalianov, T.M. Radchenko, and V.A. Tatarenko, Straintronics in phosphorene via tensile vs shear strains and their combinations for manipulating the band gap, Scientific Reports, 13: 13444 (2023); https://doi.org/10.1038/s41598-023-40541-7
  194. S. Sudhindra, F. Rashvand, D. Wright, Z. Barani, A.D. Drozdov, S. Baraghani, C. Backes, F. Kargar, and A.A. Balandin, Specifics of thermal transport in graphene composites: effect of lateral dimensions of graphene fillers, ACS Appl. Mater. Interfaces, 13, No. 44: 53073 (2021); https://doi.org/10.1021/acsami.1c15346
  195. R.M. Balabaі and A.G. Lubenets, Lateral Junctions Based on Graphene with Different Doping Regions, J. Nano- Electron. Phys., 9, No. 5: 05017 (2017); https://doi.org/10.21272/jnep.9(5).05017
  196. R. Balabai, A. Solomenko, and D. Kravtsova, Electronic and Photonic Properties of Lateral Heterostructures Based on Functionalized Graphene Depending on the Degree of Fluorination, Mol. Cryst. Liquid Cryst., 673, No. 1: 125 (2018); https://doi.org/10.1080/15421406.2019.1578502
  197. K. Kanari, Thermal conductivity of composite materials, Kobunshi, 26, No. 8: 557 (1977); https://doi.org/10.1295/kobunshi.26.557
  198. F. Liu, N. Hu, J. Zhang, S. Atobe, S. Weng, H. Ning, Y. Liu, L. Wu, Y. Zhao, F. Mo, S. Fu, C. Xu, A. Yuan and W. Yuan, The interfacial mechanical properties of functionalized graphene–polymer nanocomposites, RSC Adv., 6, No. 71: 66658 (2016); https://doi.org/10.1039/C6RA09292F
  199. S. Zhai, P. Zhang, Y. Xian, J. Zeng, and B. Shi, Effective thermal conductivity of polymer composites: Theoretical models and simulation models, Int. J. Heat Mass Transfer, 117: 358 (2018); https://doi.org/10.1016/j.ijheatmasstransfer.2017.09.067
  200. V. Favier, G.R. Canova, S.C. Shrivastava, and J.Y. Cavaille, Mechanical percolation in cellulose whisker nanocomposites, Polym. Eng. Sci., 37, No. 10: 1732 (1997); https://doi.org/10.1002/pen.11821