Реалізація фізичних ефектів при експлуатації інтелектуальних матеріалів задля формування їхніх властивостей

О. П. Чейлях , Я. О. Чейлях

Державний вищий навчальний заклад «Приазовський державний технічний університет», 87555 Маріуполь, вул. Університетська, 7, Україна

Отримано 12.03.2020; остаточний варіант — 03.09.2020 Завантажити PDF logo PDF

Анотація
Узагальнено закономірності реалізації фізичних явищ і фазово-структурних перетворень, що розвиваються при експлуатації інтелектуальних матеріалів різної фізичної природи, складу та функціонального застосування, які забезпечують формування їхніх фізико-механічних і експлуатаційних властивостей. Запропоновано класифікаційну схему фізико-хімічних явищ, що охоплює фазові та структурні перетворення в металевих стопах, атомно-наноструктурні, електричні, магнетні, механічні, оптичні, хімічні та біохімічні явища, на яких засноване формування властивостей інтелектуальних матеріалів (металевих і неметалевих, твердих і рідких) у процесі їх експлуатації. Сформульовано основні ознаки цих явищ і перетворень, які зумовлюють одержання очікуваного позитивного ефекту, який проявляється у виникненні або поліпшенні окремих властивостей або їх комплексу. Виконано оглядовий аналіз різних за фізичною природою та функціональним призначенням груп інтелектуальних матеріалів, фізичних явищ, перетворень і ефектів, що реалізуються в них в процесі експлуатації та приводять до формування зумовлених властивостей. Розглянуто особливості інтелектуальних матеріалів різноманітної фізичної природи та явища (перетворення), що реалізуються в них при експлуатації. Запропоновано моделі фазово-структурної еволюції традиційних (стабільних) та інтелектуальних (метастабільних) матеріалів, що самоорганізуються в процесі експлуатації завдяки реалізації фізичних явищ, перетворень і ефектів протягом їхнього життєвого циклу. Показано необхідність управління цими процесами задля формування поліпшених властивостей, стійкого та тривалого їхнього життєвого циклу. На основі проведеного аналізу й оглядового узагальнення сформульовано принципи проєктування інтелектуальних (метастабільних) матеріалів, що мають унікальні властивості.

Ключові слова: інтелектуальні матеріали, метастабільність, фізичні явища, позитивний ефект, поліпшені властивості.

Citation: O. P. Cheiliakh and Ya. O. Cheiliakh, Implementation of Physical Effects in the Operation of Smart Materials to Form Their Properties, Progress in Physics of Metals, 21, No. 3: 363–463 (2020) (in Ukrainian); doi: 10.15407/ufm.21.03.363


Цитована література (174)  
  1. A.N. Kondratenko and T.A. Golubkova, Konstruktsii iz Kompozitsionnykh Materialov, No. 1: 24 (2009) (in Russian).
  2. R. Bahsvar, N. Ovajdja, P. Ganguli, A. Hamfris, A. Robisson, H. Tu, N. Uiks, G.H. Mak-Kinli, and F. Poshe, Neftegazovoe Obozrenie, 20, No. 1: 38 (Spring 2008) (in Russian). https://connect.slb.com/~/media/Files/resources/oilfield_review/russia08/spr08/composite.pdf
  3. Encyclopedia of Smart Materials (Ed. M. Schwartz) (New York: John Wiley & Sons: 2002).
  4. K. Worden, W.A. Bullough, and J. Haywood, Smart Technologies (Singapore: World Scientific Publishing Co. Pte. Ltd.: 2003).
  5. URL: https://en.wikipedia.org/wiki/Smart_material.
  6. S.V. Shishkin and N.A. Makhutov, Raschyot i Proektirovanie Silovykh Konstruktsiy na Splavakh s Ehffektom Pamyati Formy [Calculation and Projection of Force Constructions on the Shape Memory Alloys] (Izhevsk: Izd. ‘Regulyarnaya i Khaoticheskaya Dinamika’: 2007) (in Russian).
  7. A.P. Cheiliakh, Ehkonomnolegirovannyye Metastabil’nyye Splavy i Uprochnyayushchie Tekhnologii (Mariupol: PSTU: 2009) (in Russian).
  8. G. Nicolis and I. Prigogine, Self-Organization in Nonequilibrium Systems. From Dissipative Structures to Order through Fluctuations (New York: J. Wiley & Sons: 1977.
  9. V.M. Schastlivcev and M.A. Filippov, Met. Sci. Heat Treat., 47: 3 (2005). https://doi.org/10.1007/s11041-005-0020-8
  10. L.G. Korshunov, S.M. Usherenko, O.M. Dybov, and N.L. Chernenko, Phys. Met. Metallogr., 91: 610 (2001).
  11. M.A. Filippov, V.S. Litvinov, and Yu.R. Nemirovskiy, Stali s Metastabil’nym Austenitom [Steels with Metastable Austenite] (Moscow: Metallurgiya: 1988) (in Russian).
  12. L.S. Malinov and V.L. Malinov, Ehkonomnolegirovannyye Splavy i Uprochnyayushchie Tekhnologii s Martensitnymi Prevrashcheniyami [Low-Alloyed Alloys and Hardening Technologies with Martensite Transformations] (Kharkov: NSC KIPT: 2007) (in Russian).
  13. I.N. Bogachev and R.I. Mints, Povyshenie Kavitatsionnoy Stoikosti Detaley Mashin [Improving the Cavitation Resistance of Machine Parts] (Moscow: Mashinostroenie: 1964) (in Russian).
  14. Yu.G. Virakhovskiy, I.Ya. Georgieva, Ya.B. Gurevich, V.N. Zambrzhitskiy, O.P. Maksimoca, M.S. Nogaev, L.M. Utevskiy, and R.I. Ehntin, Fiz. Met. Metalloved., 32, No. 2: 348 (1971) (in Russian).
  15. L.G. Zhuravlev, V.V. Golikova, and M.M. Shteinberg, Fiz. Met. Metalloved., 27, No. 3: 478 (1969) (in Russian).
  16. V.F. Zackay, E.R. Parker, D. Fahr, and R. Bush, Trans. Am. Soc. Metals, 60, No. 1: 252 (1969).
  17. I.N. Bogachev and L.I. Lepekhina, Izvestiya AN SSSR. Metally, No. 3: 157 (1974) (in Russian).
  18. V.S. Popov, N.N. Brykov, and N.S. Dmitrichenko, Iznosostoikost’ Press-Form Ogneupornogo Proizvodstva [Wear-Resistance of Refractory Production] (Moscow: Metallurgiya: 1971) (in Russian).
  19. A.L. Geller, Tekhnologiya i Organizatsiya Proizvodstva, No. 3: 46 (1973) (in Russian).
  20. Ya.A. Cheiliakh, A.P. Cheiliakh, and V.V. Chigarev, Samouprochnyayushchiesya Iznosostoikie Splavy [Self-Hardening Wear-Resistant Alloys] (Mariupol: OOO ‘PPRS’: 2016) (in Russian).
  21. A.P. Cheiliakh, Novі Materіaly і Tekhnologіi v Metalurgіi ta Mashynobuduvannі, No. 2: 31 (2002) (in Ukrainian).
  22. B.A. Voynov, Iznosostoikie Splavy i Pokrytiya [Wear-Resistant Steels and Coatings] (Moscow: Mashinostroenie: 1980) (in Russian).
  23. Yu.G. Bobro, Trudy Nauchno-Prakticheskogo Simpoziuma OTTOM (Kharkov: NSC KIPT: 2000), p. 115 (in Russian).
  24. A.P. Cheiliakh, Y.A. Cheylyakh, and Yu.S. Samotugina, Strengthening Technologies of Materials Treatment (Leuven, Belgium–Mariupol, Ukraine: Ltd. ‘PPNS’: 2016).
  25. Yu.K. Mashkov, Tribofizika Metallov i Polimerov [Tribophysics of Metals and Polymers] (Omsk: Izd-vo OmGTU: 2013) (in Russian).
  26. V.S. Zolotarevskiy, Mekhanicheskie Svoistva Metallov [Mechanical Properties of Metals] (Moscow: Metallurgiya: 1998) (in Russian).
  27. A.P. Cheiliakh, Fiz. Met. Metalloved., No. 10: 120 (1992) (in Russian).
  28. V.A. Lobodyuk, Usp. Fiz. Met., 17, No. 2: 89 (2016). https://doi.org/10.15407/ufm.17.02.089
  29. L.A. Chernega, Sustainable Innovative Development: Design and Management, 11, No. 4: 29 (2015) (in Russian).
  30. A.I. Razov, Mekhanika Materialov s Fazovymi Prevrashcheniyami [Mechanics of Materials with Phase Transformations] (Thesis Diss. Cand. Phys.-Math. Sci.) (Leningrad: Leningrad State Univ.: 1980) (in Russian).
  31. K. Otsuka, H. Sakamoto, and K. Shimizu, Shape Memory Effects in Alloys (Ed. J. Perkins) (Boston, MA: Springer: 1975). https://doi.org/10.1007/978-1-4684-2211-5_12
  32. V.A. Lokhov, Y.I. Nyashin, and A.G. Kuchumov, Russian J. Biomechanics, 11, No. 3: 9 (2007) (in Russian).
  33. O.I. Mendeleeva and N.I. Ivanickiy, Litiyo i Metallurgiya, No. 4: 179 (2009) (in Russian).
  34. D.T. Pierce, J.A. Jiménez, J. Bentley, D. Raabe, C. Oskay, and J.E. Wittig, Acta Mat., 68: 238 (2014). https://doi.org/10.1016/j.actamat.2014.01.001
  35. T. Hickel, B. Grabowski, F. Körmann, and J. Neugebauer, J. Phys.: Cond. Mat., 24: 053202 (2012). https://doi.org/10.1088/0953-8984/24/5/053202
  36. A.S. Tikhonov, Ehffekt Sverkhplastichnosti Metallov i Splavov [Effect of Superplasticity of Metals and Alloys] (Moscow: Nauka: 1978) (in Russian).
  37. E.N. Chumachenko, O.M. Smirnov, and M.A. Tsepin, Sverkhplastichnost’: Materialy, Teoriya, Tekhnologii. Seriya ‘Sinergetika: ot Proshlogo k Budushchemu’ [Superplasticity: Materials, Theory, Technologies. Series Synergetics: from Past to Future] (Moscow: Komkniga: 2005) (in Russian).
  38. A.P. Zhiliaev and A.I. Pshenichnyuk, Sverkhplastichnost’ i Granitsy Zeren v Ul’tramelkozernistykh Materialakh [Superplasticity and Grain Boundaries in the Ultra-Fine-Grained Materials] (Moscow: Fizmatlit: 2008) (in Russian).
  39. M.F. Ashby and R.A. Verral, Acta Metall., 21, No. 2: 149 (1973). https://doi.org/10.1016/0001-6160(73)90057-6
  40. A.P. Cheiliakh, M.A. Hussein, and G.V. Sheichenko, Proc. Int. Sci.-Tech. Conf. ‘Modern Aspects of Physical Metallurgy and Heat Treatment of Metals’ (Marіupol: PSTU: 2010) (in Ukrainian).
  41. W.M. Huang, Z. Ding, C.C. Wang, J. Wei, Y. Zhao, and H. Purnawali, Materials Today, 13, Nos. 7–8: 54 (2010). https://doi.org/10.1016/S1369-7021(10)70128-0
  42. F. Casciati, L. Faravelli, and L. Petrini, Proc. 4th Euro. Conf. on Smart Structures and Materials and 2nd Int. Conf. on Micromechanics, Intelligent Materials and Robotics (July 6–8, 1998) (Harrogate, UK: 1998), p. 321.
  43. V.G. Artyukh, G.V. Korchagin, and V.I. Logozinskiy, Zakhyst Metalurgіynykh Mashyn vіd Polomok: Zb. Nauk. Prats’, No. 10: 159 (2008) (in Ukrainian).
  44. URL: http://www.chemport.ru/data/chemipedia/article_6275.html.
  45. S.G. Plachkova, I.V. Plachkov, N.I. Dunaevskaya, V.S. Podgurenko, B.A. Shilyaev, Yu.A. Landau, I.Ya. Sigal, and G.D. Danilko, Razvitie Atomnoy Ehnergetiki i Obyedinyonnykh Ehnergosistem. Kniga 4. Seriya ‘Ehnergetika. Istoriya. Nastoyashchee i Budushchee’ (Kiev: Coal Energy Technology Institute and National Technical University of Ukraine ‘Igor Sikorsky Kyiv Polytechnic Institute’: 2010) (in Russian).
  46. V.Yu. Topolov and A.E. Panich, Fizika Segneto- i P’ezoehlektrikov: Uchebnoe Posobie [Physics of Ferro- and Piezoelectrics: A Tutorial] (Rostov: South Federal University 2009) (in Russian).
  47. G.M. Suchkov, S.V. Khashchina, and O.N. Petrishchev, Tekhnicheskaya Diagnostika i Nerazrushayushchiy Kontrol, No. 1: 23 (2012) (in Russian).
  48. A. Kholkin, B. Jadidian, and A. Safari, Encyclopedia of Smart Materials (Ed. M. Schwartz) (New York: John Wiley & Sons: 2002).
  49. S. Egusa and N. Iwasawa, Smart Materials and Structures, 7, No. 4: 438 (1998). https://doi.org/10.1088/0964-1726/7/4/002
  50. I.Ya. Orlov, V.A. Odnosevtsev, D.N. Ivlev, and S.Yu. Lupov, Osnovy Radioehlektroniki: Uchebnoye Posobie [Fundamentals of Radioelectronics: A Tutorial] (Nizhny Novgorod: N.I. Lobachevsky State University of Nizhny Novgorod: 2011) (in Russian).
  51. A.N. Antonov, A.M. Arkharov, and I.A. Arkharov, Mashiny Nizkotemperaturnoy Tekhniki. Kriogennyye Mashiny i Instrumenty: Uchebnik [Machines of Low-Temperature Techniques. Cryogenic Machines and Tools] (Eds. A.M. Arkharov and I.K. Butkevich) (Moscow: Moscow State Tech. Univ.: 2011) (in Russian).
  52. V.V. Shmidt, Vvedenie v Fiziku Sverkhprovodnikov [Introduction to the Physics of Superconductors] (Moscow: MCNMO: 2000) (in Russian).
  53. U. Bolton, Konstruktsionnyye Materialy: Metally, Splavy, Polimery, Keramika, Kompozity: Karmannyy Spravochnik [Constructional Materials: Metals, Alloys, Polymers, Ceramics, Composites: A Vade Mecum] (Moscow: Dodeka-KhKhI: 2004) (in Russian).
  54. V.E. Sytnikov, V.S. Vysotskiy, and S.S. Ivanov, Energiya: Ekonomika, Tekhnika, Ekologiya, 2: 13 (2007) (in Russian).
  55. A.I. Lebedev, Fizika Poluprovodnikovykh Priborov [Physics of Semiconductor Devices] (Moscow: Fizmatlit: 2008) (in Russian).
  56. E.Yu. Perlin, T.A. Vartanyan, and A.V. Fedorov, Fizika Tverdogo Tela. Optika Poluprovodnikov, Diehlektrikov, Metallov: Uchebnoye Posobie [Solid State Physics. Optics of Semiconductors, Dielectrics, Metals: A Tutorial] (St. Petersburg: Univ. ITMO: 2008) (in Russian).
  57. K.V. Shalimova, Fizika Poluprovodnikov: Uchebnik [Physics of Semiconductors: A Textbook] (St. Petersburg: Lan’: 2010) (in Russian).
  58. A. Khokhlov and P. Pavlov, Fizika Tverdogo Tela: Uchebnik [Solid State Physics: A Textbook] (Moscow: Lenand: 2015) (in Russian).
  59. A.N. Magunov, Lazernaya Termometriya Tverdykh Tel [Laser Thermometry of Solids] (Moskva: Fizmat-lit: 2002) (in Russian).
  60. G.I. Epifanov, Fizika Tverdogo Tela: Uchebnoye Posobie [Solid State Physics: A Tutorial] (St. Petersburg: Lan’: 2011) (in Russian).
  61. V.A. Mekheda, Tenzometricheskiy Metod Izmereniya Deformatsiy: Uchebnoye Posobie [Tensometric Method of the Strain Gaging: A Tutorial] (Samara: Samara State Aerospace University Publ.: 2011) (in Russian).
  62. E. Meylikhov, Magnetizm. Osnovy Teorii: Uchebnoye Posobie [Magnetism. Theory Fundamentals: A Tutorial] (Dolgoprudny: Intellekt: 2014) (in Russian).
  63. L.V. Osipov, Ul’trazvukovyye Diagnosticheskie Pribory. Rezhimy, Metody i Tekhnologii [Ultrasonic Diagnostic Devices. Modes, Methods and Technologies] (Moscow: Izomed: 2011) (in Russian).
  64. URL: https://www.booksite.ru/fulltext/1/001/009/001/232935116.jpg.
  65. M.V. Gitlits, Magnitnaya Zapis’ Signalov [Magnetic Record of Signals] (Moscow: Radio i Sviaz’: 1990) (in Russian).
  66. S.A. Orlov and B.Ya. Tsil’ker, Organizatsiya EVM i Sistem: Uchebnik dlya VUZov [Organization of Computers and Systems: A Textbook for Universities] (St. Petersburg: Piter: 2014) (in Russian).
  67. Zapominayushchie Ustroystva Bol’shoy Yomkosti [High-Capacity Memory Devices] (Ed. B.M. Kagan) (Moscow: Energiya: 2012) (in Russian).
  68. URL: http://ampersandfacts.blogspot.com/2016/12/blog-post_694.html.
  69. URL: http://www.pppa.ru/additional/02phy/05/phy_emission_42.php.
  70. URL: https://www.krugosvet.ru/enc/nauka_i_tehnika/fizika/termoelektrichestvo.html.
  71. GOST 3044-84, Preobrazovateli Termoehlektricheskie. Nominal‘nyye Stati-cheskie Kharakteristiki Preobrazovaniya.
  72. A.S. Borovik-Romanov, Lektsii po Nizkotemperaturnomu Magnetizmu. Magnitnaya Simmetriya Antiferromagnetikov [Lections on Low-Temperature Magnetism. Magnetic Symmetry of Antiferromagnetics] (Moscow: Tsifrovichok: 2010) (in Russian).
  73. URL: http://www.nanonewsnet.ru/articles/2008/nanochastitsy-na-podeme-universalnye-uglerodnye-materialy-dlya-meditsiny-inzhenerii.
  74. D.I. Khomskii, Physics, 2: 20 (2009) (in Russian).
  75. A.R. Akbashev and A.R. Kaul, Russ. Chem. Rev., 80, No. 12: 1159 (2011) (in Russian). https://doi.org/10.1070/RC2011v080n12ABEH004239
  76. S.A. Nikitin, Soros Educational Journal, 8, No. 2: 92 (2004) (in Russian).
  77. O. Baklitskaya, Nauka i Zhizn’, No. 11 (2007) (in Russian). https://www.nkj.ru/archive/articles/12042
  78. A.G.M. Henrie and J.D. Carlson, Encyclopedia of Smart Materials (Ed. M. Schwartz) (New York: John Wiley & Sons: 2002).
  79. J.D. Carlson and J.L. Sproston, Proc. 7th Int. Conf. on New Actuators (19–21 June, 2000) (Bremen: Messe Bremen GmbH: 2000).
  80. L. Ma, F. Zheng, and X. Zhao, J. Intell. Mater. Syst. Struct., 26, No. 14: 1936 (2015). https://doi.org/10.1177/1045389X15586450
  81. E.V. Korobko, Z.A. Novikova, E.S. Sermyazhko, A.N. Murashkevich, and L.S. Eshenko, J. Intell. Mater. Syst. Struct., 26, No. 14: 1782 (2015). https://doi.org/10.1177/1045389X15577648
  82. E.M. Koktsinskaya, Videonauka: Setevoy Zhurnal, No. 1: 1 (2016) (in Russian). https://videonauka.ru/stati/13-tekhnicheskie-nauki/42-umnye-materialy-i-ikh-primenenie-obzor
  83. V.M. Anishchik, V.M. Kaptsevich, and N.K. Tolochko, Intellektual’nyye Ma-terialy: Posobie [Smart Materials: A Tutorial] (Minsk: BGATU: 2014) (in Russian).
  84. A.A. Tager, Fizikokhimiya Polimerov (Ed. A.A. Askadsky) (Moscow: Nauchnyy Mir: 2007) (in Russian).
  85. M.L. Zheludkevich, J. Tedim, and M.G.S. Ferreira, Electrochim. Acta, 82: 314 (2012). https://doi.org/10.1016/j.electacta.2012.04.095
  86. M.R. Kessler, Proc. IMechE. Vol. 221 (Apr. 1) Part G: J. Aerospace Engineering (G4), (2007), p. 479.
  87. J.A. Carlson, J.M. English, and D.I. Coe, Smart Mater. Struct., 15, No. 5: N129 (2006). https://doi.org/10.1088/0964-1726/15/5/N05
  88. J.D. Rule, S.R. Wilson, and J.S. Moore, J. Am. Chem. Soc., 125, No. 43: 12992 (2003). https://doi.org/10.1021/ja0359198
  89. O.E. Filippova, Polymer Science. Series C, 42, No. 12: 2328 (2000) (in Russian).
  90. O.E. Filippova, Priroda, No. 8: 11 (2005) (in Russian).
  91. Yu. Galaev, Russ. Chem. Rev., 64, No. 5: 471 (1995) https://doi.org/10.1070/RC1995v064n05ABEH000161
  92. Handbook of Pharmaceutical Controlled Release Technology (Ed. D.L. Wise) (New York City: Marcel Dekker: 2002).
  93. Yu.A. Mikhailin, Polimernyye Materialy, No. 8 (63): 6 (2004); ibid., No. 9 (64): 34 (2004); ibid., No. 10 (65): 24 (2004); ibid, No. 12: 20 (67) (2004) (in Russian).
  94. L.L. Hench, J. Am. Ceramic Soc., 74, No. 7: 1487 (1991). https://doi.org/10.1111/j.1151-2916.1991.tb07132.x
  95. W. Vogel und W. Holland, Angewandte Chemie, 26, H. 6: 527 (1987). https://doi.org/10.1002/anie.198705271
  96. J. Wilson, Glass … Current Issues. NATO ASI Series (Series E: Applied Sciences) (Eds. A.F. Wright and J. Dupuy) (Dordrecht: Springer: 1985), Vol. 92. https://doi.org/10.1007/978-94-009-5107-5_56
  97. L.G. Machado and M.A. Savi, Braz. J. Med. Biol. Res., 36, No. 6: 683 https://doi.org/10.1590/S0100-879X2003000600001
  98. L.L. Hench and J. Wilson, Science, 226 (1984). https://doi.org/10.1126/science.6093253
  99. С.P.A.Т. Klein, J.M.A. de Blieck-Hogervorst, J.G.C. Wolke, and K. de Groot, Adv. Biomaterials, 9: 277 (1990).
  100. С.P.A.Т. Klein, P. Patka, H.В.М. van der Lubbe, J.G.C. Wolke, and K.J. de Groot, J. Biomed. Mat. Res., 25, No. 1: 53 (1991). https://doi.org/10.1002/jbm.820250105
  101. Y. Ikada, Biomaterials, 15, No. 10: 725 (1994). https://doi.org/10.1016/0142-9612(94)90025-6
  102. R.M. Shelton and J.E. Davies, The Bone-Biomaterial Interface (Ed. J.E. Davies) (Toronto: Toronto University Press: 1991).
  103. E. Cooper, R. Wiggs, D.A. Hutt, L. Parker, G.J. Leggett, and T.L. Parker, J. Mat. Chem., 7: 435 (1997). https://doi.org/10.1039/a607204f
  104. D.B. Haddow, R.M. France, R.D. Short, S. MacNeil, R.A. Dawson, G.J. Leggett, and E. Cooper, J. Biomed. Mat. Res., 47, No. 3: 379 (1999).
  105. M. Matsuzawa, R.S. Potember, and V. Krauthamer, Brain Res., 667, No. 1: 47 (1994). https://doi.org/10.1016/0006-8993(94)91712-4
  106. M. Sittinger, J. Bujia, N. Rotter, D. Reitzel, W.W. Minuth, and G.R. Burmester, Biomaterials, 17, No. 3: 237 (1996). https://doi.org/10.1016/0142-9612(96)85561-X
  107. V.D. Voronkov, Presentation on the Round Worktable ‘Tribology in Russia: Current Problems and Prospects of Development’ (15.01.2009, Moscow). https://popnano.ru/events/index.php?task=event&id=212.
  108. V.N. Ivashchenko, Ispol’zovanie Nanoalmazov v Smazochnykh Materialakh (05.08.2014). http://nanodiamond.com.ua/publ002
  109. K. Sundaresan, A. Sivakumar, C. Vigneswaran, and T. Ramachandran, J. Industrial Textiles, 41, No. 3: 259 (2012). https://doi.org/10.1177/1528083711414962
  110. H.J. Lee, J. Kim, and C.H. Park, Textile Research Journal, 84, No. 3: 267 (2014). https://doi.org/10.1177/0040517513494258
  111. M. Ashraf, Ph. Champagne, Ch. Campagne, A. Perwuelz, F. Dumont, and A. Leriche, J. Industrial Textiles, 45, No. 6: 1440 (2014). https://doi.org/10.1177/1528083714562086
  112. G.B Goffredo, E. Quagliarini, F. Bondioli, and F. Bondioli, Proc. Inst. Mech. Eng. Part N: J. Nanoeng. Nanosys., 228, No. 1: 2 (2014). https://doi.org/10.1177/1740349913506421
  113. A.P. Chernysh, Dostizheniya Nauki i Tekhniki APK, No. 10: 67 (2010) (in Russian).
  114. S.S. Samotugin and L.K. Leshchinskiy, Plazmennoye Uprochnenie Instrumental’nykh Materialov [Plasma Hardening of Tool Materials] (Donetsk: Novy Mir: 2002) (in Russian).
  115. S.A. Uchitel’ and V.A. Stets’, Obzornaya Informatsiya [Review Information] (Moscow: Institute ‘Chermetinformatsiya’. Series ‘Obogashchenie Rud’: 1991), No. 1 (in Russian).
  116. A.P. Cheylyakh, S.V. Prekrasnyy, P.N. Kiril’chenko, V.I. Sirota, O.V. Karaulanov, and S.E. Savinkin, Proc. Int. Conf. ‘Unіversitets’ka Nauka-2010’ (Marіupol: PSTU: 2010), vol. 1 (in Russian).
  117. V.I. Dyrda, T.A. Oleynik, and I.V. Khmel’, Zbagachennya Korysnykh Kopalyn, No. 45 (86): 52 (2011) (in Russian).
  118. V.I. Dyrda, V.A. Kalashnikov, S.L. Evenko, A.E. Markelov, I.V. Khmel’, and A. Stoyko, Geotekhnicheskaya Mekhanika, No. 106: 15 (2012) (in Russian).
  119. A.A. Tarasenko and V.V. Chobitok, Dinamicheskaya Zashchita. Izrail’skiy Shchit Kovalsya v … SSSR (Brone-sait: December 2016) (in Russian). http://armor.kiev.ua/Tank/dz/1968
  120. A. Tarasenko and I.B. Chepkov, Tekhnika i Vooruzhenie Vchera, Segodnya, Zavtra, No. 5: 20 (2007) (in Russian).
  121. І.B. Chepkov, M.G. Bugera, and M.І. Vas’kіvs’kiy, Zbіrnyk Naukovykh Prats’ TsNDІ OVT ZS Ukrayiny, No. 58: 160 (2015) (in Russian).
  122. T.D. Kozhina and V.Y. Eroshkov, Research Bulletin SWorld: Modern Scientific Research and Their Practical Application, J21310: 117 (2013).
  123. L.Ya. Ropyak, I.P. Shatskyi, and M.V. Makoviichuk, Metallofizika i Noveishie Tekhnologii, 41, No. 5: 647 (2019) (in Ukrainian). https://doi.org/10.15407/mfint.41.05.0647
  124. T.M. Radchenko, V.A. Tatarenko, I.Yu. Sagalianov, and Yu.I. Prylutskyy, Graphene: Mechanical Properties, Potential Applications and Electrochemical Performance (Ed. B.T. Edwards) (Hauppauge, NY, USA: Nova Science Publishers, Inc.: 2014), Ch. 7, p. 219.
  125. I.Yu. Sahalianov, T.M. Radchenko, V.A. Tatarenko, and Yu.I. Prylutskyy, Annals of Physics, 398: 80 (2018). https://doi.org/10.1016/j.aop.2018.09.004
  126. T.M. Radchenko and V.A. Tatarenko, Solid State Phenomena, 150: 43 (2009). https://doi.org/10.4028/www.scientific.net/SSP.150.43
  127. I.Yu. Sagalianov, T.M. Radchenko, Yu.I. Prylutskyy, V.A. Tatarenko, and P. Szroeder, Eur. Phys. J. B, 90, No. 6: 112 (2017). https://doi.org/10.1140/epjb/e2017-80091-x
  128. URL: https://viam.ru/intelligent_polymer.
  129. G.M. Gunyayev, I.N. Gulyayev, R.E. Shalin, G.F. Zhelezina, and Yu.S. Il’in, Proc. Int. Conf. ‘Teoriya i Praktika Tekhnologiy Proizvodstva Izdeliy iz Kompozitsionnykh Materialov i Novykh Metallicheskikh Splavov (2004) (in Russian). https://www.viam.ru/public/files/2003/2003-203897.pdf
  130. E.V. Lutsenko, 4th Russian Symposium ‘Poluprovodnikovyye Lazery: Fizika i Tekhnologiya’ (St. Petersburg, 10–13 November, 2014) (St. Petersburg: 2014), p. 13 (in Russian).
  131. N.I. Borodin, P.V. Kryukov, A.B. Popov, S.N. Ushakov, and A.B. Shestakov, Quantum Electron., 35, No. 6: 511 (2005). https://doi.org/10.1070/QE2005v035n06ABEH006573
  132. A.E. Zhukov, A.R. Kovsh, E.V. Nikitina, V.M. Ustinov, and Zh.I. Alferov, Fizika i Tekhnika Poluprovodnikov, 41, No. 5: 625 (2007) (in Russian).
  133. URL: http://bourabai.kz/physics/lasers.html.
  134. N.V. Usol’tseva, O.B. Akopova, V.V. Bykova, A.I. Smirnova, and S.A. Pikin, Zhidkie Kristally: Diskoticheskie Mezogeny [Liquid Crystals: Discotic Mesogens] (Ed. N.V. Usol’tseva) (Ivanovo: Ivanovo State University: 2004) (in Russian).
  135. L.V. Asryan, S. Luryi, and R.A. Suris, IEEE J. Quant. Electron., 39, No. 3: 404 (2003). https://doi.org/10.1109/JQE.2002.808171
  136. L.M. Blinov, Zhidkie Kristally: Struktura i Svoystva [Liquid Crystals: Structure and Properties] (Moscow: Librokom: 2012) (in Russian).
  137. V.P. Romanov, Soros Educational Journal, 7, No. 1: 96 (2001) (in Russian).
  138. G.S. Landsberg, Optika [Optics] (Moscow: Fizmatlit: 2003) (in Russian).
  139. I.A. Razumovskiy, Interferentsionno-Opticheskie Metody Mekhaniki Deformiruyemogo Tvyordogo Tela [Interference-Optical Methods of Deformable-Solid Mechanics] (Moscow: Moscow State Tech. Univ.: 2007) (in Russian).
  140. URL: https://studfile.net/preview/604014/page:19.
  141. T.M. Radchenko and V.A. Tatarenko, Carbon Nanomaterials in Clean Energy Hydrogen Systems. NATO Science for Peace and Security Series C: Environmental Security (Eds. B. Baranowsky, S.Y. Zaginaichenko, D.V. Schur, V.V. Skorokhod, and A. Veziroglu) (Dordrecht: Springer: 2008), p. 489. https://doi.org/10.1007/978-1-4020-8898-8_62
  142. T.M. Radchenko and V.A. Tatarenko, Hydrogen Materials Science and Chemistry of Carbon Nanomaterials. NATO Security through Science Series A: Chemistry and Biology (Eds. T.N. Veziroglu, S.Yu. Zaginaichenko, D.V. Schur, B. Baranowski, A.P. Shpak, V.V. Skorokhod, and A. Kale) (Dordrecht: Springer: 2007), p. 229. https://doi.org/10.1007/978-1-4020-5514-0_28
  143. V.A. Tatarenko, T.M. Radchenko, and V.M. Nadutov, Metallofizika i Noveishie Tekhnologii, 25, No. 10: 1303 (2003) (in Ukrainian).
  144. V.A. Tatarenko, S.M. Bokoch, V.M. Nadutov, T.M. Radchenko, and Y.B. Park, Defect and Diffusion Forum, 280–281: 29 (2008). https://doi.org/10.4028/www.scientific.net/DDF.280-281.29
  145. V.A. Tatarenko and T.M. Radchenko, Uspehi Fiziki Metallov, 3, No. 2: 111 (2002) (in Ukrainian). https://doi.org/10.15407/ufm.03.02.111
  146. Т.М. Radchenko and V.А. Tatarenko, Uspehi Fiziki Metallov, 9, No. 1: 1 (2008) (in Ukrainian). https://doi.org/10.15407/ufm.09.01.001
  147. URL: http://www.physics-guide.ru/phygs-675-1.html.
  148. M.G. Tomilin and G.E. Nevskaya, Fotonika Zhidkikh Kristallov [Photonics of Liquid Crystals] (St. Petersburg: Polytech. Univ.: 2011) (in Russian).
  149. T.V. Voloshina, I.V. Kavetskaya, and L.Yu. Leonova, Lyuminestsentsiya Kristallov [Luminescence of Crystals] (Voronezh: Voronezh State Univ.: 2012) (in Russian).
  150. B.T. Atashov, A.B. Uteniyazova, and I. Nuritdinov, Vestnik Karakalpakskogo Otdeleniya Akademii Nauk Respubliki Uzbekistan, 226, No. 1: 18 (2012) (in Russian).
  151. K.S. Zhuravlev, A.M. Gilinskiy, A.V. Tsarev, and A.E. Nikolaenko, Fizika i Tekhnika Poluprovodnikov, 35, No. 8: 932 (2001) (in Russian).
  152. Yu.K. Egorov-Tismenko, Kristallografiya i Kristallokhimiya: Uchebnik [Crystallography and Crystal Chemistry: A Textbook] (Ed. V.S. Urusov) (Moscow: KDU: 2005) (in Russian).
  153. A.A. Marakushev, A.V. Bobrov, N.N. Pertsev, and A.N. Fenogenov, Petrologiya. I. Osnovy Kristallooptiki i Porodoobrazuyushchie Mineraly [Petrology. I. Fundamentals of Crystal Optics and Rock-Forming Minerals] (Moscow: Nauchny Mir: 2000) (in Russian).
  154. M. Montalti, A. Credi, L. Prodi, and M.T. Gandolfi, Handbook of Photochemistry (Boca Raton: CRP Press: 2006). https://doi.org/10.1201/9781420015195
  155. A.B. Matevosyan, Chemical Journal of Armenia, 69, No. 4: 446 (2016) (in Russian).
  156. L. Vacareanu, A.-M. Catargiu, and M. Grigoras, High Perform. Polym., 27, No. 4: 476 (2015). https://doi.org/10.1177/0954008314555529
  157. J. Mardaljevic, R. K. Waskett, and B. Painter, Lighting Res. Technol., 48, No. 3: 267 (2015). https://doi.org/10.1177/1477153515620339
  158. URL: https://hype.tech/@id103/chto-takoe-metamaterialy-i-primery-ih-ispolzovaniya-4eqrbl97.
  159. M.E. Garber, Iznosostoykie Belyye Chuguny: Svoystva, Struktura, Tekhnologiya, Ehkspluatatsiya [Wear Resistant White Cast Irons: Properties, Structure, Technology, Operation] (Moscow: Mashinostroenie: 2010) (in Russian).
  160. M.M. Stadnyk, G.І. Slin’ko, І.Ya. Gorbachevs’ky, and І.P. Volchok, Novі Materіaly і Tekhnologii v Metalurgii ta Mashinobuduvannі, No. 2 (2000) (in Ukrainian).
  161. Z.A. Duriagіna, O.І. Eliseeva, V.M. Fedіrko, and V.P. Tsіsar, Metaloznavstvo ta Termіchna Obrobka Metalіv, No. 3: 77 (2001) (in Ukrainian).
  162. Z. Duriagina and O.I. Eliseeva, Inżyneria Powierzchni, No. 1: 43 (2005).
  163. H.N. Gray and D.E. Bergbreiter, Environmental Health Perspectives, 105, Suppl. 1: 55 (1997). https://doi.org/10.1289/ehp.97105s155
  164. V.P. Komov and V.N. Shvedova, Biokhimiya [Biochemistry] (Moscow: Drofa: 2004) (in Russian).
  165. G.A. Kizima, Bol’shaya Ehntsiklopediya Sadovoda-Ogorodnika [Big Encyclopaedia of the Gardener] (Moscow: Izdatel’stvo ‘Eksmo’: 2017) (in Russian).
  166. URL: http://biofile.ru/bio/19417.html.
  167. URL: https://refeng.ru/klimat-kamery.
  168. O.I. Soshko and V.O. Soshko, Progress in Physics of Metals, 20, No. 1: 96 (2019). https://doi.org/10.15407/ufm.20.01.096
  169. L.Ya. Ropyak, T.O. Pryhorovska, and K.H. Levchuk, Progress in Physics of Metals, 21, No. 2: 274 (2020). https://doi.org/10.15407/ufm.21.02.274
  170. V.V. Lizunov, I.M. Zabolotnyy, Ya.V. Vasylyk, I.E. Golentus, and M.V. Ushakov, Progress in Physics of Metals, 20, No. 1: 75 (2019). https://doi.org/10.15407/ufm.20.01.075
  171. T.M. Radchenko, V.A. Tatarenko, V.V. Lizunov, V.B. Molodkin, I.E. Golentus, I.Yu. Sahalianov, and Yu.I. Prylutskyy, Phys. Status Solidi B, 256, No. 5: 1800406 (2019). https://doi.org/10.1002/pssb.201800406
  172. V.B. Molodkin, H.I. Nizkova, Ye.I. Bogdanov, S.I. Olikhovskii, S.V. Dmitriev, M.G. Tolmachev, V.V. Lizunov, Ya.V. Vasylyk, A.G. Karpov, and O.G. Voytok, Uspehi Fiziki Metallov, 18, No. 2: 177 (2017) (in Ukrainian). https://doi.org/10.15407/ufm.18.02.177
  173. A.P. Cheiliakh and Y.A. Cheylyakh, Int. Sci. Method. Conf. ‘University Science–2016’: ‘Today Material Engineering for realization of the ‘MMATENG’ Project Objectives’ (Mariupol, Ukraine, May 19–20, 2016) (in Russian).
  174. A.P. Cheylyakh, Stroitel’stvo, Materialovedenie, Mashinostroenie: Sb. Nauchn. Trudov, No. 15, Pt. 4.1: 139 (2002) (in Russian).