Implementation of Physical Effects in the Operation of Smart Materials to Form Their Properties

O. P. Cheiliakh and Ya. O. Cheiliakh

State Higher Educational Institution ‘Pryazovskyi State Technical University’, UA-87555 Mariupol, 7 Universytetska Str., Ukraine

Received 12.03.2020; final version — 03.09.2020 Download PDF logo PDF

Abstract
The regularities of the realization of physical phenomena and phase-structural transformations developing during the operation of smart materials of various physical nature, composition and functional applications, which provide the formation of their physical, mechanical, and operational properties, are generalized. We propose a classification scheme of physical and chemical phenomena, which covers phase and structural transformations in metal alloys, atomic-nanostructured, electrical, magnetic, mechanical, optical, chemical, and biochemical phenomena, on which the formation of the properties of smart materials (metallic and non-metallic, solid and liquid) is based in the process of their operation. The main features of these phenomena and transformations are formulated; they determine the expected positive effect that manifests itself in the emerging or improving individual properties or their complex. A review analysis of the groups of smart materials of various physical nature and functional purposes is carried out, implemented in them during the operation of physical phenomena, transformations and effects leading to the formation of conditioned properties. The features of smart materials of various physical nature and the phenomena (transformations) realized within them during operation are considered. Models of the phase and structural evolution of traditional (stable) and smart (metastable) materials, which are self-organizing during operation due to the implementation of physical phenomena, transformations, and effects throughout their life cycle, are proposed. The necessity of controlling these processes for the formation of improved properties as well as a stable and long life cycle is shown. Based on the analysis and review generalization, the principles of designing smart (metastable) materials with unique properties are formulated.

Keywords: smart materials, metastability, physical phenomena, positive effect, improved properties.

Citation: O. P. Cheiliakh and Ya. O. Cheiliakh, Implementation of Physical Effects in the Operation of Smart Materials to Form Their Properties, Progress in Physics of Metals, 21, No. 3: 363–463 (2020) (in Ukrainian)


References (174)  
  1. A.N. Kondratenko and T.A. Golubkova, Konstruktsii iz Kompozitsionnykh Materialov, No. 1: 24 (2009) (in Russian).
  2. R. Bahsvar, N. Ovajdja, P. Ganguli, A. Hamfris, A. Robisson, H. Tu, N. Uiks, G.H. Mak-Kinli, and F. Poshe, Neftegazovoe Obozrenie, 20, No. 1: 38 (Spring 2008) (in Russian). https://connect.slb.com/~/media/Files/resources/oilfield_review/russia08/spr08/composite.pdf
  3. Encyclopedia of Smart Materials (Ed. M. Schwartz) (New York: John Wiley & Sons: 2002).
  4. K. Worden, W.A. Bullough, and J. Haywood, Smart Technologies (Singapore: World Scientific Publishing Co. Pte. Ltd.: 2003).
  5. URL: https://en.wikipedia.org/wiki/Smart_material.
  6. S.V. Shishkin and N.A. Makhutov, Raschyot i Proektirovanie Silovykh Konstruktsiy na Splavakh s Ehffektom Pamyati Formy [Calculation and Projection of Force Constructions on the Shape Memory Alloys] (Izhevsk: Izd. ‘Regulyarnaya i Khaoticheskaya Dinamika’: 2007) (in Russian).
  7. A.P. Cheiliakh, Ehkonomnolegirovannyye Metastabil’nyye Splavy i Uprochnyayushchie Tekhnologii (Mariupol: PSTU: 2009) (in Russian).
  8. G. Nicolis and I. Prigogine, Self-Organization in Nonequilibrium Systems. From Dissipative Structures to Order through Fluctuations (New York: J. Wiley & Sons: 1977.
  9. V.M. Schastlivcev and M.A. Filippov, Met. Sci. Heat Treat., 47: 3 (2005). https://doi.org/10.1007/s11041-005-0020-8
  10. L.G. Korshunov, S.M. Usherenko, O.M. Dybov, and N.L. Chernenko, Phys. Met. Metallogr., 91: 610 (2001).
  11. M.A. Filippov, V.S. Litvinov, and Yu.R. Nemirovskiy, Stali s Metastabil’nym Austenitom [Steels with Metastable Austenite] (Moscow: Metallurgiya: 1988) (in Russian).
  12. L.S. Malinov and V.L. Malinov, Ehkonomnolegirovannyye Splavy i Uprochnyayushchie Tekhnologii s Martensitnymi Prevrashcheniyami [Low-Alloyed Alloys and Hardening Technologies with Martensite Transformations] (Kharkov: NSC KIPT: 2007) (in Russian).
  13. I.N. Bogachev and R.I. Mints, Povyshenie Kavitatsionnoy Stoikosti Detaley Mashin [Improving the Cavitation Resistance of Machine Parts] (Moscow: Mashinostroenie: 1964) (in Russian).
  14. Yu.G. Virakhovskiy, I.Ya. Georgieva, Ya.B. Gurevich, V.N. Zambrzhitskiy, O.P. Maksimoca, M.S. Nogaev, L.M. Utevskiy, and R.I. Ehntin, Fiz. Met. Metalloved., 32, No. 2: 348 (1971) (in Russian).
  15. L.G. Zhuravlev, V.V. Golikova, and M.M. Shteinberg, Fiz. Met. Metalloved., 27, No. 3: 478 (1969) (in Russian).
  16. V.F. Zackay, E.R. Parker, D. Fahr, and R. Bush, Trans. Am. Soc. Metals, 60, No. 1: 252 (1969).
  17. I.N. Bogachev and L.I. Lepekhina, Izvestiya AN SSSR. Metally, No. 3: 157 (1974) (in Russian).
  18. V.S. Popov, N.N. Brykov, and N.S. Dmitrichenko, Iznosostoikost’ Press-Form Ogneupornogo Proizvodstva [Wear-Resistance of Refractory Production] (Moscow: Metallurgiya: 1971) (in Russian).
  19. A.L. Geller, Tekhnologiya i Organizatsiya Proizvodstva, No. 3: 46 (1973) (in Russian).
  20. Ya.A. Cheiliakh, A.P. Cheiliakh, and V.V. Chigarev, Samouprochnyayushchiesya Iznosostoikie Splavy [Self-Hardening Wear-Resistant Alloys] (Mariupol: OOO ‘PPRS’: 2016) (in Russian).
  21. A.P. Cheiliakh, Novі Materіaly і Tekhnologіi v Metalurgіi ta Mashynobuduvannі, No. 2: 31 (2002) (in Ukrainian).
  22. B.A. Voynov, Iznosostoikie Splavy i Pokrytiya [Wear-Resistant Steels and Coatings] (Moscow: Mashinostroenie: 1980) (in Russian).
  23. Yu.G. Bobro, Trudy Nauchno-Prakticheskogo Simpoziuma OTTOM (Kharkov: NSC KIPT: 2000), p. 115 (in Russian).
  24. A.P. Cheiliakh, Y.A. Cheylyakh, and Yu.S. Samotugina, Strengthening Technologies of Materials Treatment (Leuven, Belgium–Mariupol, Ukraine: Ltd. ‘PPNS’: 2016).
  25. Yu.K. Mashkov, Tribofizika Metallov i Polimerov [Tribophysics of Metals and Polymers] (Omsk: Izd-vo OmGTU: 2013) (in Russian).
  26. V.S. Zolotarevskiy, Mekhanicheskie Svoistva Metallov [Mechanical Properties of Metals] (Moscow: Metallurgiya: 1998) (in Russian).
  27. A.P. Cheiliakh, Fiz. Met. Metalloved., No. 10: 120 (1992) (in Russian).
  28. V.A. Lobodyuk, Usp. Fiz. Met., 17, No. 2: 89 (2016). https://doi.org/10.15407/ufm.17.02.089
  29. L.A. Chernega, Sustainable Innovative Development: Design and Management, 11, No. 4: 29 (2015) (in Russian).
  30. A.I. Razov, Mekhanika Materialov s Fazovymi Prevrashcheniyami [Mechanics of Materials with Phase Transformations] (Thesis Diss. Cand. Phys.-Math. Sci.) (Leningrad: Leningrad State Univ.: 1980) (in Russian).
  31. K. Otsuka, H. Sakamoto, and K. Shimizu, Shape Memory Effects in Alloys (Ed. J. Perkins) (Boston, MA: Springer: 1975). https://doi.org/10.1007/978-1-4684-2211-5_12
  32. V.A. Lokhov, Y.I. Nyashin, and A.G. Kuchumov, Russian J. Biomechanics, 11, No. 3: 9 (2007) (in Russian).
  33. O.I. Mendeleeva and N.I. Ivanickiy, Litiyo i Metallurgiya, No. 4: 179 (2009) (in Russian).
  34. D.T. Pierce, J.A. Jiménez, J. Bentley, D. Raabe, C. Oskay, and J.E. Wittig, Acta Mat., 68: 238 (2014). https://doi.org/10.1016/j.actamat.2014.01.001
  35. T. Hickel, B. Grabowski, F. Körmann, and J. Neugebauer, J. Phys.: Cond. Mat., 24: 053202 (2012). https://doi.org/10.1088/0953-8984/24/5/053202
  36. A.S. Tikhonov, Ehffekt Sverkhplastichnosti Metallov i Splavov [Effect of Superplasticity of Metals and Alloys] (Moscow: Nauka: 1978) (in Russian).
  37. E.N. Chumachenko, O.M. Smirnov, and M.A. Tsepin, Sverkhplastichnost’: Materialy, Teoriya, Tekhnologii. Seriya ‘Sinergetika: ot Proshlogo k Budushchemu’ [Superplasticity: Materials, Theory, Technologies. Series Synergetics: from Past to Future] (Moscow: Komkniga: 2005) (in Russian).
  38. A.P. Zhiliaev and A.I. Pshenichnyuk, Sverkhplastichnost’ i Granitsy Zeren v Ul’tramelkozernistykh Materialakh [Superplasticity and Grain Boundaries in the Ultra-Fine-Grained Materials] (Moscow: Fizmatlit: 2008) (in Russian).
  39. M.F. Ashby and R.A. Verral, Acta Metall., 21, No. 2: 149 (1973). https://doi.org/10.1016/0001-6160(73)90057-6
  40. A.P. Cheiliakh, M.A. Hussein, and G.V. Sheichenko, Proc. Int. Sci.-Tech. Conf. ‘Modern Aspects of Physical Metallurgy and Heat Treatment of Metals’ (Marіupol: PSTU: 2010) (in Ukrainian).
  41. W.M. Huang, Z. Ding, C.C. Wang, J. Wei, Y. Zhao, and H. Purnawali, Materials Today, 13, Nos. 7–8: 54 (2010). https://doi.org/10.1016/S1369-7021(10)70128-0
  42. F. Casciati, L. Faravelli, and L. Petrini, Proc. 4th Euro. Conf. on Smart Structures and Materials and 2nd Int. Conf. on Micromechanics, Intelligent Materials and Robotics (July 6–8, 1998) (Harrogate, UK: 1998), p. 321.
  43. V.G. Artyukh, G.V. Korchagin, and V.I. Logozinskiy, Zakhyst Metalurgіynykh Mashyn vіd Polomok: Zb. Nauk. Prats’, No. 10: 159 (2008) (in Ukrainian).
  44. URL: http://www.chemport.ru/data/chemipedia/article_6275.html.
  45. S.G. Plachkova, I.V. Plachkov, N.I. Dunaevskaya, V.S. Podgurenko, B.A. Shilyaev, Yu.A. Landau, I.Ya. Sigal, and G.D. Danilko, Razvitie Atomnoy Ehnergetiki i Obyedinyonnykh Ehnergosistem. Kniga 4. Seriya ‘Ehnergetika. Istoriya. Nastoyashchee i Budushchee’ (Kiev: Coal Energy Technology Institute and National Technical University of Ukraine ‘Igor Sikorsky Kyiv Polytechnic Institute’: 2010) (in Russian).
  46. V.Yu. Topolov and A.E. Panich, Fizika Segneto- i P’ezoehlektrikov: Uchebnoe Posobie [Physics of Ferro- and Piezoelectrics: A Tutorial] (Rostov: South Federal University 2009) (in Russian).
  47. G.M. Suchkov, S.V. Khashchina, and O.N. Petrishchev, Tekhnicheskaya Diagnostika i Nerazrushayushchiy Kontrol, No. 1: 23 (2012) (in Russian).
  48. A. Kholkin, B. Jadidian, and A. Safari, Encyclopedia of Smart Materials (Ed. M. Schwartz) (New York: John Wiley & Sons: 2002).
  49. S. Egusa and N. Iwasawa, Smart Materials and Structures, 7, No. 4: 438 (1998). https://doi.org/10.1088/0964-1726/7/4/002
  50. I.Ya. Orlov, V.A. Odnosevtsev, D.N. Ivlev, and S.Yu. Lupov, Osnovy Radioehlektroniki: Uchebnoye Posobie [Fundamentals of Radioelectronics: A Tutorial] (Nizhny Novgorod: N.I. Lobachevsky State University of Nizhny Novgorod: 2011) (in Russian).
  51. A.N. Antonov, A.M. Arkharov, and I.A. Arkharov, Mashiny Nizkotemperaturnoy Tekhniki. Kriogennyye Mashiny i Instrumenty: Uchebnik [Machines of Low-Temperature Techniques. Cryogenic Machines and Tools] (Eds. A.M. Arkharov and I.K. Butkevich) (Moscow: Moscow State Tech. Univ.: 2011) (in Russian).
  52. V.V. Shmidt, Vvedenie v Fiziku Sverkhprovodnikov [Introduction to the Physics of Superconductors] (Moscow: MCNMO: 2000) (in Russian).
  53. U. Bolton, Konstruktsionnyye Materialy: Metally, Splavy, Polimery, Keramika, Kompozity: Karmannyy Spravochnik [Constructional Materials: Metals, Alloys, Polymers, Ceramics, Composites: A Vade Mecum] (Moscow: Dodeka-KhKhI: 2004) (in Russian).
  54. V.E. Sytnikov, V.S. Vysotskiy, and S.S. Ivanov, Energiya: Ekonomika, Tekhnika, Ekologiya, 2: 13 (2007) (in Russian).
  55. A.I. Lebedev, Fizika Poluprovodnikovykh Priborov [Physics of Semiconductor Devices] (Moscow: Fizmatlit: 2008) (in Russian).
  56. E.Yu. Perlin, T.A. Vartanyan, and A.V. Fedorov, Fizika Tverdogo Tela. Optika Poluprovodnikov, Diehlektrikov, Metallov: Uchebnoye Posobie [Solid State Physics. Optics of Semiconductors, Dielectrics, Metals: A Tutorial] (St. Petersburg: Univ. ITMO: 2008) (in Russian).
  57. K.V. Shalimova, Fizika Poluprovodnikov: Uchebnik [Physics of Semiconductors: A Textbook] (St. Petersburg: Lan’: 2010) (in Russian).
  58. A. Khokhlov and P. Pavlov, Fizika Tverdogo Tela: Uchebnik [Solid State Physics: A Textbook] (Moscow: Lenand: 2015) (in Russian).
  59. A.N. Magunov, Lazernaya Termometriya Tverdykh Tel [Laser Thermometry of Solids] (Moskva: Fizmat-lit: 2002) (in Russian).
  60. G.I. Epifanov, Fizika Tverdogo Tela: Uchebnoye Posobie [Solid State Physics: A Tutorial] (St. Petersburg: Lan’: 2011) (in Russian).
  61. V.A. Mekheda, Tenzometricheskiy Metod Izmereniya Deformatsiy: Uchebnoye Posobie [Tensometric Method of the Strain Gaging: A Tutorial] (Samara: Samara State Aerospace University Publ.: 2011) (in Russian).
  62. E. Meylikhov, Magnetizm. Osnovy Teorii: Uchebnoye Posobie [Magnetism. Theory Fundamentals: A Tutorial] (Dolgoprudny: Intellekt: 2014) (in Russian).
  63. L.V. Osipov, Ul’trazvukovyye Diagnosticheskie Pribory. Rezhimy, Metody i Tekhnologii [Ultrasonic Diagnostic Devices. Modes, Methods and Technologies] (Moscow: Izomed: 2011) (in Russian).
  64. URL: https://www.booksite.ru/fulltext/1/001/009/001/232935116.jpg.
  65. M.V. Gitlits, Magnitnaya Zapis’ Signalov [Magnetic Record of Signals] (Moscow: Radio i Sviaz’: 1990) (in Russian).
  66. S.A. Orlov and B.Ya. Tsil’ker, Organizatsiya EVM i Sistem: Uchebnik dlya VUZov [Organization of Computers and Systems: A Textbook for Universities] (St. Petersburg: Piter: 2014) (in Russian).
  67. Zapominayushchie Ustroystva Bol’shoy Yomkosti [High-Capacity Memory Devices] (Ed. B.M. Kagan) (Moscow: Energiya: 2012) (in Russian).
  68. URL: http://ampersandfacts.blogspot.com/2016/12/blog-post_694.html.
  69. URL: http://www.pppa.ru/additional/02phy/05/phy_emission_42.php.
  70. URL: https://www.krugosvet.ru/enc/nauka_i_tehnika/fizika/termoelektrichestvo.html.
  71. GOST 3044-84, Preobrazovateli Termoehlektricheskie. Nominal‘nyye Stati-cheskie Kharakteristiki Preobrazovaniya.
  72. A.S. Borovik-Romanov, Lektsii po Nizkotemperaturnomu Magnetizmu. Magnitnaya Simmetriya Antiferromagnetikov [Lections on Low-Temperature Magnetism. Magnetic Symmetry of Antiferromagnetics] (Moscow: Tsifrovichok: 2010) (in Russian).
  73. URL: http://www.nanonewsnet.ru/articles/2008/nanochastitsy-na-podeme-universalnye-uglerodnye-materialy-dlya-meditsiny-inzhenerii.
  74. D.I. Khomskii, Physics, 2: 20 (2009) (in Russian).
  75. A.R. Akbashev and A.R. Kaul, Russ. Chem. Rev., 80, No. 12: 1159 (2011) (in Russian). https://doi.org/10.1070/RC2011v080n12ABEH004239
  76. S.A. Nikitin, Soros Educational Journal, 8, No. 2: 92 (2004) (in Russian).
  77. O. Baklitskaya, Nauka i Zhizn’, No. 11 (2007) (in Russian). https://www.nkj.ru/archive/articles/12042
  78. A.G.M. Henrie and J.D. Carlson, Encyclopedia of Smart Materials (Ed. M. Schwartz) (New York: John Wiley & Sons: 2002).
  79. J.D. Carlson and J.L. Sproston, Proc. 7th Int. Conf. on New Actuators (19–21 June, 2000) (Bremen: Messe Bremen GmbH: 2000).
  80. L. Ma, F. Zheng, and X. Zhao, J. Intell. Mater. Syst. Struct., 26, No. 14: 1936 (2015). https://doi.org/10.1177/1045389X15586450
  81. E.V. Korobko, Z.A. Novikova, E.S. Sermyazhko, A.N. Murashkevich, and L.S. Eshenko, J. Intell. Mater. Syst. Struct., 26, No. 14: 1782 (2015). https://doi.org/10.1177/1045389X15577648
  82. E.M. Koktsinskaya, Videonauka: Setevoy Zhurnal, No. 1: 1 (2016) (in Russian). https://videonauka.ru/stati/13-tekhnicheskie-nauki/42-umnye-materialy-i-ikh-primenenie-obzor
  83. V.M. Anishchik, V.M. Kaptsevich, and N.K. Tolochko, Intellektual’nyye Ma-terialy: Posobie [Smart Materials: A Tutorial] (Minsk: BGATU: 2014) (in Russian).
  84. A.A. Tager, Fizikokhimiya Polimerov (Ed. A.A. Askadsky) (Moscow: Nauchnyy Mir: 2007) (in Russian).
  85. M.L. Zheludkevich, J. Tedim, and M.G.S. Ferreira, Electrochim. Acta, 82: 314 (2012). https://doi.org/10.1016/j.electacta.2012.04.095
  86. M.R. Kessler, Proc. IMechE. Vol. 221 (Apr. 1) Part G: J. Aerospace Engineering (G4), (2007), p. 479.
  87. J.A. Carlson, J.M. English, and D.I. Coe, Smart Mater. Struct., 15, No. 5: N129 (2006). https://doi.org/10.1088/0964-1726/15/5/N05
  88. J.D. Rule, S.R. Wilson, and J.S. Moore, J. Am. Chem. Soc., 125, No. 43: 12992 (2003). https://doi.org/10.1021/ja0359198
  89. O.E. Filippova, Polymer Science. Series C, 42, No. 12: 2328 (2000) (in Russian).
  90. O.E. Filippova, Priroda, No. 8: 11 (2005) (in Russian).
  91. Yu. Galaev, Russ. Chem. Rev., 64, No. 5: 471 (1995) https://doi.org/10.1070/RC1995v064n05ABEH000161
  92. Handbook of Pharmaceutical Controlled Release Technology (Ed. D.L. Wise) (New York City: Marcel Dekker: 2002).
  93. Yu.A. Mikhailin, Polimernyye Materialy, No. 8 (63): 6 (2004); ibid., No. 9 (64): 34 (2004); ibid., No. 10 (65): 24 (2004); ibid, No. 12: 20 (67) (2004) (in Russian).
  94. L.L. Hench, J. Am. Ceramic Soc., 74, No. 7: 1487 (1991). https://doi.org/10.1111/j.1151-2916.1991.tb07132.x
  95. W. Vogel und W. Holland, Angewandte Chemie, 26, H. 6: 527 (1987). https://doi.org/10.1002/anie.198705271
  96. J. Wilson, Glass … Current Issues. NATO ASI Series (Series E: Applied Sciences) (Eds. A.F. Wright and J. Dupuy) (Dordrecht: Springer: 1985), Vol. 92. https://doi.org/10.1007/978-94-009-5107-5_56
  97. L.G. Machado and M.A. Savi, Braz. J. Med. Biol. Res., 36, No. 6: 683 https://doi.org/10.1590/S0100-879X2003000600001
  98. L.L. Hench and J. Wilson, Science, 226 (1984). https://doi.org/10.1126/science.6093253
  99. С.P.A.Т. Klein, J.M.A. de Blieck-Hogervorst, J.G.C. Wolke, and K. de Groot, Adv. Biomaterials, 9: 277 (1990).
  100. С.P.A.Т. Klein, P. Patka, H.В.М. van der Lubbe, J.G.C. Wolke, and K.J. de Groot, J. Biomed. Mat. Res., 25, No. 1: 53 (1991). https://doi.org/10.1002/jbm.820250105
  101. Y. Ikada, Biomaterials, 15, No. 10: 725 (1994). https://doi.org/10.1016/0142-9612(94)90025-6
  102. R.M. Shelton and J.E. Davies, The Bone-Biomaterial Interface (Ed. J.E. Davies) (Toronto: Toronto University Press: 1991).
  103. E. Cooper, R. Wiggs, D.A. Hutt, L. Parker, G.J. Leggett, and T.L. Parker, J. Mat. Chem., 7: 435 (1997). https://doi.org/10.1039/a607204f
  104. D.B. Haddow, R.M. France, R.D. Short, S. MacNeil, R.A. Dawson, G.J. Leggett, and E. Cooper, J. Biomed. Mat. Res., 47, No. 3: 379 (1999).
  105. M. Matsuzawa, R.S. Potember, and V. Krauthamer, Brain Res., 667, No. 1: 47 (1994). https://doi.org/10.1016/0006-8993(94)91712-4
  106. M. Sittinger, J. Bujia, N. Rotter, D. Reitzel, W.W. Minuth, and G.R. Burmester, Biomaterials, 17, No. 3: 237 (1996). https://doi.org/10.1016/0142-9612(96)85561-X
  107. V.D. Voronkov, Presentation on the Round Worktable ‘Tribology in Russia: Current Problems and Prospects of Development’ (15.01.2009, Moscow). https://popnano.ru/events/index.php?task=event&id=212.
  108. V.N. Ivashchenko, Ispol’zovanie Nanoalmazov v Smazochnykh Materialakh (05.08.2014). http://nanodiamond.com.ua/publ002
  109. K. Sundaresan, A. Sivakumar, C. Vigneswaran, and T. Ramachandran, J. Industrial Textiles, 41, No. 3: 259 (2012). https://doi.org/10.1177/1528083711414962
  110. H.J. Lee, J. Kim, and C.H. Park, Textile Research Journal, 84, No. 3: 267 (2014). https://doi.org/10.1177/0040517513494258
  111. M. Ashraf, Ph. Champagne, Ch. Campagne, A. Perwuelz, F. Dumont, and A. Leriche, J. Industrial Textiles, 45, No. 6: 1440 (2014). https://doi.org/10.1177/1528083714562086
  112. G.B Goffredo, E. Quagliarini, F. Bondioli, and F. Bondioli, Proc. Inst. Mech. Eng. Part N: J. Nanoeng. Nanosys., 228, No. 1: 2 (2014). https://doi.org/10.1177/1740349913506421
  113. A.P. Chernysh, Dostizheniya Nauki i Tekhniki APK, No. 10: 67 (2010) (in Russian).
  114. S.S. Samotugin and L.K. Leshchinskiy, Plazmennoye Uprochnenie Instrumental’nykh Materialov [Plasma Hardening of Tool Materials] (Donetsk: Novy Mir: 2002) (in Russian).
  115. S.A. Uchitel’ and V.A. Stets’, Obzornaya Informatsiya [Review Information] (Moscow: Institute ‘Chermetinformatsiya’. Series ‘Obogashchenie Rud’: 1991), No. 1 (in Russian).
  116. A.P. Cheylyakh, S.V. Prekrasnyy, P.N. Kiril’chenko, V.I. Sirota, O.V. Karaulanov, and S.E. Savinkin, Proc. Int. Conf. ‘Unіversitets’ka Nauka-2010’ (Marіupol: PSTU: 2010), vol. 1 (in Russian).
  117. V.I. Dyrda, T.A. Oleynik, and I.V. Khmel’, Zbagachennya Korysnykh Kopalyn, No. 45 (86): 52 (2011) (in Russian).
  118. V.I. Dyrda, V.A. Kalashnikov, S.L. Evenko, A.E. Markelov, I.V. Khmel’, and A. Stoyko, Geotekhnicheskaya Mekhanika, No. 106: 15 (2012) (in Russian).
  119. A.A. Tarasenko and V.V. Chobitok, Dinamicheskaya Zashchita. Izrail’skiy Shchit Kovalsya v … SSSR (Brone-sait: December 2016) (in Russian). http://armor.kiev.ua/Tank/dz/1968
  120. A. Tarasenko and I.B. Chepkov, Tekhnika i Vooruzhenie Vchera, Segodnya, Zavtra, No. 5: 20 (2007) (in Russian).
  121. І.B. Chepkov, M.G. Bugera, and M.І. Vas’kіvs’kiy, Zbіrnyk Naukovykh Prats’ TsNDІ OVT ZS Ukrayiny, No. 58: 160 (2015) (in Russian).
  122. T.D. Kozhina and V.Y. Eroshkov, Research Bulletin SWorld: Modern Scientific Research and Their Practical Application, J21310: 117 (2013).
  123. L.Ya. Ropyak, I.P. Shatskyi, and M.V. Makoviichuk, Metallofizika i Noveishie Tekhnologii, 41, No. 5: 647 (2019) (in Ukrainian). https://doi.org/10.15407/mfint.41.05.0647
  124. T.M. Radchenko, V.A. Tatarenko, I.Yu. Sagalianov, and Yu.I. Prylutskyy, Graphene: Mechanical Properties, Potential Applications and Electrochemical Performance (Ed. B.T. Edwards) (Hauppauge, NY, USA: Nova Science Publishers, Inc.: 2014), Ch. 7, p. 219.
  125. I.Yu. Sahalianov, T.M. Radchenko, V.A. Tatarenko, and Yu.I. Prylutskyy, Annals of Physics, 398: 80 (2018). https://doi.org/10.1016/j.aop.2018.09.004
  126. T.M. Radchenko and V.A. Tatarenko, Solid State Phenomena, 150: 43 (2009). https://doi.org/10.4028/www.scientific.net/SSP.150.43
  127. I.Yu. Sagalianov, T.M. Radchenko, Yu.I. Prylutskyy, V.A. Tatarenko, and P. Szroeder, Eur. Phys. J. B, 90, No. 6: 112 (2017). https://doi.org/10.1140/epjb/e2017-80091-x
  128. URL: https://viam.ru/intelligent_polymer.
  129. G.M. Gunyayev, I.N. Gulyayev, R.E. Shalin, G.F. Zhelezina, and Yu.S. Il’in, Proc. Int. Conf. ‘Teoriya i Praktika Tekhnologiy Proizvodstva Izdeliy iz Kompozitsionnykh Materialov i Novykh Metallicheskikh Splavov (2004) (in Russian). https://www.viam.ru/public/files/2003/2003-203897.pdf
  130. E.V. Lutsenko, 4th Russian Symposium ‘Poluprovodnikovyye Lazery: Fizika i Tekhnologiya’ (St. Petersburg, 10–13 November, 2014) (St. Petersburg: 2014), p. 13 (in Russian).
  131. N.I. Borodin, P.V. Kryukov, A.B. Popov, S.N. Ushakov, and A.B. Shestakov, Quantum Electron., 35, No. 6: 511 (2005). https://doi.org/10.1070/QE2005v035n06ABEH006573
  132. A.E. Zhukov, A.R. Kovsh, E.V. Nikitina, V.M. Ustinov, and Zh.I. Alferov, Fizika i Tekhnika Poluprovodnikov, 41, No. 5: 625 (2007) (in Russian).
  133. URL: http://bourabai.kz/physics/lasers.html.
  134. N.V. Usol’tseva, O.B. Akopova, V.V. Bykova, A.I. Smirnova, and S.A. Pikin, Zhidkie Kristally: Diskoticheskie Mezogeny [Liquid Crystals: Discotic Mesogens] (Ed. N.V. Usol’tseva) (Ivanovo: Ivanovo State University: 2004) (in Russian).
  135. L.V. Asryan, S. Luryi, and R.A. Suris, IEEE J. Quant. Electron., 39, No. 3: 404 (2003). https://doi.org/10.1109/JQE.2002.808171
  136. L.M. Blinov, Zhidkie Kristally: Struktura i Svoystva [Liquid Crystals: Structure and Properties] (Moscow: Librokom: 2012) (in Russian).
  137. V.P. Romanov, Soros Educational Journal, 7, No. 1: 96 (2001) (in Russian).
  138. G.S. Landsberg, Optika [Optics] (Moscow: Fizmatlit: 2003) (in Russian).
  139. I.A. Razumovskiy, Interferentsionno-Opticheskie Metody Mekhaniki Deformiruyemogo Tvyordogo Tela [Interference-Optical Methods of Deformable-Solid Mechanics] (Moscow: Moscow State Tech. Univ.: 2007) (in Russian).
  140. URL: https://studfile.net/preview/604014/page:19.
  141. T.M. Radchenko and V.A. Tatarenko, Carbon Nanomaterials in Clean Energy Hydrogen Systems. NATO Science for Peace and Security Series C: Environmental Security (Eds. B. Baranowsky, S.Y. Zaginaichenko, D.V. Schur, V.V. Skorokhod, and A. Veziroglu) (Dordrecht: Springer: 2008), p. 489. https://doi.org/10.1007/978-1-4020-8898-8_62
  142. T.M. Radchenko and V.A. Tatarenko, Hydrogen Materials Science and Chemistry of Carbon Nanomaterials. NATO Security through Science Series A: Chemistry and Biology (Eds. T.N. Veziroglu, S.Yu. Zaginaichenko, D.V. Schur, B. Baranowski, A.P. Shpak, V.V. Skorokhod, and A. Kale) (Dordrecht: Springer: 2007), p. 229. https://doi.org/10.1007/978-1-4020-5514-0_28
  143. V.A. Tatarenko, T.M. Radchenko, and V.M. Nadutov, Metallofizika i Noveishie Tekhnologii, 25, No. 10: 1303 (2003) (in Ukrainian).
  144. V.A. Tatarenko, S.M. Bokoch, V.M. Nadutov, T.M. Radchenko, and Y.B. Park, Defect and Diffusion Forum, 280–281: 29 (2008). https://doi.org/10.4028/www.scientific.net/DDF.280-281.29
  145. V.A. Tatarenko and T.M. Radchenko, Uspehi Fiziki Metallov, 3, No. 2: 111 (2002) (in Ukrainian). https://doi.org/10.15407/ufm.03.02.111
  146. Т.М. Radchenko and V.А. Tatarenko, Uspehi Fiziki Metallov, 9, No. 1: 1 (2008) (in Ukrainian). https://doi.org/10.15407/ufm.09.01.001
  147. URL: http://www.physics-guide.ru/phygs-675-1.html.
  148. M.G. Tomilin and G.E. Nevskaya, Fotonika Zhidkikh Kristallov [Photonics of Liquid Crystals] (St. Petersburg: Polytech. Univ.: 2011) (in Russian).
  149. T.V. Voloshina, I.V. Kavetskaya, and L.Yu. Leonova, Lyuminestsentsiya Kristallov [Luminescence of Crystals] (Voronezh: Voronezh State Univ.: 2012) (in Russian).
  150. B.T. Atashov, A.B. Uteniyazova, and I. Nuritdinov, Vestnik Karakalpakskogo Otdeleniya Akademii Nauk Respubliki Uzbekistan, 226, No. 1: 18 (2012) (in Russian).
  151. K.S. Zhuravlev, A.M. Gilinskiy, A.V. Tsarev, and A.E. Nikolaenko, Fizika i Tekhnika Poluprovodnikov, 35, No. 8: 932 (2001) (in Russian).
  152. Yu.K. Egorov-Tismenko, Kristallografiya i Kristallokhimiya: Uchebnik [Crystallography and Crystal Chemistry: A Textbook] (Ed. V.S. Urusov) (Moscow: KDU: 2005) (in Russian).
  153. A.A. Marakushev, A.V. Bobrov, N.N. Pertsev, and A.N. Fenogenov, Petrologiya. I. Osnovy Kristallooptiki i Porodoobrazuyushchie Mineraly [Petrology. I. Fundamentals of Crystal Optics and Rock-Forming Minerals] (Moscow: Nauchny Mir: 2000) (in Russian).
  154. M. Montalti, A. Credi, L. Prodi, and M.T. Gandolfi, Handbook of Photochemistry (Boca Raton: CRP Press: 2006). https://doi.org/10.1201/9781420015195
  155. A.B. Matevosyan, Chemical Journal of Armenia, 69, No. 4: 446 (2016) (in Russian).
  156. L. Vacareanu, A.-M. Catargiu, and M. Grigoras, High Perform. Polym., 27, No. 4: 476 (2015). https://doi.org/10.1177/0954008314555529
  157. J. Mardaljevic, R. K. Waskett, and B. Painter, Lighting Res. Technol., 48, No. 3: 267 (2015). https://doi.org/10.1177/1477153515620339
  158. URL: https://hype.tech/@id103/chto-takoe-metamaterialy-i-primery-ih-ispolzovaniya-4eqrbl97.
  159. M.E. Garber, Iznosostoykie Belyye Chuguny: Svoystva, Struktura, Tekhnologiya, Ehkspluatatsiya [Wear Resistant White Cast Irons: Properties, Structure, Technology, Operation] (Moscow: Mashinostroenie: 2010) (in Russian).
  160. M.M. Stadnyk, G.І. Slin’ko, І.Ya. Gorbachevs’ky, and І.P. Volchok, Novі Materіaly і Tekhnologii v Metalurgii ta Mashinobuduvannі, No. 2 (2000) (in Ukrainian).
  161. Z.A. Duriagіna, O.І. Eliseeva, V.M. Fedіrko, and V.P. Tsіsar, Metaloznavstvo ta Termіchna Obrobka Metalіv, No. 3: 77 (2001) (in Ukrainian).
  162. Z. Duriagina and O.I. Eliseeva, Inżyneria Powierzchni, No. 1: 43 (2005).
  163. H.N. Gray and D.E. Bergbreiter, Environmental Health Perspectives, 105, Suppl. 1: 55 (1997). https://doi.org/10.1289/ehp.97105s155
  164. V.P. Komov and V.N. Shvedova, Biokhimiya [Biochemistry] (Moscow: Drofa: 2004) (in Russian).
  165. G.A. Kizima, Bol’shaya Ehntsiklopediya Sadovoda-Ogorodnika [Big Encyclopaedia of the Gardener] (Moscow: Izdatel’stvo ‘Eksmo’: 2017) (in Russian).
  166. URL: http://biofile.ru/bio/19417.html.
  167. URL: https://refeng.ru/klimat-kamery.
  168. O.I. Soshko and V.O. Soshko, Progress in Physics of Metals, 20, No. 1: 96 (2019). https://doi.org/10.15407/ufm.20.01.096
  169. L.Ya. Ropyak, T.O. Pryhorovska, and K.H. Levchuk, Progress in Physics of Metals, 21, No. 2: 274 (2020). https://doi.org/10.15407/ufm.21.02.274
  170. V.V. Lizunov, I.M. Zabolotnyy, Ya.V. Vasylyk, I.E. Golentus, and M.V. Ushakov, Progress in Physics of Metals, 20, No. 1: 75 (2019). https://doi.org/10.15407/ufm.20.01.075
  171. T.M. Radchenko, V.A. Tatarenko, V.V. Lizunov, V.B. Molodkin, I.E. Golentus, I.Yu. Sahalianov, and Yu.I. Prylutskyy, Phys. Status Solidi B, 256, No. 5: 1800406 (2019). https://doi.org/10.1002/pssb.201800406
  172. V.B. Molodkin, H.I. Nizkova, Ye.I. Bogdanov, S.I. Olikhovskii, S.V. Dmitriev, M.G. Tolmachev, V.V. Lizunov, Ya.V. Vasylyk, A.G. Karpov, and O.G. Voytok, Uspehi Fiziki Metallov, 18, No. 2: 177 (2017) (in Ukrainian). https://doi.org/10.15407/ufm.18.02.177
  173. A.P. Cheiliakh and Y.A. Cheylyakh, Int. Sci. Method. Conf. ‘University Science–2016’: ‘Today Material Engineering for realization of the ‘MMATENG’ Project Objectives’ (Mariupol, Ukraine, May 19–20, 2016) (in Russian).
  174. A.P. Cheylyakh, Stroitel’stvo, Materialovedenie, Mashinostroenie: Sb. Nauchn. Trudov, No. 15, Pt. 4.1: 139 (2002) (in Russian).