Проґрес у технологіях прокатних станів

ВОЛОКІТІНА І.Є.$^{1}$, ЧИГИРИНСЬКИЙ В.В.$^{2}$

$^1$Карагандинський індустріальний університет, просп. Республіки, 30; 101400 Темиртау, Казахстан
$^2$Рудненський індустріальний інститут, вул. 50 років Жовтня, 38; 111500 Рудний, Казахстан

Отримано / остаточна версія: 14.01.2025 / 05.08.2025 Завантажити PDF logo PDF

Анотація
Є значна кількість методів фізико-хемічного впливу на металеві матеріяли в процесах кристалізації, деформації, термічного оброблення, що приводять до подрібнення структури. Проте традиційні технології виробництва металевих матеріялів забезпечують грубозернисту будову, оскільки в більшості з них використовуються температури оброблення, за яких дрібні зерна, що виникають, є нестабільними. З точки зору інтенсивної пластичної деформації традиційне вальцювання має істотний недолік, що обмежує його застосування з метою одержання ультрадрібнозернистої структури в матеріялі. Так, сумарну накопичену деформацію обмежено за звичайного вальцювання багаторазовим зменшенням товщини вальцьованої заготівки. У зв’язку з цим останніми роками було запропоновано низку спеціялізованих способів вальцювання, що уможливлюють усунення цього недоліку.

Ключові слова: вальцювання, інтенсивна пластична деформація, ультрадрібнозерниста структура, мікроструктура.

DOI: https://doi.org/10.15407/ufm.26.03.***

Citation: I.E. Volokitina and V.V. Chigirinsky, Progress in Rolling Mill Technologies, Progress in Physics of Metals, 26, No. 3: ***–*** (2025)I.E. Volokitina and V.V. Chigirinsky, Progress in Rolling Mill Technologies, Progress in Physics of Metals, 26, No. 3: ***–*** (2025)


Цитована література   
  1. H.-Y. Song, H.-T. Liu, H.-H. Lu, H.-Z. Li, W.-Q. Liu, X.-M. Zhang, and G.-D. Wang, Mater. Sci. Eng. A, 605: 260–269 (2014); https://doi.org/10.1016/j.msea.2014.03.052
  2. https://wzppgi.com/hot-rolled-steel-vs-cold-rolled-steel
  3. I.E. Volokitina, A.V. Volokitin, and E.A. Panin, Martensitic transformations in stainless steels, Prog. Phys. Met., 23, No. 4: 684–728 (2022); https://doi.org/10.15407/ufm.23.04.684
  4. A.V. Volokitin, I.E. Volokitina, and E.A. Panin, Thermomechanical treatment of stainless steel piston rings, Prog. Phys. Met., 23, No. 3: 411–437 (2022); https://doi.org/10.15407/ufm.23.03.411
  5. I.E. Volokitina, Structural and phase transformations in alloys under the severe plastic deformation, Prog. Phys. Met., 24: No. 3: 593–622 (2023); https://doi.org/10.15407/ufm.24.03.593
  6. S. Lezhnev, A. Naizabekov, E. Panin, and I. Volokitina, Procedia Engineering, 81: 1499 (2014); https://doi.org/10.1016/j.proeng.2014.10.180
  7. I. Volokitina, A. Volokitin, E. Panin, T. Fedorova, D. Lawrinuk, A. Kolesnikov, A. Yerzhanov, Z. Gelmanova, and Y. Liseitsev, Case Studies Construct. Mater., 19: e02609 (2023); https://doi.org/10.1016/j.cscm.2023.e02609
  8. A. Naizabekov, A. Arbuz, S. Lezhnev, E. Panin, and I. Volokitina, Physica Scripta, 94, No. 10: 105702 (2019); https://doi.org/10.1088/1402-4896/ab1e6e
  9. A. Volokitin, I. Volokitina, and E. Panin, J. Mat. Res. Technol., 31: 2985 (2024); https://doi.org/10.1016/j.jmrt.2024.07.038
  10. S. Lezhnev, A. Naizabekov, and I. Volokitina, J. Chem. Technol. Metallurgy, 52, No. 4: 626 (2017); https://journal.uctm.edu/node/j2017-4/3_17-04_Lezhnev_p_626-635.pdf
  11. A. Volokitin, I. Volokitina, and E. Panin, Metallogr. Microst. Anal., 11, No. 4: 673–675 (2022); https://doi.org/10.1007/s13632-022-00877-4
  12. C.X. Huang, G. Yang, Y.L. Gao, S.D. Wu, and Z.F. Zhang, Mater. Sci. Eng. A, 485: 643–650 (2008); https://doi.org/10.1016/j.msea.2007.08.067
  13. I.E. Volokitinа and A.V. Volokitin, Metallurgist, 67: 232–239 (2023); https://doi.org/10.1007/s11015-023-01510-7
  14. I.E. Volokitina, A.V. Volokitin, M.A. Latypova, V.V. Chigirinsky, and A.S. Kolesnikov, Effect of controlled rolling on the structural and phase transformations, Prog. Phys. Met., 24, No. 1: 132 (2023); https://doi.org/10.15407/ufm.24.01.132
  15. I.E. Volokitina, A.I. Denissova, A.V. Volokitin, and E.A. Panin, Methods for obtaining a gradient structure, Prog. Phys. Met., 25, No. 1: 132–160 (2024); https://doi.org/10.15407/ufm.25.01.132
  16. E. Panin, A. Esbolat, A. Arbuz, D. Kuis, A. Naizabekov, S. Lezhnev, A. Yerzhanov, I. Krupenkin, A. Tolkushkin, A. Kawalek, and P. Tsyba, Modelling and Simulation in Engineering, 2024: 1–17 (2024); https://doi.org/10.1155/2024/2486940
  17. Y.H. Ji and J.J. Park, Mater. Sci. Eng. A, 499: 14–17(2009); https://doi.org/10.1016/J.MSEA.2007.11.099
  18. J. Kraner, T. Smolar, D. Volsak, P. Cvahte, M. Godec, and I. Paulin, Materials and Technology, 54, No. 5: 731–743 (2020); https://doi.org/10.17222/mit.2020.158
  19. G. Vincze, F.J.P. Simões, and M.C. Butuc, Metals, 10: 1126 (2020); https://doi.org/10.3390/met10091126
  20. Q. Cui and K. Ohori, Mater. Sci. Technol., 16, No. 10: 1095–1101 (2000); http://dx.doi.org/10.1179/026708300101507019
  21. J-K. Lee and D.N. Lee, Int. J. Mech. Sci., 50: 869–887 (2008); https://doi.org/10.1016/j.ijmecsci.2007.09.008
  22. S.H. Lee and D.N. Lee, Int. J. Mech. Sci., 43: 1997–2015 (2001); https://doi.org/10.1016/S0020-7403(01)00025-X
  23. K.J. Kim, H.-T. Jeong K.S. Shin, and C.-W. Kim, J. Mater. Process. Technol., 187–188: 578–581(2007); https://doi.org/10.1016/j.jmatprotec.2006.11.214
  24. H. Jin and David J. Lloyd, Mater. Sci. Forum, 467–470: 381–386 (2004); https://doi.org/10.4028/www.scientific.net/MSF.467-470.381
  25. F.J. Simoe, R.J. Aives de Sousa J.J. Grácio, F. Barlat, and J.W. Yoon, Int. J. Mech. Sci., 50, No. 9: 1372–1380 (2008); https://doi.org/10.1016/j.ijmecsci.2008.07.009
  26. E. Azbanbayev, A. Isagulov, and Zh. Ashkeyev, Proc. of 22nd Int. Conf. Metallurgy and Materials ‘Metal 2013’, p. 164–170.
  27. K.H. Song, H.S. Kim, and W.Y. Kim, Mater. Sci. Eng. A, 528, No. 27: 7968–7973 (2011); https://doi.org/10.1016/j.msea.2011.07.028
  28. A.D. Mekhtiev, E.M. Azbanbayev, A.Z. Isagulov, A.R. Karipbayeva, S.S. Kvon, N.B. Zakariya, and N.Z. Yermaganbetov, Metalurgija, 54, No. 4: 623–626 (2015).
  29. Y.-T. Chen, D.-A. Wang, J.-Y. Uan, T.-H. Hsieh, and T.-C. Tsai, Mater. Sci. Eng. A, 551: 296–300 (2012); https://doi.org/10.1016/j.msea.2012.05.001
  30. T. Ren, D. Shan, Y. Chen, and Y. Lu, Materials & Design, 31, No. 7: 3457–3462 (2010); https://doi.org/10.1016/j.matdes.2010.01.037
  31. N. Tsuji, Y. Saito, S.-H. Lee, and Y. Minamino, Adv. Eng. Mater., 5, No. 5: 338–344 (2003); https://doi.org/10.1002/adem.200310077
  32. M. Richert, H. Stüwe, M. Zehetbauer, J. Richert, R. Pippan, C. Motz, and E. Schafler, Mater. Sci. Eng. A, 355: 180–185 (2003); https://doi.org/10.1016/S0921-5093%2803%2900046-7
  33. N. Tsuji, Y. Saito, H. Utsunomiya, and S. Tanigawa, Scripta Mater., 40, No. 7: 795–800 (1999); https://doi.org/10.1016/S1359-6462(99)00015-9
  34. https://bwe.co.uk/brochure
  35. I.E. Volokitina, Metal Sci. Heat Treat., 63: 163 (2021); https://doi.org/10.1007/s11041-021-00664-y
  36. A.B. Naizabekov, S.N. Lezhnev, and I.E. Volokitina, Metal Sci. Heat Treat., 57, Nos. 5–6: 254 (2015); https://doi.org/10.1007/s11041-015-9870-x
  37. A.B. Nayzabekov and I.E. Volokitina, Phys. Metals Metallogr., 120, No. 2: 177–183 (2019); https://doi.org/10.1134/S0031918X19020133
  38. I.E. Volokitina and A.V. Volokitin, Phys. Metals Metallogr., 119, No. 9: 917–921 (2018); https://doi.org/10.1134/S0031918X18090132
  39. I. Volokitina, A. Volokitin, and D. Kuis, J. Chem. Technol. Metallurgy., 56: 643 (2021); https://journal.uctm.edu/node/j2021-3/25_20-126p643-647.pdf
  40. N. Zhangabay, I. Baidilla, A. Tagybayev, U. Suleimenov, Z. Kurganbekov, M. Kambarov, A. Kolesnikov, G. Ibraimbayeva, K. Abshenov, I. Volokitina, B. Nsanbayev, Y. Anarbayev, and P. Kozlov, Case Studies Construct. Mater., 18: e02161 (2023); https://doi.org/10.1016/j.cscm.2023.e02161
  41. G. Kurapov, E. Orlova, I. Volokitina, and A. Turdaliev, J. Chem. Technol. Metallurgy., 51, No. 4: 451–457 (2016); https://journal.uctm.edu/node/j2016-4/13-Volokitina_451-457.pdf
  42. I. Volokitina, J. Chem. Technol. Metallurgy., 57, No. 3: 631–636 (2022); https://journal.uctm.edu/node/j2022-3/24_21-123_br_3_pp_631-636.pdf
  43. S.N. Lezhnev, I.E. Volokitina, and A.V. Volokitin, Phys. Metals Metallogr., 118, No. 11: 1167–1170 (2017); https://doi.org/10.1134/S0031918X17110072
  44. I. Volokitina, B. Sapargaliyeva, A. Agabekova, S. Syrlybekkyzy, A. Volokitin, L. Nurshakhanova, F. Nurbaeva, A. Kolesnikov, G. Sabyrbayeva, A. Izbassar, O. Kolesnikova, Y. Liseitsev, and S. Vavrenyuk, Case Studies Construct. Mater., 19: e02256 (2023); https://doi.org/10.1016/j.cscm.2023.e02256
  45. I.E. Volokitina, A.I. Denissova, A.V. Volokitin, T.D. Fedorova, and D.N. Lavrinyuk, Application of cryogenic technologies in deformation processing of metals, Prog. Phys. Met., 25, No. 1: 161–194 (2024); https://doi.org/10.15407/ufm.25.01.161
  46. A. Nurumgaliyev, T. Zhuniskaliyev, V. Shevko, Y. Mukhambetgaliyev, B. Kelamanov, Y. Kuatbay, A. Badikova, G. Yerekeyeva, and I. Volokitina, Sci. Rep., 141: 7456 (2024); https://doi.org/10.1038/s41598-024-57529-6
  47. I. Volokitina, A. Bychkov A. Volokitin, and A. Kolesnikov, Metallogr. Microst. Anal., 12, No. 3: 564–566 (2023); https://doi.org/10.1007/s13632-023-00966-y
  48. I. Volokitina, A. Volokitin, A. Denissova, T. Fedorova, D. Lawrinuk, A. Kolesnikov, A. Yerzhanov, Y. Kuatbay, and Y. Liseitsev, Case Studies Construct. Mater., 19: e02346 (2023); https://doi.org/10.1016/j.cscm.2023.e02346
  49. S. Lezhnev A. Naizabekov, A. Volokitin, and I. Volokitina, Procedia Eng., 81: 1505 (2014); https://doi.org/10.1016/j.proeng.2014.10.181
  50. I. Volokitina, B. Sapargaliyeva, A. Agabekova, A. Volokitin, S. Syrlybekkyzy, A. Kolesnikov, G. Ulyeva, A. Yerzhanov, and P. Kozlov, Case Studies Construct. Mater., 18: e02162 (2023); https://doi.org/10.1016/j.cscm.2023.e02162
  51. A.B. Naizabekov, S.N. Lezhnev, and E.A. Panin, Patent of the Republic of Kazakhstan No. 25863, IPC B21J 5/00, Device for Continuous Pressing of Metal, No. 7 (2013).
  52. S.N. Lezhnev, A.B. Naizabekov, and Y.A. Panin, Proc. 20th Int. Conf. Metallurgy and Materials (Brno, Czech Republic, 2011), p. 272–277.
  53. E.A. Panin, A.B. Naizabekov, A.V. Volokitin, G.E. Akhmetova, I.E. Volokitina, and A.O. Tolkushkin, Scientific-Technical Union of Mechanical Engineering ‘INDUSTRY 4.0’: 101–103 (2022).
  54. E.A. Panin, A.B. Naizabekov, and S.N. Lezhnev, 17th Int. Conf. Metallurgy and Materials (Ostrava, Czech Republic, 2008).
  55. S. Lezhnev, E. Panin, and I. Volokitina, Adv. Mater. Res., 814: 68–75 (2013); https://doi.org/10.4028/www.scientific.net/AMR.814.68
  56. A. Volokitin, I. Volokitina, M.S. Sonmez, A. Denissova, and Z. Gelmanova, Symmetry, 16, No. 11: 1515 (2024); https://doi.org/10.3390/sym16111515
  57. A. Naizabekov, I. Volokitina, A. Volokitin, and E. Panin, J. Mater. Eng. Perform., 28: 1762–1771 (2019); https://doi.org/10.1007/s11665-019-3880-6
  58. Patent No. 2293619 RF, MPK B21B 19/00, Method of Helical Rolling, S.P. Galkin, NITU MISIS, No. 2006110612/02, Auth. 04.04.2006, Published 20.02.2007, Bulletin of Inventions, 2007, No. 5.
  59. A. Arbuz, A. Panichkin, F. Popov, A. Kawalek, K. Ozhmegov, and N. Lutchenko, Metals, 14: 53 (2024); https://doi.org/10.3390/met14010053
  60. B.V. Karpov, P.V. Patrin, S.P. Galkin, E.A. Kharitonov, and I.B. Karpov, Metallurgist, 61: 884–890 (2018); https://doi.org/10.1007/s11015-018-0581-6
  61. I. Volokitina, A. Volokitin, and B. Makhmutov, Symmetry, 16, No. 8: 997 (2024); https://doi.org/10.3390/sym16080997
  62. A. Naizabekov, S. Lezhnev, A. Arbuz, and E. Panin, Metall. Res. Technol., 115, No. 2: 213 (2018); https://doi.org/10.1051/metal/2017099
  63. V. Chigirinsky and I. Volokitina, Eng. Solid Mech., 12, No. 2: 113–126 (2024); https://doi.org/10.5267/j.esm.2023.11.001
  64. V.V. Chigirinsky, Y.S. Kresanov, and I.Y. Volokitina, Study of kinematic and deformation parameters of rolling of compressor blade workpieces, Metallofiz. Noveishie Tekhnol., 45, No. 5: 631–646 (2023); https://doi.org/10.15407/mfint.45.05.0631
  65. V.V. Chigirinsky, Y.S. Kresanov, and I.Y. Volokitina, Experimental study of energy-power parameters of billet rolling of compressor blades of aircraft engines, Metallofiz. Noveishie Tekhnol., 45, No. 4: 467–479 (2023); http://dx.doi.org/10.15407/mfint.45.04.0467
  66. D.A. Sinitsin, A.E.M.M. Elrefaei, A.O. Glazachev, D.V. Kuznetsov, A.A. Parfenova, E.I. Kayumova, and I.V. Nedoseko, Construct. Mater. Products, 6, No. 6: 2 (2023); https://doi.org/10.58224/2618-7183-2023-6-6-2
  67. A. Panichkin, W. Wieleba, A. Kenzhegulov, A. Uskenbayeva, S. Kvyatkovskii, and B. Kasenova, Mater. Res. Express, 10, No. 8: 086502 (2023); https://doi.org/10.1088/2053-1591/acead7
  68. I. Volokitina, Superplasticity of metals in modern engineering and technology, Prog. Phys. Met., 25, No. 3: 570–599 (2024); https://doi.org/10.15407/ufm.25.03.570
  69. H. Zheng, H. Ye, J. Li, L. Jiang, Z. Liu, C. Wang, and B. Wang, Mater. Sci. Eng. A, 527: 7407–7412 (2010); https://doi.org/10.1016/J.MSEA.2010.08.023
  70. E.F. Talantsev, Symmetry 15, No. 4: 812 (2023); https://doi.org/10.3390/sym15040812
  71. I. Volokitina, A. Volokitin, E. Panin, and B. Makhmutov, Symmetry, 16, No. 9: 1174 (2024); https://doi.org/10.3390/sym16091174
  72. A.T. Krawczynska, M. Lewandowska, R. Pippan, and K.J. Kurzydlowski, J. Nanosci. Nanotechnol., 13: 1–4 (2013); https://doi.org/10.1166/jnn.2013.7468
  73. J.E. Taylor, E.G. Teich, P.F. Damasceno, Y. Kallus and M. Senechal, Symmetry, 9, No. 9: 188 (2017); https://doi.org/10.3390/sym9090188
  74. H. Rösner, N. Boucharat, J. Markmann, K. Padmanabhan, and G. Wilde, Mater. Sci. Eng. A, 525: 102–106 (2009); https://doi.org/10.1016/j.msea.2009.06.035
  75. M.M. Nofal, R.S. Shawish, and M.A. Alaqeel, Symmetry, 14, No. 11: 2252 (2022); https://doi.org/10.3390/sym14112252