Останні тенденції в розробці стопів на основі Ti–Zr для біомедичних застосувань і технології наводнених порошків для їх виготовлення

ІВАСИШИН О.М., ДЕХТЯРЕНКО В.А., САВВАКІН Д.Г., ОРИШИЧ Д.В., БОНДАРЧУК В.І.

Інститут металофізики ім. Г.В. Курдюмова НАН України, бульв. Академіка Вернадського, 36, 03142 Київ, Україна

Отримано / остаточна версія: 10.03.2025 / 02.08.2025 Завантажити PDF logo PDF

Анотація
Стопи на основі таких елементів, як Ti, Zr, Nb і Ta, є основними металевими біомедичними матеріялами. Правильний вибір композицій на основі цих металів забезпечує необхідну біосумісність і механічну сумісність із кісткою й іншими тканинами живого організму, досягнення високих показників міцности за достатньої корозійної стійкости у кислотних і лужних середовищах, а саме ці критерії є ключовими під час виготовлення медичних імплантатів. Зазначено переваги одержання стопів біомедичного призначення за порошковою технологією у порівнянні з традиційними методами (застосування технології вакуумного литва та гарячого деформування). Розглянуто використання Гідроґену як тимчасового леґувального елементу до вказаних металів у порошкових технологіях і позитивний вплив Гідроґену на пониження залишкової пористости під час формування стопів з підвищеним комплексом фізико-механічних характеристик.

Ключові слова: біосумісні матеріяли, титан, цирконій, модуль Юнґа, корозійна тривкість.

DOI: https://doi.org/10.15407/ufm.26.03.***

Citation: О.М. Ivasishin, V.А. Dekhtyarenko, D.H. Savvakin, D.V. Oryshych, and V.I. Bondarchuk, Recent Trends in the Development of Ti–Zr-Based Alloys for Biomedical Applications and Hydrogenated Powder Technologies for Their Manufacturing, Progress in Physics of Metals, 26, No. 3: ***–*** (2025)


Цитована література   
  1. N. Eliaz, Corrosion of Metallic Biomaterials: A Review, Materials, 12, No. 3: 407 (2019); https://doi.org/10.3390/ma12030407
  2. M. Geetha, A. Singh, R. Asokamani, and A. Gogia, Ti Based Biomaterials, the Ultimate Choice for Orthopaedic Implants — A Review, Prog. Mater. Sci., 54, No. 3: 397–425 (2009); https://doi.org/10.1016/j.pmatsci.2008.06.004
  3. Z. Li, D. Liang, C. Zhong, T. Wan, W. Zhu, J. Luo, J. Yan, and F. Ren, Comprehensive Evaluation of Corrosion Resistance and Biocompatibility of Ultrafine-Grained TiMoNb Alloy for Dental Implants, J Mater. Sci. Technol., 221: 247–259 (2025); https://doi.org/10.1016/j.jmst.2024.09.030
  4. S. Shimizu, T. Fujii, and Y. Shimamura, Development of Short-Titanium-Fiber-Reinforced Porous Titanium as Biometal for Implants. J. Compos. Sci., 9: 10 (2025); https://doi.org/10.3390/jcs9010010
  5. M. Araya, A. Järvenpää, T. Rautio, R. Vindas, R. Estrada, M. de Ruijter, and T. Guillén, In-vivo and Ex-vivo Evaluation of Bio-inspired Structures Fabricated via PBF-LB for Biomedical Applications, Mater. Today Bio, 31: 101450 (2025); https://doi.org/10.1016/j.mtbio.2025.101450
  6. W. Abd-Elaziem, M.A. Darwish, A. Hamada, and W.M. Daoush, Titanium-Based Alloys and Composites for Orthopedic Implants Applications: A Comprehensive Review, Mater. Des., 241: 112850 (2024); https://doi.org/10.1016/j.matdes.2024.112850
  7. P. Baskaran, B. Muthiah, and V. Uthirapathy, A Systematic Review on Biomaterials and their Recent Progress in Biomedical Applications: Bone Tissue Engineering, Rev. Inorganic Chem., 45, No. 2: 411–436 (2025); https://doi.org/10.1515/revic-2024-0062
  8. F. Günther, F. Hirsch, S. Pilz, M. Wagner, A. Gebert, M. Kästner, and M. Zimmermann, Structure-Property Relationships of Imperfect Additively Manufactured Lattices Based on Triply Periodic Minimal Surfaces, Mater. Des., 222: 111036 (2022); https://doi.org/10.1016/j.matdes.2022.111036
  9. D. Kuroda, M. Niinomi, M. Morinaga, Y. Kato, and T. Yashiro, Design and Mechanical Properties of new β Type Titanium Alloys for Implant Materials, Mater. Sci. Eng. A, 243, Nos. 1–2: 244–249 (1998); https://doi.org/10.1016/S0921-5093(97)00808-3
  10. L. Liu, C. Yang, F. Wang, S. Qu, X. Li, W. Zhang, Y. Li, and L. Zhang, Ultrafine Grained Ti-based Composites with Ultrahigh Strength and Ductility Achieved by Equiaxing Microstructure. Mater. Des., 79: 1–5 (2015); https://doi.org/10.1016/j.matdes.2015.04.032
  11. Y. Zhang, X. Wang, W. Zhang, W. Huo, J. Hu, and L. Zhang, Elevated Tensile Properties of Ti–O Alloy with a Novel Core-shell Structure, Mater. Sci. Eng. A, 696: 360–365 (2017); https://doi.org/10.1016/j.msea.2017.04.088
  12. L. Zhang and L. Chen, A Review on Biomedical Titanium Alloys: Recent Progress and Prospect, Adv. Eng. Mater., 21, No. 4: 1801215 (2019); https://doi.org/10.1002/adem.201801215
  13. T. Odaira, S. Xu, K. Hirata, X. Xu, T. Omori, K. Ueki, K. Ueda, T. Narushima, M. Nagasako, S. Harjo, T. Kawasaki, L. Bodnárová, P. Sedlák, H. Seiner, and R. Kainuma, Flexible and Tough Superelastic Co–Cr Alloys for Biomedical Applications, Adv. Mater., 34, No. 27: 2202305 (2022); https://doi.org/10.1002/adma.202202305
  14. B. Ca, M. Xue, D. Yuan, X. Zhou, Y. Huang, and Z. Guo, Design of a Versatile Platform on Nanostructured Ti–Mo–Zr Alloy Surface with Photothermal, Antibacterial and Osteoinductive Properties for Biomedical Application, Colloids Surf. B: Biointerfaces, 248: 114473 (2025); https://doi.org/10.1016/j.colsurfb.2024.114473
  15. N. Hallab, S. Anderson, T. Stafford, T. Glant, and J. Jacobs, Lymphocyte Responses in Patients with Total Hip Arthroplasty, J. Orthop. Res., 23, No. 2: 384–391 (2005); https://doi.org/10.1016/j.orthres.2004.09.001
  16. A. Sargeant and T. Goswami, Hip implants: Paper V. Physiological effects, Mater. Des., 27, No. 4: 287–307 (2006); https://doi.org/10.1016/j.matdes.2004.10.028
  17. R.K. Mishra and S.S. Singh, Comprehensive Review of Biological Response, Alloy Design, Strengthening Mechanisms, Performance Evaluation, and Surface Modifications of Titanium Alloys for Biomedical Applications, Multiscale and Multidiscip. Model. Exp. and Des., 8: 67 (2025); https://doi.org/10.1007/s41939-024-00658-2
  18. E. Karamian, K.M. Motamedi, A. Khandan, P. Soltani, and S. Maghsoudi, An in vitro Evaluation of Novel NHA/zircon Plasma Coating on 316L Stainless Steel Dental Implant, Prog. Natural Sci.: Mater. Int., 24, No. 2: 150–156 (2014); https://doi.org/10.1016/j.pnsc.2014.04.001
  19. https://www.upmet.com/sites/default/files/datasheets/316-316l.pdf
  20. https://www.azom.com/article.aspx?ArticleID=2868
  21. G.L. Winters and M.J. Nutt, Stainless Steels for Medical and Surgical Applications (ASTM International: 2003); https://doi.org/10.1520/STP1438-EB
  22. A. Chiba, K. Kumagai, N. Nomura, and S. Miyakawa, Pin-on-disk Wear Behavior in a Like-on-like Configuration in a Biological Environment of High Carbon Cast and Low Carbon Forged Co–29Cr–6Mo Alloys, Acta Mater., 55: 1309 (2007); https://doi.org/10.1016/j.actamat.2006.10.005
  23. M. Long and H. Rack, Titanium Alloys in Total Joint Replacement — a Materials Science Perspective, Biomaterials, 19, No. 18: 1621–1639 (1998); https://doi.org/10.1016/S0142-9612(97)00146-4
  24. Y.S. Al. Jabbari, Physico-Mechanical Properties and Prosthodontic Applications of Co–Cr Dental Alloys: a Review of the Literature, J. Adv. Prosthodont., 6, No. 2: 138–145 (2014); https://doi.org/10.4047/jap.2014.6.2.138
  25. Y. Okazaki and E. Gotoh, Comparison of Metal Release from Various Metallic Biomaterials in Vitro, Biomaterials, 26, No. 1: 11–21 (2005); https://doi.org/10.1016/j.biomaterials.2004.02.005
  26. D.B. McGregor, R.A. Baan, C. Partensky, J.M. Rice, and J.D. Wilbourn, Evaluation of the Carcinogenic Risks to Humans Associated with Surgical Implants and other Foreign Bodies — a Report of an IARC Monographs Programme Meeting, Eur. J. Cancer, 36, No. 3: 307–313 (2000); https://doi.org/10.1016/s0959-8049(99)00312-3
  27. G Genchi, A. Carocci, G. Lauria, M. Stefania Sinicropi, and A. Catalano, Nickel: Human Health and Environmental Toxicology, Int. J. Environ. Res. Public Health, 17, No. 3: 679 (2020); https://doi.org/10.3390/ijerph17030679
  28. Q. Chen and G.A. Thouas, Metallic Implant Biomaterials, Mater. Sci. Eng.: R: Reports, 87: 1–57 (2015); https://doi.org/10.1016/j.mser.2014.10.001
  29. A. Prasad, N.L. Church, and N.G. Jones, An Investigation into the Ti–Nb–Ag Ternary System for Biocompatible Superelastic Alloys, Metals, 14, No. 12: 1426 (2024); https://doi.org/10.3390/met14121426
  30. https://www.carpentertechnology.com/hubfs/7407324/Material%20Saftey%20Data%20Sheets/Ti%20CP%20Grade%202.pdf
  31. G. Lutjering and J.C. Williams, Titanium (Berlin–Heidelberg: Springer: 2007); https://doi.org/10.1007/978-3-540-73036-1
  32. S. Tamilselvi, V. Raman, and N. Rajendran, Corrosion Behaviour of Ti–6Al–7Nb and Ti–6Al–4V ELI Alloys in the Simulated Body Fluid Solution by Electrochemical Impedance Spectroscopy, Electrochim. Acta, 52: 839–846 (2006); https://doi.org/10.1016/j.electacta.2006.06.018
  33. U. Zwicker and J. Breme, Investigations of the Friction Behaviour of Oxidized Ti–5%Al–2.5%Fe Surface Layers on Implant Material, J. Less Com. Met., 100: 371–375 (1984); https://doi.org/10.1016/0022-5088(84)90076-6
  34. M.A. Khan, R.L. Williams, and D.F. Williams, The Corrosion Behaviour of Ti–6Al–4V, Ti–6Al–7Nb and Ti–13Nb–13Zr in Protein Solutions, Biomaterials, 20, No. 7: 631–637 (1999); https://doi.org/10.1016/S0142-9612(98)00217-8
  35. X. Lei, L. Dong, Z. Zhang, Y. Liu, Y. Hao, R. Yang, and L. Zhang, Microstructure, Texture Evolution and Mechanical Properties of VT3-1 Titanium Alloy Processed by Multi-Pass Drawing and Subsequent Isothermal Annealing, Metals, 7, No. 4: 131 (2017); https://doi.org/10.3390/met7040131
  36. A. McAndrew, P. Colegrove, C. Bühr, B. Flipo, and A. Vairis, A Literature Review of Ti–6Al–4V Linear Friction Welding, Prog. Mater. Sci., 92: 225–257 (2018); https://doi.org/10.1016/j.pmatsci.2017.10.003
  37. S. Huang, Q. Zhao, C. Wu, C. Lin, Y. Zhao, W. Jia, and C. Mao, Effects of β-Stabilizer Elements on Microstructure Formation and Mechanical Properties of Titanium Alloys, J. Alloys Compd., 876: 160085 (2021); https://doi.org/10.1016/j.jallcom.2021.160085
  38. M. Niinomi, Y. Liu, M. Nakai, H. Liu, and H. Li, Biomedical Titanium Alloys with Young’s Moduli Close to that of Cortical Bone, Regener. Biomater., 3, No. 3: 173–185 (2016); https://doi.org/10.1093/rb/rbw016
  39. A. Biesiekierski, J. Lin, Y. Li, D. Ping, Y. Yamabe-Mitarai, and C. Wen, Investigations into Ti–(Nb,Ta)–Fe Alloys for Biomedical Applications, Acta Biomater., 32: 336–347 (2016); https://doi.org/10.1016/j.actbio.2015.12.010
  40. P. Fernandes Santos, M. Niinomi, H. Liu, K. Cho, M. Nakai, A. Trenggono, S. Champagne, H. Hermawan, and T. Narushima, Improvement of Microstructure, Mechanical and Corrosion Properties of Biomedical Ti–Mn Alloys by Mo Addition, Mater. Des., 110: 414–424 (2016); https://doi.org/10.1016/j.matdes.2016.07.115
  41. P. Ibrahim, R. Garrard, P. Penchev, K. Man, S.C. Cox, S. Dimov, and M.M. Attallah, Hybrid Manufacturing and Performance Evaluation of β Ti-Alloy Stents, Mater. Des., 247: 113420 (2024); https://doi.org/10.1016/j.matdes.2024.113420
  42. A. Ramarolahy, P. Castany, F. Prima, P. Laheurte, I. Péron, and T. Gloriant, Microstructure and Mechanical Behavior of Superelastic Ti–24Nb–0.5O and Ti–24Nb–0.5N Biomedical Alloys, J. Mech. Behav. Biomed. Mater., 9: 83–90 (2012); https://doi.org/10.1016/j.jmbbm.2012.01.017
  43. M. Besse, P. Castany, and T. Gloriant, Mechanisms of Deformation in Gum Metal TNTZ-O and TNTZ Titanium Alloys: A Comparative Study on the Oxygen Influence, Acta Mater., 59, No. 15: 5982–5988 (2011); https://doi.org/10.1016/j.actamat.2011.06.006
  44. J. Chen and W. Tsai, In Situ Corrosion Monitoring of Ti–6Al–4V Alloy in H2SO4/HCl Mixed Solution Using Electrochemical AFM, Electrochim. Acta, 56, No. 4: 1746–1751 (2011); https://doi.org/10.1016/j.electacta.2010.10.024
  45. A. Carman, L. Zhang, O. Ivasishin, D. Savvakin, M. Matviychuk, and E. Pereloma, Role of Alloying Elements in Microstructure Evolution and Alloying Elements Behaviour During Sintering of a near-β Titanium Alloy, Mater. Sci. Eng. A, 528, No. 31: 686–1693 (2011); https://doi.org/10.1016/J.MSEA.2010.11.004
  46. M. Abdel-Hady, K. Hinoshita, and M. Morinaga, General Approach to Phase Stability and Elastic Properties of β-Type Ti-Alloys Using Electronic Parameters, Scripta Mater., 55, No. 5: 477–480 (2006); https://doi.org/10.1016/j.scriptamat.2006.04.022
  47. C. Li, D. Lee, X. Mi, W. Ye, S. Hui, and Y. Lee, Phase Transformation and age Hardening Behavior of new Ti–9.2Mo–2Fe Alloy, J. Alloys Compd., 549: 152–157 (2013); https://doi.org/10.1016/j.jallcom.2012.08.065
  48. M., Ahmed, D., Wexler, G., Casillas, O. Ivasishin, and E. Pereloma, The Influence of β Phase Stability on Deformation Mode and Compressive Mechanical Properties of Ti–10V–3Fe–3Al Alloy, Acta Mater., 84: 124–135 (2015); https://doi.org/10.1016/j.actamat.2014.10.043
  49. S. Ehtemam-Haghighi, Y. Liu, G. Cao, and L. Zhang, Phase Transition, Microstructural Evolution and Mechanical Properties of Ti-Nb-Fe Alloys Induced by Fe Addition, Mater. Des., 97: 279–286 (2016); https://doi.org/10.1016/j.matdes.2016.02.094
  50. S. Haghighi, H. Lu, G. Jian, G. Cao, D. Habibi, and L. Zhang, Effect of α″ Martensite on the Microstructure and Mechanical Properties of Beta-Type Ti–Fe–Ta Alloys, Mater. Des., 76: 47–54 (2015); https://doi.org/10.1016/j.matdes.2015.03.028
  51. C. Rabadia, Y. Liu, L. Wang, H. Sun, and L. Zhang, Laves Phase Precipitation in Ti–Zr–Fe–Cr Alloys with High Strength and Large Plasticity, Mater. Des., 154: 228–238 (2018); https://doi.org/10.1016/j.matdes.2018.05.035
  52. C. Rabadia, Y. Liu, G. Cao, Y. Li, C. Zhang, T. Sercombe, H. Sun, and L. Zhang, High-Strength β Stabilized Ti–Nb–Fe–Cr Alloys with Large Plasticity, Mater. Sci. Eng. A, 732: 368–377 (2018); https://doi.org/10.1016/j.msea.2018.07.031
  53. C. Rabadia, Y. Liu, S. Jawed, L. Wang, Y. Li, X. Zhang, T. Sercombe, H. Sun, and L. Zhang, Improved Deformation Behavior in Ti-Zr-Fe-Mn Alloys Comprising the C14 Type Laves and β Phases, Mater. Des., 160: 1059–1070 (2018); https://doi.org/10.1016/j.matdes.2018.10.049
  54. R. Antunes and M. de Oliveira, Corrosion Fatigue of Biomedical Metallic Alloys: Mechanisms and Mitigation, Acta Biomater., 8, No. 3: 937–962 (2012); https://doi.org/10.1016/j.actbio.2011.09.012
  55. R. Yazdi, H. Ghasemi, C. Wang, and A. Neville, Bio-Corrosion Behaviour of Oxygen Diffusion Layer on Ti–6Al–4V During Tribocorrosion, Corros. Sci., 128: 23–32 (2017); https://doi.org/10.1016/j.corsci.2017.08.031
  56. A. Ataee, Y. Li, M. Brandt, and C. Wen, Ultrahigh-Strength Titanium Gyroid Scaffolds Manufactured by Selective Laser Melting (SLM) for Bone Implant Applications, Acta Mater., 158: 354–368 (2018); https://doi.org/10.1016/j.actamat.2018.08.005
  57. H. Chen, S. Hu, L. Wang, and L. Deng, Directional Design and Preparation of Ti-Nb Based Alloys with Predicted High Strength and Low Modulus for Biomedical Applications: Insights from First-Principles Calculations, Intermetallics, 177: 108580 (2025); https://doi.org/10.1016/j.intermet.2024.108580
  58. J.P. Luo, J.F. Sun, Y.J. Huang, J.H. Zhang, Y.D. Zhang, D.P. Zhao, and M. Yan, Low-Modulus Biomedical Ti–30Nb–5Ta–3Zr Additively Manufactured by Selective Laser Melting and its Biocompatibility, Mater. Sci. Eng. C, 97: 275–284 (2019); https://doi.org/10.1016/j.msec.2018.11.077
  59. R.L. Batalha, W.C. Batalha, L. Deng, T. Gustmann, S. Pauly, C.S. Kiminami, and P. Gargarella, Processing a Biocompatible Ti–35Nb–7Zr–5Ta Alloy by Selective Laser Melting, J. Mater. Research, 35: 1143–1153 (2020); https://doi.org/10.1557/jmr.2020.90
  60. M. Lin, X. Xiao, C. Xu, W. Lu, Y. Zhang, and W. Liao, A Nanostructured TiZrNbTaMo High-Entropy Alloy Thin Film with Exceptional Corrosion Properties for Biomedical Application, Appl. Surf. Sci., 684: 161859 (2025); https://doi.org/10.1016/j.apsusc.2024.161859
  61. J.L. Murray, The Ti–Zr (Titanium–Zirconium) System, Bull. Alloy Phase Diagr., 2, No. 2: 197–201 (1981); https://doi.org/10.1007/BF02881478
  62. X. Tang, T. Ahmed, and H.J. Rack, Phase Transformations in Ti–Nb–Ta and Ti–Nb–Ta–Zr Alloys, J. Mater. Sci., 35: 1805–1811 (2000); https://doi.org/10.1023/A:1004792922155
  63. M. Geetha, A. Singh, K. Muraleedharan, A. Gogia, and R. Asokamani, Effect of Thermomechanical Processing on Microstructure of a Ti–13Nb–13Zr Alloy, J. Alloys Compd., 329, Nos. 1–2: 264–271 (2001); https://doi.org/10.1016/S0925-8388(01)01604-8
  64. M. Abdel-Hady, H. Fuwa, K. Hinoshita, H. Kimura, Y. Shinzato, and M. Morinaga, Phase Stability Change with Zr Content in β-Type Ti–Nb Alloys, Scripta Mater., 57: 1000–1003 (2007); https://doi.org/10.1016/j.scriptamat.2007.08.003
  65. J.I. Kim, H.Y. Kim, T. Inamura, H. Hosoda, and S. Miyazaki, Shape Memory Characteristics of Ti–22Nb–(2–8)Zr(at.%) Biomedical Alloys, Mater. Sci. Eng. A, 403: 334–339 (2005); https://doi.org/10.1016/j.msea.2005.05.050
  66. H.Y. Kim, H. Satoru, J.I. Kim, H. Hosoda, and S. Miyazaki, Mechanical Properties and Shape Memory Behavior of Ti–Nb Alloys, Mater. Trans., 45, No. 7: 2443–2448 (2004); https://doi.org/10.2320/matertrans.45.2443
  67. S. Miyazaki, H.Y. Kim, and H. Hosoda, Development and Characterization of Ni-Free Ti-Base Shape Memory and Superelastic Alloys, Mater. Sci. Eng. A, 438–440: 18–24 (2006); https://doi.org/10.1016/j.msea.2006.02.054
  68. R. Dąbrowski and K. Sołek, Formation of Microstructure and Mechanical Properties of Ti13Nb13Zr Medical Titanium Alloy, Int. J.Eng. Sci. Technol., 47: 101547 (2023); https://doi.org/10.1016/j.jestch.2023.101547
  69. E. Frutos, M. Karlík, J.A. Jiménez, H. Langhansová, J. Lieskovská, and T. Polcar, Development of new β/α″-Ti–Nb–Zr Biocompatible Coating with Low Young’s Modulus and High Toughness for Medical Applications, Mater. Des., 142: 44–55 (2018); https://doi.org/10.1016/j.matdes.2018.01.014
  70. A. Maya, D. Grana, A. Hazarabedian, G. Kokubu, M. Luppo, and G. Vigna, Zr–Ti–Nb Porous Alloys for Biomedical Application, Mater. Sci. Eng. C, 32, No. 2: 321–329 (2012); https://doi.org/10.1016/j.msec.2011.10.035
  71. О. Ivasishin, O. Karasevskaya, P. Markovsky, and I. Skiba, Possibilities of Creating a new Biocompatible Low-Modulus Alloy Based on Zr and Ti, Abst. Int. Conf. Ti-2011 in CIS (April 25–28, 2011, Lviv), p. 166–172 (in Russian).
  72. T. Shiraishi, K. Yubuta, T. Shishido, and N. Shinozaki, Elastic Properties of As-Solidified Ti–Zr Binary Alloys for Biomedical Applications, Mater. Trans., 57, No. 12: 1986–1992 (2016); https://doi.org/10.2320/matertrans.MI201501
  73. M.A. Omar, Elementary Solid State Physics. Principles and Applications (Pearson Education: 2016).
  74. W. Weng, A. Biesiekierski, J. Lin, S. Ozan, Y. Li, and C. Wen, Development of Beta-Type Ti–Nb–Zr–Mo Alloys for Orthopedic Applications, Appl. Mater. Today, 22: 100968 (2021); https://doi.org/10.1016/j.apmt.2021.100968
  75. A. Timoshevskii, S. Yablonovskyy, and O. Ivasishin, First-Principles Calculations Atomic Structure and Elastic Properties of Ti–Nb Alloys, Funct. Mater., 19, No. 2: 266–271 (2012); https://doi.org/10.1016/10.15407/fm24.01
  76. V. Brailovski, S. Prokoshkin, M. Gauthier, K. Inaekyan, S. Dubinskiy, M. Petrzhik, and M. Filonov, Bulk and Porous Metastable Beta Ti–Nb–Zr(Ta) Alloys for Biomedical Applications, Mater. Sci. Eng. C, 31, No. 3: 643–657 (2011); https://doi.org/10.1016/j.msec.2010.12.008
  77. S. Schneider, S.G. Schneider, H. Marques da Silvab, C. de Moura Neto, Study of the Non-Linear Stress–Strain Behavior in Ti–Nb–Zr Alloys, Mater. Res., 8, No. 4: 435–438 (2005); https://doi.org/10.1590/S1516-14392005000400013
  78. O. Karasevska, I. Skiba, О. Ivasishin, and P. Markovsky, Biosymisny Splav iz Nyzkym Modulem Pruzhnosti na Osnovi Systemy Zyrkonii–Tytan [Biocompatible Alloy with Low Modulus of Elasticity Based on Zirconium Titanium System], Patent 102455 UA. MKI, A61L27/00, A61F2/02 (Published 10.07.2013) (in Ukrainian).
  79. N.N. Greenwood and A. Earnshaw, Chemistry of the Elements (Elsevier Science & Technology Books: 2012).
  80. H. Schaal, P. Castany, P. Laheurte, and T. Gloriant, Design of a Low Young’s Modulus Ti–Zr–Nb–Sn Biocompatible Alloy by in situ Laser Powder bed Fusion Additive Manufacturing Process, J. Alloys Compd., 966: 171539 (2023); https://doi.org/10.1016/j.jallcom.2023.171539
  81. S.X. Liang, X.J. Feng, L.X. Yin, X.Y. Liu, M.Z. Ma, and R.P. Liu, Development of a New β Ti Alloy with Low Modulus and Favorable Plasticity for Implant Material, Mater. Sci. Eng. C, 61: 338–343 (2016); https://doi.org/10.1016/j.msec.2015.12.076
  82. K.C. Nune, R.D. Misra, S.J. Li, Y.L. Hao, and R. Yang, Osteoblast Cellular Activity on Low Elastic Modulus Ti–24Nb–4Zr–8Sn Alloy, Dent. Mater., 33: 152–165 (2017); https://doi.org/10.1016/j.dental.2016.11.005
  83. L. Shi, L. Shi, L. Wang, Y. Duan, W. Lei, Z. Wang, J. Li, X. Fan, X. Li, S. Li, and Z. Guo, The Improved Biological Performance of a Novel Low Elastic Modulus Implant, PLoS ONE, 8: e55015 (2013); https://doi.org/10.1371/journal.pone.0055015
  84. T. Zhang, P. Ou, J. Ruan, and H. Yang, Nb–Ti–Zr Alloys for Orthopedic Implants, J. Biomater. Appl., 35, No. 10: 1284–1293 (2021); https://doi.org/10.1177/0885328220970756
  85. O. Mishchenko, O. Ovchynnykov, O. Kapustian, and M. Pogorielov, New Zr-Ti-Nb Alloy for Medical Application: Development, Chemical and Mechanical Properties, and Biocompatibility, Materials, 13, No. 6: 1306 (2020); https://doi.org/10.3390/ma13061306
  86. N. Sumitomo, K. Noritake, T. Hattori, K. Morikawa, S. Niwa, K. Sato, and M. Niinomi, Experiment Study on Fracture Fixation with Low Rigidity Titanium Alloy, J Mater Sci: Mater Med, 19, No. 4: 1581–1586 (2008); https://doi.org/10.1007/s10856-008-3372-y
  87. I. Çaha, A.C. Alves, L.A. Rocha, and F. Toptan, A Review on Bio-Functionalization of β-Ti Alloys, J. Bio Tribo. Corros., 6: 135 (2020); https://doi.org/10.1007/s40735-020-00432-0
  88. S. Ozan, J. Lin, Y. Li, and C. Wen, New Ti-Ta-Zr-Nb Alloys with Ultrahigh Strength for Potential Orthopedic Implant Applications, J. Mech. Behav. Biomed. Mater., 75: 119–127 (2017); https://doi.org/10.1016/j.jmbbm.2017.07.011
  89. J. Stráský, P. Harcuba, K. Václavová, K. Horváth, M. Landa, O. Srba, and M. Janeček, Increasing Strength of a Biomedical Ti–Nb–Ta–Zr Alloy by Alloying with Fe, Si and O, J. Mech. Behav. Biomed. Mater., 71: 329–336 (2017); https://doi.org/10.1016/j.jmbbm.2017.03.026
  90. W. Kong, S.C. Cox, Y. Lu, V. Villapun, X. Xiao, W. Ma, M. Liu, and M.M. Attallah, Microstructural Evolution, Mechanical Properties, and Preosteoblast Cell Response of a Post-Processing-Treated TNT5Zr β Ti Alloy Manufactured via Selective Laser Melting, ACS Biomater. Sci. Eng., 8: 2336–2348 (2022); https://doi.org/10.1021/acsbiomaterials.1c01277
  91. T.Y. Wei, J.C. Huang, C.-Y. Chao, L.L. Wei, M.T. Tsai, and Y.H. Chen, Microstructure and Elastic Modulus Evolution of TiTaNb Alloys, J. Mech. Behav. Biomed. Mater., 86: 224–231 (2018); https://doi.org/10.1016/j.jmbbm.2018.06.047
  92. R. Soni, S. Pande, S. Salunkhe, H. Natu, E. Abouel Nasr, R. Shanmugam, and H.M.A.M. Hussein, In Vitro and Electrochemical Characterization of Laser-Cladded Ti-Nb-Ta Alloy for Biomedical Applications, Crystals, 12: 954 (2022); https://doi.org/10.3390/cryst12070954
  93. N. Sakaguchi, M. Niinomi, T. Akahori, J. Takeda, and H. Toda, Relationships between Tensile Deformation Behavior and Microstructure in Ti–Nb–Ta–Zr System Alloys, Mater. Sci. Eng. C, 25, No. 3: 363–369 (2005); https://doi.org/10.1016/j.msec.2004.12.014
  94. O.G. Glotov, Combustion of Spherical Agglomerates of Titanium in Air. I. Experimental Approach, Combust Explos Shock Waves, 49: 299–306 (2013); https://doi.org/10.1134/S0010508213030064
  95. S. Sahoo, S. Pamir Alpay, and R.J. Hebert, Surface Phase Diagrams of Titanium in Oxygen, Nitrogen and Hydrogen Environments: A First Principles Analysis, Surf. Sci., 677: 18–25 (2018); https://doi.org/10.1016/j.susc.2018.05.007
  96. W. Guldner and L. Wooten, Reactions of Zirconium with Gases at Low Pressure. J. Electrochem. Soc., 93, No. 6: 223 (1948); https://doi.org/10.1149/1.2773810
  97. R.H. Nielsen, J.H. Schlewitz, and H. Nielsen, Zirconium and Zirconium Compounds (Kirk‐Othmer Encyclopedia of Chemical Technology: 2013); https://doi.org/10.1002/0471238961.26091803.a01.pub3
  98. X. Song, W. Ye, S. Hui, Y. Yu, R. Liu, Y. Fu, and X Mi, Low-Elastic-Modulus High-Strength Titanium Alloy and Preparation Method Thereof, MKI, C22С 14/00, C22С 1/02, C22С 1/18, Patent CN103173653B (Published 11.03.2015) (in Chinese).
  99. S. Zhang, H. Wang, L. Ren, K. Yang, and Z. Sun, Medical Titanium Alloy Material for Reinforcing Anchorage Micro-Implant and Preparation Method Thereof, MKI, A61L 27/50, A61L 27/04, C22F 1/18, C22C 14/00, Patent CN110170069B (Published 09.11.2021) (in Chinese).
  100. S. Zhang, H. Wang, L. Ren, and L. Ke, A Kind of Dedicated Medical Titanium Alloy of Planting Body and Preparation Method Thereof for Realizing Immediate Implant, MKI, C22F 1/18, A61L 27/50, A61L 27/06, Patent CN110157948B (Published 30.04.2021) (in Chinese).
  101. J. Wang, N. Wu, S. Li, Y. Luo, Z. Yong, and J Yu, Method for Designing Low-Elasticity-Modulus Titanium Alloy, MKI, G06F 30/20, Patent CN107665274B (Published 05.18.2021) (in Chinese).
  102. K. Narita, M. Niinomi, M. Nakai, J. Hieda, and K. Oribe, Development of Thermo-Mechanical Processing for Fabricating Highly Durable - Type Ti–Nb–Ta–Zr rod for use in Spinal Fixation Devices, J. Mechan. Behav. Biomed. Mater., 9: 207–216 (2012); https://doi.org/10.1016/j.jmbbm.2012.01.011
  103. F.H. Froes, S.J. Mashl, J.C. Hebeisen, V.S. Moxson, and V.A. Duz, The Technologies of Titanium Powder Metallurgy, JOM, 56: 46–48 (2004); https://doi.org/10.1007/s11837-004-0252-x
  104. M. Qian, G. Schaffer, and C. Bettles, Sintering of Titanium and Its Alloys, Sintering of Advanced Materials, Iss. 3: 324–355 (2010); https://doi.org/10.1533/9781845699949.3.324
  105. M. Niinomi, Properties and Applications of Ti: Current Status and Future Needs, Abstr. Int. Conf. Ti-2003, Proceedings of 10th World Conference on Titanium (July, 13–18, 2003, Hamburg), р. 95–110.
  106. D. Eylon, W. Ernst, D. Kramer, and L. Jacobsen, Development of Ultra Fine Microstructure by Rapid Hot Compaction of Armstron-Process Titanium Powder, Abstr. Int. Conf. Ti-2007 Science and technology, Proceedings of 11th World Conference on Titanium (June 3–7, 2007, Kyoto), p. 1145–1149.
  107. J. de Monicault, J. Guedou, P. Belaygue, and V. Andre, Issues and Progress in Manufacturing of Turbo-Engines Titanium Parts, Abstr. Int. Conf. Ti-2007 Science and technology, Proceedings of 11th World Conference on Titanium (June 3–7, 2007, Kyoto), p. 1301–1308.
  108. M. Imam and F. Froes, Titanium Powder Metallurgy: Cost-Effective Developments, Abstr. Int. Conf. Ti-2011 Science and Technology, Proceedings of the 12th World Conference on Titanium (Beijing: 2011), p. 2223–2226.
  109. L. Bolzoni, E. Herraiz, E.M. Ruiz-Navas, and E. Gordo, Development of Low-Cost Powder Metallurgy Titanium Alloys by Addition of Commercial 430 Stainless Steel Powder, TMS 2014: 143rd Annual Meeting and Exhibition, p. 597–604 (2014); https://doi.org/10.1007/978-3-319-48237-8_72
  110. Z.Z. Fang, J.D. Paramore, P. Sun, K.S. Ravi Chandran, Y. Zhang, Y. Xia, F. Cao, M. Koopman, and M. Free, Powder Metallurgy of Titanium — Past, Present, and Future, Int. Mater. Rev., 63, No. 7: 407–459 (2018); https://doi.org/10.1080/09506608.2017.1366003
  111. F.H. Froes and D. Eylon, Powder Metallurgy of Titanium Alloys, Int. Mater. Rev., 35, No. 1: 162–184 (1990); https://doi.org/10.1179/095066090790323984
  112. F.H. Froes, Titanium Powder Metallurgy: A Review, Pt. 1, AM&P Technical Articles, 170, No. 9: 16–22 (2012); https://doi.org/10.31399/asm.amp.2012-09.p016
  113. O. Ivasishin, D. Savvakin, F. Froes, and K. Bondareva, Synthesis of Alloy Ti–6Al–4V with Low Residual Porosity by a Powder Metallurgy Method, Powder Metall Met. Ceram., 41, No. 7/8: 382–390 (2002); https://doi.org/10.1023/A:1021117126537
  114. L. Bolzoni, T. Weissgaerber, B. Kieback, E. Ruiz-Navas, and E. Gordo, Mechanical Behaviour of Pressed and Sintered CP Ti and Ti–6Al–7Nb Alloy Obtained from Master Alloy Addition Powder, J. Mechan. Behav. Biomed. Mater., 20: 149–161 (2013); https://doi.org/10.1016/j.jmbbm.2012.08.022
  115. D. Savvakin, A. Carman, O. Ivasishin, M. Matviychuk, A. Gazder, аnd E. Pereloma, Effect of Iron Content on Sintering Behavior of Ti–V–Fe–Al Near β Titanium Alloy, Metall Mater. Trans. A, 43: 716–723 (2012); https://doi.org/10.1007/s11661-011-0875-9
  116. D.V. Oryshych, Phase and Structural Transformations on Hydrogen-Activated Synthesis of Zirconium-Based Alloys (Diss. Ph.D. Degree of Physical and Mathematical Sciences) (Kyiv: G.V. Kurdyumov Institute for Metal Physics of the N.A.S. of Ukraine: 2021) (in Ukrainian).
  117. O.M. Ivasishin and V.S. Moxson, Low Cost Titanium Hydride Powder Metallurgy, Titanium Powder Metallurgy: Science, Technology and Applications (Eds. M. Qian and F. Froes) (Elsevier: 2015).
  118. D.G. Savvakin and M.M. Gumenyak, Synthesis of Alloys Based on Binary Zr–Ti System Using Dispersed Zirconium Hydride, Metallofiz. Noveishie Tekhnol., 35, No. 3: 1237–1252 (2013) (in Ukrainian).
  119. O.M. Ivasishin, V.M. Anokhin, A.N. Demidik, and D.G. Savvakin, Cost-Effective Blended Elemental Powder Metallurgy of Titanium Alloys for Transportation Application, Key Eng. Mater., 188: 55–62 (2000); https://doi.org/10.4028/www.scientific.net/KEM.188.55
  120. Y. Yang, S. Luo, G. Schaffer, and M. Qian, Sintering of Ti–10V–2Fe3Al and Mechanical Properties, Mater. Sci. Eng. A, 528, Nos. 22–23: 6719–6726 (2011); https://doi.org/10.1016/j.msea.2011.05.041
  121. M. Qian, Cold Compaction and Sintering of Titanium and its Alloys for Near-Net-Shape or Preform Fabrication, Int. J. Powder Metall., 46, No, 5: 29–44 (2010); https://doi.org/10.18307/2010.0104
  122. F.H. Froes, O.N. Senkov, and J.I. Qazi, Hydrogen as a Temporary Alloying Element in Titanium Alloys: Thermohydrogen Processing, Int. Mater. Rev., 49, Nos. 3–4: 227–245 (2004); https://doi.org/10.1179/09506600422501055
  123. C. Yu, P. Cao, and M.I. Jones, Titanium Powder Sintering in a Graphite Furnace and Mechanical Properties of Sintered Parts, Metals, 7, No. 2: 67 (2017); https://doi.org/10.3390/met7020067
  124. S. El-Soudani, K. Yu, E. Crist, F. Sun, M. Campbell, T. Esposito, J. Phillips, V. Moxson, and V. Duz, Optimization of Blended-Elemental Powder-Based Titanium Alloy Extrusions for Aerospace Applications, Metall. Mater. Trans. A, 44, No. 2: 899–910 (2013); https://doi.org/10.1007/s11661-012-1437-5
  125. A.A. Elhadad, L. Romero-Resendiz, M.C. Rossi, L.M. Rodríguez-Albelo, S. Lascano, C.R.M. Afonso, A. Alcudia, V. Amigó, and Y. Torres, Findings and Perspectives of β-Ti Alloys with Biomedical Applications: Exploring Beyond Biomechanical and Biofunctional Behaviour, J. Mater. Res. Technol., 33: 3550–3618 (2024); https://doi.org/10.1016/j.jmrt.2024.09.248
  126. O.M. Ivasishin, D.G. Savvakin, K.А. Bondareva, V.S. Moxson, and V.A. Duz, Production of Titanium Alloys and Components by Cost-Effective Powder Metallurgy Approach for Wide Industrial Application, Nauka Innov., 1, No. 5: 44–57 (2005); https://doi.org/10.15407/scin1.02.044
  127. O. Ivasishin, D. Eylon, V. Bondarchuk, and D. Savvakin, Diffusion during Powder Metallurgy Synthesis of Titanium Alloys, Defect Diffus. Forum, 277: 177–185 (2008); https://doi.org/10.4028/www.scientific.net/DDF.277.177
  128. G. Ma, T. Cheng, H. Jia, L. Yuan, O.M. Ivasishin, and D.G. Savvakin, A Novel Method to Fabricate high Strength and Ductility Ti–3Al–5Mo–4.5 V Alloy Based on TiH2 and Pre-Hydrogenated Master Alloy Powders, Mater. Des., 227: 111791 (2023); https://doi.org/10.1016/j.matdes.2023.111791
  129. O.M. Ivasishin, O.P. Karasevska, D.G. Savvakin, M.M. Humenyak, Ya.I. Melnyk, and O.O. Stasiuk, Features of Volume Effects under a Heating of Compacted Powder of Zirconium Hydride, Metallofiz. Noveishie Tekhnol., 38, No. 11: 1527–1540 (2016) (in Ukrainian); https://doi.org/10.15407/mfint.38.11.1527
  130. D.V. Oryshych, O.M. Ivasishin, P.E. Markovsky, D.G. Savvakin, O.O. Stasiuk, and V.I. Bondarchuk, Peculiarities of Pore Structure Formation upon Zr–Ti–Nb Alloys Synthesis Using Hydrogenated Powder Blends, Metallofiz. Noveishie Tekhnol., 42, No. 12: 1681–1700 (2020) (in Ukrainian); https://doi.org/10.15407/mfint.42.12.1681
  131. O.M. Ivasishin and D.G. Savvakin, The Impact of Diffusion on Synthesis of High-Strength Titanium Alloys from Elemental Powder Blends, Key Eng. Mater., 436: 113–121 (2010); https://doi.org/10.4028/www.scientific.net/KEM.436.113
  132. D.G. Savvakin, Physical Background of Solid State Synthesis of Titanium Alloys (Diss. Doctor of Physical and Mathematical Sciences) (Kyiv: G.V. Kurdyumov Institute for Metal Physics of the N.A.S. of Ukraine: 2013) (in Ukrainian).
  133. B. Kolachev, A. Ilyin, B. Lavrenko, and Yu. Levinsky, Hydride Systems: Reference Book (Moskva: Metallurgiya: 1991) (in Russian).
  134. M.V. Goltsova, Hydrogen Technologies in Foundry and Metallurgy: Current State and Perspectives (Review), Foundry Produc. Metal., No. 4: 145–154 (2018) (in Russian); https://doi.org/10.21122/1683-6065-2018-4-145-154
  135. Z. Fang, P. Sun, and H. Wang, Hydrogen Sintering of Titanium to Produce High Density Fine Grain Titanium Alloys, Adv. Eng. Mater., 14, No. 6: 383–387 (2012); https://doi.org/10.1002/adem.201100269
  136. V.A. Dekhtyarenko, D.G. Savvakin, V.I. Bondarchuk, V.M. Shyvaniuk, T.V. Pryadko, and O.O. Stasiuk, TiMn2-Based Intermetallic Alloys for Hydrogen Accumulation: Problems and Prospects, Prog. Phys. Met., 22, No. 3: 307–351 (2021); https://doi.org/10.15407/ufm.22.03.307
  137. V.A. Dekhtyarenko, T.V. Pryadko, О.І. Boshko, V.V. Kirilchuk, H.Yu. Mykhailova, and V.I. Bondarchuk, Hydrogen Embrittlement of Titanium: Phenomena and Main Ways of Prevention, Prog. Phys. Met., 25, No. 2: 276–293 (2024); https://doi.org/10.15407/ufm.25.02.276
  138. V.G. Ivanchenko, V.А. Dekhtyarenko, Т.V. Pryadko, D.G. Savvakin, and I.K. Evlash, Influence of Heat Treatment on the Hydrogen-Sorption Properties of Ti0.475Zr0.3Mn0.225 Eutectic Alloy Doped with Vanadium, Mater. Sci., 51: 492–499 (2016); https://doi.org/10.1007/s11003-016-9867-7
  139. D.H. Savvakin, M.M. Humenyak, M.V. Matviichuk, and O.H. Molyar, Role of Hydrogen in the Process of Sintering of Titanium Powders, Mater. Sci., 47: 651–661 (2012); https://doi.org/10.1007/s11003-012-9440-y
  140. S. Dong, B. Wang, Y. Song, G. Ma, H. Xu, D. Savvakin, and O. Ivasishin, Comparative study on Cold Compaction Behaviour of TiH2 Powder and HDH-Ti Powder, Adv. Mater. Sci. Eng., 2021: 9999541 (2021); https://doi.org/10.1155/2021/9999541
  141. S. Dong, G. Ma, P. Lei, T. Cheng, D. Savvakin, and O. Ivasishin, Comparative study on densification process of different titanium powder, Adv. Powder Technol., 32, No. 7: 2300–2310 (2021); https://doi.org/10.1016/j.apt.2021.05.009
  142. О.М. Ivasyshyn, D.H. Savvakin, V.А. Dekhtyarenko, and О.О. Stasyuk, Interaction of Ті–Al–V–Fe, Al–V–Fe, and Ті–Al–Mo–Fe Powder Master Alloys with Hydrogen. Mater. Sci., 54: 266–272 (2018); https://doi.org/10.1007/s11003-018-0182-3
  143. Y. Fukai, Formation of Superabundant Vacancies in M–H Alloys and Some of Its Consequences: a Review, J. Alloys Compd., 356–357: 263–269 (2003); https://doi.org/10.1016/S0925-8388(02)01269-0
  144. V.G. Ivanchenko, V.A. Dekhtyarenko, and T.V. Pryadko, Hydrogen-sorption properties of (Ti, Zr)Mn2–x intermetallic alloy, Powder Metall. Met. Ceram., 52: 340–344 (2013); https://doi.org/10.1007/s11106-013-9531-9
  145. V.A. Dekhtyarenko, T.V. Pryadko, T.P. Vladimirova, S.V. Maksymova, H.Yu. Mykhailova, and V.I. Bondarchuk, Effect of Alloying on the Hydrogen Sorption in Ti–Zr–Mn-Based Alloys. Pt. 1: C14-Type Laves-Phase-Based Alloys, Prog. Phys. Met., 25, No. 3: 520–544 (2024); https://doi.org/10.15407/ufm.25.03.520
  146. O.M. Ivasishin, D.G. Savvakin, M.M. Gumenyak, and A.B. Bondarchuk, Role of Surface Contamination in Titanium PM, Key Eng. Mater., 520: 121–132 (2012); https://doi.org/10.4028/www.scientific.net/KEM.520.121
  147. E. Pereloma, D. Savvakin, A. Carman, A. Gazder, and O. Ivasishin, Microstructure Development and Alloying Elements Diffusion during Sintering of Near-β Titanium Alloys, Key Eng. Mater., 520: 49–56 (2012); https://doi.org/10.4028/www.scientific.net/KEM.520.49
  148. D. Setoyama, J. Matsunaga, H. Muta, M. Uno, and S. Yamanaka, Mechanical Properties of Titanium Hydride, J Alloys Compd., 381, Nos. 1–2: 215–220 (2004); https://doi.org/10.1016/j.jallcom.2004.04.073
  149. O.M. Ivasishin, D.G. Savvakin, D.V. Oryshych, O.O. Stasiuk, and L. Yuanyuan, Hydride Approach in Blended Elemental Powder Metallurgy of Beta Titanium Alloys, MATEC Web of Conferences, 321: 03009 (2020); https://doi.org/10.1051/matecconf/202032103009
  150. K. Wang and R. Reeber, High Temperature Bulk Moduli and Self-Diffusion for Tantalum and Tungsten, High Temper. Mater. Sci., 36: 185–193 (1996).
  151. O.E. Dmytrenko, I.V. Kolodiy, T.B. Yanko, V.M. Borysenko, K. Irwin, and R.L. Vasilenko, Synthesis of the Ti–Zr–Ni Alloys by the “Hydride Cycle” Method, Phys. Technol. Struct. Mater., 137, No. 1: 111–121 (2022); https://doi.org/10.46813/2022-137-111
  152. V.A. Dekhtyarenko, D.G. Savvakin, O.O. Stasiuk, and D.V. Oryshych, Hydrogen Absorption and Desorption by Niobium and Tantalum, Metallofiz. Noveishie Tekhnol., 44, No. 7: 887–897 (2022); https://doi.org/10.15407/mfint.44.07.0887
  153. M.O. Vasylyev and P.O. Gurin, Structure and Properties of 3D Printed Zirconia Applied in Dentistry, Prog. Phys. Met., 24, No. 1: 106–131 (2023); https://doi.org/10.15407/ufm.24.01.106