Роль водневого термооброблення в процесах упорядкування нанорозмірних плівок на основі FePd і FePt

БАРАБАШ М.Ю.$^{1,2}$, ВЕРБИЦЬКА Т.І.$^1$, МАКОГОН Ю.М.$^1$

$^1$Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського», просп. Берестейський, 37, 03056 Київ, Україна
$^2$Технічний центр НАН України, вул. Покровська, 13, 04070 Київ Україна

Отримано 12.01.2025, остаточна версія 03.05.2025 Завантажити PDF logo PDF

Анотація
В огляді наводяться експериментальні результати, одержані під час дослідження твердофазної реакції впорядкування A1→L10 у нанорозмірних плівках FePd і FePt еквіатомного складу, а також леґованих Ag, Au під час відпалу у вакуумі та водні. Розглянуто поведінку Гідроґену в плівці та його вплив на фазовий склад, структуру, а також викликану Гідроґеном зміну магнетних станів і властивостей. Процеси впорядкування у плівках на основі еквіатомних стопів FePd і FePt пришвидшуються під час відпалу у середовищі водню порівняно з відпалення у вакуумі. Введення атомів H спричинює зміну електронної структури, магнетних властивостей і станів плівки на основі FePd. Показано оборотні зміни магнетних станів плівки FePd: феромагнетик↔парамагнетик шляхом зміни температури та часу відпалу плівки у середовищі водню. Динаміку структурних змін у плівках FePd під час процесів упорядкування досліджено Рамановою спектроскопією.

Ключові слова: водень, відпал, упорядкування, L10-FePd, L10-FePt, магнетні властивості, магнетотвердий стан, парамагнетний стан, коерцитивна сила, феромагнетний резонанс, Раманова спектроскопія.

DOI: https://doi.org/10.15407/ufm.26.02.***

Citation: M.Yu. Barabash, T.I. Verbytska, and Yu.M. Makogon, The Role of Hydrogen Heat Treatment during Ordering Processes in FePd- and FePt-Based Nanoscale Films, Progress in Physics of Metals, 26, No. 2: ***–*** (2025)


Цитована література   
  1. V.A. Goltsov, Progress in Hydrogen Treatment of Materials (Eds. V.A. Goltsov) (Donetsk−Coral Gables: Kassiopeya Ltd.: 2001), p. 543.
  2. V.A. Goltsov, Progress in hydrogen treatment of materials, Int. J. Hydrogen Energy, 27, Nos. 7–8: 845–852 (2002); https://doi.org/10.1016/S0360-3199(01)00126-4
  3. V.A. Goltsov, Fundamentals of hydrogen treatment of materials, Progress in Hydrogen Treatment of Materials (Eds. V.A. Goltsov) (Donetsk–Coral Gables: Kassiopeya Ltd: 2001), p. 3–36 (2001).
  4. A.A. Ilyin, B.A. Kolachev, and V.K. Nosov, The achievements and prospects of hydrogen technology of titanium alloys production and treatment, Progress in Hydrogen Treatment of Materials (Eds. V.A. Goltsov) (Donetsk–Coral Gables: Kassiopeya Ltd.: 2001), p. 299–314 (2001).
  5. G.P. Borisov and F.M. Kotlyarski, Hydrogen in technologies for aluminium alloys casting, Progress in Hydrogen Treatment of Materials (Eds. V.A. Goltsov) (Donetsk–Coral Gables: Kassiopeya Ltd.: 2001), p. 315–326 (2001).
  6. V.V. Fedorov, I.I. Bulyk, and V. Panasyuk, Hydrogen as a working atmosphere for manufacturing permanent magnets based on rare-earth metals, Materials Science, 45, No. 2: 268–278 (2009); https://doi.org/10.1007/s11003-009-9185-4
  7. V.A. Goltsov, D. Fruchart, S.B. Rybalka, and V.A. Didus, Kinetics and some general features of hydrogen-induced diffusive phase transformations in NdFe14B type alloys, Progress in Hydrogen Treatment of Materials (Eds. V.A. Goltsov) (Donetsk−Coral Gables: Kassiopeya Ltd.: 2001), p. 367–390 (2001).
  8. M.V. Goltsova, Yu.A. Artemenko, and G.I. Zhirov, Hydride transformations: nature, kinetics, morphology, Progress in Hydrogen Treatment of Materials (Eds. V.A. Goltsov), (Donetsk–Coral Gables: Kassiopeya Ltd.: 2001), p. 161–184 (2001).
  9. M.V. Goltsova, Reverse hydride transformations in the Pd–H system, Int. J. Hydrogen Energy, 31, No. 2: 223–229 (2006); https://doi.org/10.1016/j.ijhydene.2005.04.032
  10. D. Weller, G. Parker, O. Mosendz, A. Lyberatos, D. Mitin, N.Y. Safonova, and M. Albrecht, Review article: FePt heat assisted magnetic recording media, J. Vac. Sci. Technol. B, 34: 060801 (2016); https://doi.org/10.1116/1.4965980
  11. O.V. Shamis, I.A. Vladymyrskyi, Yu.M. Makogon, and S.I. Sidorenko, Materials science aspects of FePt-based thin films’ formation, Prog. Phys. Met., 19, No. 3: 337–363 (2018); https://doi.org/10.15407/ufm.19.03.337
  12. D. Weller, A. Moser, L. Folks, M.E. Best, W. Lee, M.F. Toney, M. Schwickert, J.-U. Thiele, and M.F. Doerner, High Ku materials approach to 100 Gbits/in2, IEEE Trans. Magn., 36: 10–15 (2000); https://doi.org/10.1109/20.824418
  13. Y.J. Chiu, C.Y. Shen, H.W. Chang, and S.R. Jian, Characteristics of iron–palladium alloy thin films deposited by magnetron sputtering, Results Phys., 9: 17–22 (2018); https://doi.org/10.1016/j.rinp.2018.02.024
  14. D.-L. Zhang, C. Sun, Y. Lv, K.B. Schliep, Z. Zhao, J.-Y. Chen, P.M. Voyles, and J.-P. Wang, L10-FePd synthetic antiferromagnet through an fcc ru spacer utilized for perpendicular magnetic tunnel junctions, Phys. Rev. Applied, 9: 044028 (2018); https://doi.org/10.1103/PhysRevApplied.9.044028
  15. P.-C. Chang, T.-H. Chuang, D.-H. Wei, and W.-C. Lin, Thermally modulated hydrogenation in FexPd1x alloy films: temperature-driven peculiar variation of magnetism, Appl. Phys. Lett., 116: 102407 (2020); https://doi.org/10.1063/1.5142625
  16. P.-C. Chang, Y.-C. Chen, C.-C. Hsu, and V.R. Mudinepalli, Hydrogenation-induced reversible spin reorientation transition in Co50Pd50 alloy thin films, J. Alloys and Compd., 710: 37–46 (2017); https://doi.org/10.1016/j.jallcom.2017.03.221
  17. M.H. Kryder, E.C. Gage, T.W. McDaniel, W.A. Challener, R.E. Rottmayer, G. Ju, Y.-T. Hsia, and M.F. Erden, Heat assisted magnetic recording, Proc. IEEE, 96: 1810–1835 (2008); https://doi.org/10.1109/JPROC.2008.2004315
  18. S.N. Piramanayagam and T.C. Chong, Developments in Data Storage: Materials Perspective (Eds. S.N. Piramanayagam and T.C. Chong) (Wiley–IEEE Press: 2011), p. 352.
  19. Z. Yanli, C. Gang, X. Xiaozong, P. Kuang, L. Lin, D. Yusong, Z. Xin, M. Lei, and G. Zhengfei, Effect of thickness on the structure and magnetic properties of FePd films grown on glass substrate, Rare Met. Mater. Eng., 46, No. 7: 1788–1791 (2017); https://doi.org/10.1016/S1875-5372(17)30167-4
  20. J. Ko, T. Bae, and J. Hong, Effect of a change in thickness on the structural and perpendicular magnetic properties of L10 ordered FePd ultra-thin films with (001) texture, J. Appl. Phys., 112, No. 11: 113919 (2012); https://doi.org/10.1063/1.4769737
  21. T. Liu, L. Ma, S.Q. Zhao, D.D. Ma, L. Li, G. Cheng, and G.H. Rao, Crystal structure and magnetic properties of FexPd1x thin films annealed at 550 C, J. Mater. Sci.: Mater. Electron., 28: 3616–3620 (2017); https://doi.org/10.1007/s10854-016-5963-6
  22. B. Li, W. Liu, X.G. Zhao, S. Ma, W.J. Gong, J.N. Feng, F. Wang, and Z.D. Zhang, Ordering temperature of L10-FePd film reduced by Ag underlayer, Mater. Lett., 100: 58–61 (2013); https://doi.org/10.1016/j.matlet.2013.02.102
  23. Y. Tokuoka, Y. Seto, T. Kato, and S. Iwata, Effect of Ag addition to L10 FePt and L10 FePd films grown by molecular beam epitaxy, J. Appl. Phys., 115, No. 17: 17B716 (2014); https://doi.org/10.1063/1.4864251
  24. C.L. Platt, K.W. Wierman, E.B. Svedberg, R. van de Veerdonk, J.K. Howard, A.G. Roy, and D.E. Laughlin, L10 ordering and microstructure of FePt thin films with Cu, Ag, and Au additive, J. Appl. Phys., 92, No. 10: 6104 (2002); https://doi.org/10.1063/1.1516870
  25. C.Y. You, Y.K. Takahashi, and K. Hono, Particulate structure of FePt thin films enhanced by Au and Ag alloying, J. Appl. Phys., 100: 056105 (2006); https://doi.org/10.1063/1.2335600
  26. C. Feng, Q. Zhan, B. Li, J. Teng, M. Li, Y. Jiang, and G. Yu, Magnetic properties and microstructure of FePt/Au multilayers with high perpendicular magnetocrystalline anisotropy, Appl. Phys. Lett., 93: 152513 (2008); https://doi.org/10.1063/1.3001801
  27. B. Wang, K. Barmak, and T.J. Klemmer, A1 to L10 transformation in FePt films with ternary alloying of Ag and Au, IEEE Trans. Magn., 46: 1773 (2010); https://doi.org/10.1109/TMAG.2010.2042039
  28. I.A. Vladymyrskyi, A.E. Gafarov, A.P. Burmak, S.I. Sidorenko, G.L. Katona, N.Y. Safonova, F. Ganss, G. Beddies, M. Albrecht, Iu.M. Makogon, and D.L. Beke, Low-temperature formation of the FePt phase in the presence of an intermediate Au Layer in Pt/Au/Fe thin films, J. Phys. D: Appl. Phys., 49: 035003 (2016); https://doi.org/10.1088/0022-3727/49/3/035003
  29. I.A. Vladymyrskyi, Y. Mamchur, O.V. Dubikovskyi, S.M. Voloshko, A. Ullrich, and M. Albrecht, Phase composition and magnetic properties of post-annealed asymmetric Pt/Fe/Pt/Au/Fe thin films, Thin Solid Films, 754: 139300 (2022); https://doi.org/10.1016/j.tsf.2022.139300
  30. K. Tanaka, T. Ichitsubo, and M. Koiwa, Effect of external fields on ordering of FePd, Mat. Sci. Eng. A, 312, Nos. 1–2: 118–127 (2001); https://doi.org/10.1016/S0921-5093(00)01865-7
  31. S.N. Hsiao, S.H. Liu, C.C. Chen, C.L. Chou, S.K. Chen, S.H. Su, K.F. Chiu, and C.K. Sung, A comparison of rapid-annealed FePt and FePd thin films: internal stress, L10 ordering, and texture, Vacuum, 125: 1–5 (2016); https://doi.org/10.1016/j.vacuum.2015.11.022
  32. P.V. Makushko, M.Yu. Verbytska, M.N. Shamis, T.I. Verbytska, G. Beddies, N.Y. Safonova, M. Albrecht, and Iu.N. Makogon, Effect of initial stress/strain state on the L10 phase formation of FePt in FePt/Au/FePt trilayers, Appl. Nanosci., 10: 2775 (2020); https://doi.org/10.1007/s13204-019-01066-6
  33. R. Goyal, S. Lamba, and S. Annapoorni, Modelling of strain induced magnetic anisotropy in Au additive FePt thin films, Prog. Nat. Sci.: Mater. Int., 29: 517 (2019); https://doi.org/10.1016/j.pnsc.2019.09.001
  34. I.A. Vladymyrskyi, M.V. Karpets, F. Ganss, G.L. Katona, D.L. Beke, S.I. Sidorenko, T. Nagata, T. Nabatame, T. Chikyow, G. Beddies, M. Albrecht, and I. M. Makogon, Influence of the annealing atmosphere on the structural properties of FePt thin films, J. Appl. Phys., 114: 164314 (2013); https://doi.org/10.1063/1.4827202
  35. M. Yamauchi, K. Okubo, T. Tsukuda, K. Kato, M. Takata, and S. Takeda, Hydrogen-induced structural transformation of AuCu nanoalloys probed by synchrotron x-ray diffraction techniques, Nanoscale, 6, No. 8: 4067 (2014); https://doi.org/10.1039/C3NR06327E
  36. M.N. Shamis, N.Y. Schmidt, T.I. Verbytska, P.V. Makushko, G. Beddies, M. Albrecht, and Yu.N. Makogon, L10 phase formation in FePd thin films induced by H2 during annealing, Appl. Nanosci., 12: 1227–1233 (2022); https://doi.org/10.1007/s13204-021-01809-4
  37. E.A. Gonzalez, P.V. Jasen, N.J. Castellani, A. Juan, The effect of interstitial hydrogen on the electronic structure of Fe–Pd alloys, J. Phys. Chem. Solids., 65, No. 11: 1799–1807 (2004); https://doi.org/10.1016/j.jpcs.2004.05.008
  38. K. Aoki and T. Masumoto, Hydrogen-induced amorphization of intermetallics, J. Alloys and Compd., 231, Nos. 1–2: 20–28 (1995); https://doi.org/10.1016/0925-8388(95)01832-8
  39. M. Blanco-Rey, J.I. Cerdá, and A. Arnau, Validity of perturbative methods to treat the spin–orbit interaction: application to magnetocrystalline anisotropy, New J. Phys., 21, No. 7: 073054 (2019); https://doi.org/10.1088/1367-2630/ab3060
  40. W.C. Lin, B.-Y. Wang, H.-Y. Huang, C.-J. Tsai, and V.R. Mudinepalli, Hydrogen absorption-induced reversible change in magnetic properties of Co–Pd alloy films, J. Alloys Compd., 661: 20–26 (2016); https://doi.org/10.1016/j.jallcom.2015.11.144
  41. W.C. Lin, C.J. Tsai, B.Y. Wang, C.H. Kao, and W.F. Pong, Hydrogenation induced reversible modulation of perpendicular magnetic coercivity in Pd/Co/Pd films, Appl. Phys. Lett., 102: 252404 (2013); https://doi.org/10.1063/1.4812664
  42. W.C. Lin, C.-J. Tsai, H.-Y. Huang, B.-Y. Wang, V. R. Mudinepalli, and H.-C. Chiu, Hydrogen-mediated long-range magnetic ordering in Pd-rich alloy film, Appl. Phys. Lett., 106: 12404 (2015); https://doi.org/10.1063/1.4905463
  43. B.Y. Wang, C.W. Shih, M.S. Tsai, C.J. Chen, K. Lin, J.J. Li, C.W. Huang, W.C. Lin, and S.C. Weng, Hydrogenation-induced strengthening of exchange bias coupling in antiferromagnetic Pd-rich alloy films, J. Alloys Compd., 748: 223–229 (2018); https://doi.org/10.1016/j.jallcom.2018.03.121
  44. K.-J. Hsueh, P.-C. Chang, L.-J. Liaw, A. Dhanarajagopal, M.-T. Lin, and W.C. Lin, Hydrogen-controlled spin reorientation transition in a nanometer-thick FePd layer on Co/[Pt/Co]4/Pt multilayers for applications in spintronics, ACS Appl. Nano Mater., 6, No 4: 2784–2790 (2023); https://doi.org/10.1021/acsanm.2c05095
  45. A. Boufelfel, Ab initio calculations of L10 FePdH multilayered structure, Int. J. Hydrogen Energy, 41, No. 8: 4719–4728 (2016); https://doi.org/10.1016/j.ijhydene.2016.01.063
  46. A. Boufelfel, A hydrogen effect on electron-phonon interactions in L10 FePd, J. Superconduct. Nov. Magn., 32: 3125–3133 (2019); https://link.springer.com/article/10.1007/s10948-019-5057-9
  47. N. Bouldi, P. Sainctavit, A. Juhin, L. Nataf, and F. Baudelet, Electronic and magnetic properties of iron hydride under pressure: an experimental and computational study using x-ray absorption spectroscopy and x-ray magnetic circular dichroism at the Fe K edge, Phys. Rev. B., 98: 064430 (2018); https://doi.org/10.1103/PhysRevB.98.064430
  48. G.D. Yıldız, Intersection magnetization and temperature revealed by FCC–FCT phase transformation in the FePd binary alloy system, J. Supercond. Novel Magn., 7: 2051–2058 (2020); https://doi.org/10.1007/s10948-020-05447-9
  49. A. Martins, S.C. Trippe, A.D. Santos, and F. Pelegrini, Spin-wave resonance and magnetic anisotropy in FePt thin films, J. Magn. Magn. Mat., 308, No. 1: 120–125 (2007); https://doi.org/10.1016/j.jmmm.2006.05.031
  50. K. Aledealat, B. Aladerah, A. Obeidat, M. Gharaibeh, First-principles study of electronic structure and magnetic properties of L10-ordered FeNi, FePd, and FePt Alloys, Heliyon, 7, No. 12: e08639 (2021); https://doi.org/10.1016/j.heliyon.2021.e08639
  51. H. Sharma, E. Carmichael, and D. McCall, Fabrication of SERS substrate for the detection of rhodamine 6g, glyphosate, melamine and salicylic acid, Vibr. Spectrosc., 83: 159–169 (2016); https://doi.org/10.1016/j.vibspec.2016.01.011
  52. M. Cialone, F. Celegato, F. Scaglione, G. Barrera, D. Raj, M. Coïsson, P. Tiberto, and P. Rizzi, Nanoporous FePd alloy as multifunctional ferromagnetic SERS-active substrate, Appl. Surf. Sci., 543: 148759 (2021); https://doi.org/10.1016/j.apsusc.2020.148759
  53. M.Yu. Barabash, G.G. Vlaykov, A.A. Kolesnichenko, and L.V. Rybov, Method for identification of optical resonances of metal films, Advances in Thin Films, Nanostructured Materials, and Coatings. Lecture Notes in Mechanical Engineering (Eds. A.D. Pogrebnjak and V. Novosad), 804, p. 169–177 (Singapore: Springer: 2019); https://doi.org/10.1007/978-981-13-6133-3_17
  54. A.B. Shevchenko, M.Y. Barabash, and I.M. Zabolotnyi, The effect of the domain wall on the entropy and the heat capacity of nickel nanowire, Results Phys., 16: 102988 (2020); https://doi.org/10.1016/j.rinp.2020.102988
  55. L. Levchuk, R. Shkarban, I. Kotenko, K. Graivoronska, O. Fesenko, I. Lukianenko, T. Verbytska, Iu. Makogon, and M. Barabash, Changes in Raman spectra upon formation of ordered L10 FePd phase during annealing in vacuum and in hydrogen atmosphere, Thin Solid Films, 789: 1402000 (2024); https://doi.org/10.1016/j.tsf.2024.140200
  56. L.S. Levchuk, R.A. Shkarban, I.E. Kotenko, M.Yu. Barabash, A. Melnyk, V.V. Trachevski, T.I. Verbytska, and Iu.M. Makogon, Features of ordered nanostructure formation in ultrathin FePd films annealed in hydrogen, Nanomaterials and Nanocomposites, Nanostructures, and Their Applications. NANO 2023. Springer Proc. Phys. (Eds. O. Fesenko and L.Yatsenko) (Cham: Springer: 2024), 253, p. 155–169 (2024); https://doi.org/10.1007/978-3-031-67519-5_12
  57. M.N. Shamis, P.V. Makushko, T.I. Verbytska, S.I. Sidorenko, and Y.N. Makogon, Influence of Hydrogen Annealing on Ordering in FePd Films with Ag Underlayer, Microstructure and Properties of Micro- and Nanoscale Materials, Films, and Coatings (NAP 2019) Springer Proc. Phys. (Eds. A. Pogrebnjak and O. Bondar) (Springer: Singapure, 2020), 240, p. 367–377 (2020); https://link.springer.com/chapter/10.1007/978-981-15-1742-6_36
  58. L.S. Levchuk, R.A. Shkarban, D.S. Leonov, T.I. Verbytska, M.Yu. Barabash, and Yu.M. Makogon, A1-to-L10 phase transformation in nanoscale FePd–Ag films during annealing in vacuum and H2, Nanosistemi, Nanomateriali, Nanotehnologii, 21, No. 4: 687–699 (2023) (in Ukrainian); https://doi.org/10.15407/nnn.21.04.687
  59. M.N. Shamis, P.V. Makushko, I.D. Biesiedin, Ya.O. Berezniak, K.O. Graivoronska, T.I. Verbytska, and Iu.M. Makogon, Phase composition formation and magnetic properties in FePd–Au ultrathin films at annealing in vacuum and hydrogen, Metallofiz. Noveishie Tekhnol., 43, No. 4: 505–517 (2021) (in Ukrainian); https://doi.org/10.15407/mfint.43.04.0505
  60. P.V. Makushko, M.Yu. Verbytska, M.N. Shamis, A.P. Burmak, Ya.A. Berezniak, K.A. Graivoronska, T.I. Verbytska, and Yu.N. Makogon, Formation of phases in the FePt/Au/FePt films and their magnetic properties, Powder Metall. Met. Ceram., 58, Nos. 3–4: 197–203 (2019); https://doi.org/10.1007/s11106-019-00064-1
  61. P.V. Makushko, M.N. Shamis, I.E. Kotenko, N.Y. Schmidt, T.I. Verbytska, and Iu.M. Makogon, Effect of additional Au layer on ordering processes in FePt alloy films on and without substrates during high-temperature annealing, Appl. Nanosci., 13: 5291–5302 (2023); https://doi.org//10.1007/s13204-022-02754-6
  62. P.V. Makushko, M.N. Shamis, N.Y. Sсhmidt, I.E. Kotenko, S. Gulyas, G.L. Katona, T.I. Verbytska, D.L. Beke, M. Albrecht, and Iu.M. Makogon, Formation of ordered L10-FePt phase in FePt–Ag thin films, Appl. Nanosci., 10: 4809–4816 (2020); https://doi.org/10.1007/s13204-020-01552-2
  63. O. Yalçın, Ferromagnetic Resonance—Theory and Applications (IntechOpen: 2013); https://doi.org/10.5772/56134