Еволюція мікроструктури криці в процесах інтенсивної пластичної деформації

ВОЛОКІТІНА І.Є., ДЕНІССОВА А.І., ВОЛОКІТІН А.В.

Карагандинський індустріяльний університет, просп. Республіки, 30, 101400 Темиртау, Казахстан

Отримано 12.06.2024, остаточна версія 01.02.2025 Завантажити PDF logo PDF

Анотація
Розробка нових матеріялів і технологій з використанням різних методів інтенсивних енергетичних впливів поставила на перший план завдання вивчення фізики пластичної деформації в цих умовах. Перераховані в даному огляді методи включають великі або інтенсивні пластичні деформації, що спричинюють зменшення розмірів зерен до наномасштабного рівня, значне збільшення густини дефектів різного типу, деформаційні фазові перетворення та інші зміни мікроструктури, які забезпечують нові можливості модифікування не тільки механічних, але й фундаментальних фізичних властивостей матеріялів. Водночас, по-перше, формуються нерівноважні структурні стани, зокрема гетерофазні та (або) з високою густиною дефектів і запасеною енергією деформації. По-друге, у цих станах виявляються нові, відмінні від традиційних (дислокаційних) механізми пластичної течії. Активізація таких механізмів визначає необхідність комплексного дослідження їх на різних від нано- до макроструктурних рівнях, виявлення фізичних закономірностей формування й еволюції зазначених вище нерівноважних структурних станів, нових механізмів і носіїв пластичної деформації.

Ключові слова: інтенсивна пластична деформація, криця, мікроструктура, структурний стан, зерна.

DOI: https://doi.org/10.15407/ufm.26.01.***

Citation: I.E. Volokitina, A.I. Denissova, and A.V. Volokitin, Evolution of the Microstructure of Steel in the Processes of Severe Plastic Deformation, Progress in Physics of Metals, 26, No. 1: ***–*** (2025)


Цитована література   
  1. P. Wang, L. Zhao, J. Liu, M.D. Weir, X. Zhou, and H.H.K. Xu, Bone Research., 2: 14017 (2014); https://doi.org/10.1038/boneres.2014.17
  2. I.E. Volokitina, A.V. Volokitin, M.A. Latypova, V.V. Chigirinsky, and A.S. Kolesnikov, Prog. Phys. Met., 24, No. 1: 132 (2023); https://doi.org/10.15407/ufm.24.01.132
  3. I. Volokitina, N. Vasilyeva, R. Fediuk, and A. Kolesnikov, Materials, 15: 3975 (2022); https://doi.org/10.3390/ma15113975
  4. I.E. Volokitina, A.V. Volokitin, and E.A. Panin, Prog. Phys. Met., 23, No. 4: 684–728 (2022); https://doi.org/10.15407/ufm.23.04.684
  5. I.E. Volokitinа and A.V. Volokitin, Metallurgist, 67: 232 (2023); https://doi.org/10.1007/s11015-023-01510-7
  6. I. Volokitina, B. Sapargaliyeva, A. Agabekova, A. Volokitin, S. Syrlybekkyzy, A. Kolesnikov, G. Ulyeva, A. Yerzhanov, and P. Kozlov, Case Studies Construct. Mater., 18: e02162 (2023); https://doi.org/10.1016/j.cscm.2023.e02162
  7. A.V. Volokitin, I.E. Volokitina, E.A. Panin, Prog. Phys. Met., 23, No. 3: 411 (2022); https://doi.org/10.15407/ufm.23.03.411
  8. I. Volokitina, A. Volokitin, A. Denissova, T. Fedorova, D. Lawrinuk, A. Kolesnikov, A. Yerzhanov, Y. Kuatbay, and Y. Liseitsev, Case Studies Construct. Mater., 19: e02346 (2023); https://doi.org/10.1016/j.cscm.2023.e02346
  9. I. Volokitina, A. Volokitin, E. Panin, T. Fedorova, D. Lawrinuk, A. Kolesnikov, A. Yerzhanov, Z. Gelmanova, and Y. Liseitsev, Case Studies Construct. Mater., 19: e02609 (2023); https://doi.org/10.1016/j.cscm.2023.e02609
  10. I. Volokitina, A. Bychkov A. Volokitin, and A. Kolesnikov, Metallogr. Microst. Anal., 12, No. 3: 564–566 (2023); https://doi.org/10.1007/s13632-023-00966-y
  11. N. Zhangabay, I. Baidilla, A. Tagybayev, U. Suleimenov, Z. Kurganbekov, M. Kambarov, A. Kolesnikov, G. Ibraimbayeva, K. Abshenov, I. Volokitina, B. Nsanbayev, Y. Anarbayev, and P. Kozlov, Case Studies Construct. Mater., 18: e02161 (2023); https://doi.org/10.1016/j.cscm.2023.e02161
  12. I.E. Volokitina, Metal Sci. Heat Treat., 61: 234 (2019); https://doi.org/10.1007/s11041-019-00406-1
  13. I. Volokitina, A. Volokitin, and D. Kuis, J. Chem. Technol. Metallurgy., 56: 643 (2021); https://journal.uctm.edu/node/j2021-3/25_20-126p643-647.pdf
  14. I.E. Volokitina, Metal Sci. Heat Treat., 62: 253 (2020); https://doi.org/10.1007/s11041-020-00544-x
  15. I.E. Volokitina, Prog. Phys. Met., 3: No. 24: 593 (2023); https://doi.org/10.15407/ufm.24.03.593.
  16. S. Lezhnev, A. Naizabekov, E. Panin, and I. Volokitina, Procedia Engineering, 81: 1499 (2014); https://doi.org/10.1016/j.proeng.2014.10.180
  17. S. Lezhnev A. Naizabekov, A. Volokitin, and I. Volokitina, Procedia Engineering, 81: 1505 (2014); https://doi.org/10.1016/j.proeng.2014.10.181
  18. S. Lezhnev, A. Naizabekov, and I. Volokitina, J. Chem. Technol. Metallurgy., 52, No. 4: 626 (2017); https://journal.uctm.edu/node/j2017-4/3_17-04_Lezhnev_p_626-635.pdf
  19. S. Lezhnev, I. Volokitina, and T. Koinov, J. Chem. Technol. Metallurgy., 49, No. 6: 621 (2014); https://journal.uctm.edu/node/j2014-6/14-Koinov-621-630.pdf
  20. A. Volokitin, I. Volokitina, and E. Panin, Metallogr. Microst. Anal., 11, No. 4: 673 (2022); https://doi.org/10.1007/s13632-022-00877-4
  21. S. Lezhnev, E. Panin, and I. Volokitina, Adv. Mater. Res., 814: 68 (2013); https://doi.org/10.4028/www.scientific.net/AMR.814.68
  22. S.V. Dobatkin, A.M. Arsenkin, M.A. Popov, and A.N. Kishchenko, Metal Sci. Heat Treat., 47: 188 (2005); https://doi.org/10.1007/s11041-005-0050-2
  23. C.X. Huang, G. Yang, Y.L. Gao, S.D. Wu, and Z.F. Zhang, Mater. Sci. Eng. A, 485: 643 (2008); https://doi.org/10.1016/j.msea.2007.08.067
  24. E.G. Astafurova, G.G. Zakharova, E.V. Naydenkin, S.V. Dobatkin, and G.I. Raab, Phys. Metals Metallogr., 110: 260 (2010); https://doi.org/10.1134/S0031918X10090097
  25. S.V. Dobatkin, O.V. Rybalchenko, and G.I. Raab, Russ. Metallurgy, 1: 42 (2006).
  26. J. De Messemaeker, B. Verlinden, and J. Van Humbeeck, Acta Mater., 53: 4245 (2005); https://doi.org/10.1016/j.actamat.2005.05.024
  27. S.V. Shagalina, E.G. Koroleva, G.I. Raab, M.V. Bobylev, and S.V. Dobatkin, Russ. Metallurgy, 3: 219 (2008).
  28. Y.I. Son, Y.K. Lee, and K.T. Park, Metall. Mater. Trans. A, 37: 3161 (2006); https://doi.org/10.1007/s11661-006-0196-6
  29. K.-T. Park, Y.-S. Kim, and D.H. Shin, Metall. Mater. Trans. A, 32: 2373 (2001); https://doi.org/10.1007/s11661-001-0211-x
  30. D.H. Shin, B.C. Kim, Y.S. Kim, K.-T. Park, Acta Mater., 48: 2247 (2000); https://doi.org/10.1016/S1359-6454(00)00028-8
  31. D.H. Shin, B.C. Kim, K.-T. Park, and W.Y. Choo, Acta Mater., 48: 3245 (2000); https://doi.org/10.1016/S1359-6454(00)00090-2
  32. D.H. Shin, Y.S. Kim, and E.J. Lavernia, Acta Mater., 49: 2387 (2001); https://doi.org/10.1016/S1359-6454(01)00165-3
  33. K.-T. Park and D.H. Shin, Mater. Sci. Eng., 334: 79 (2002); https://doi.org/10.1016/S0921-5093(01)01796-8
  34. D.H. Shin, K.-T. Park, and Y.S. Kim, Scripta Mater., 48: 469 (2003); https://doi.org/10.1016/S1359-6462(02)00512-2
  35. I.E. Volokitina, Metal Sci. Heat Treat., 63: 163 (2021); https://doi.org/10.1007/s11041-021-00664-y
  36. A.B. Naizabekov, S.N. Lezhnev, and I.E. Volokitina, Metal Sci. Heat Treat., 57, Nos. 5–6: 254 (2015); https://doi.org/10.1007/s11041-015-9870-x
  37. A.B. Nayzabekov and I.E. Volokitina, Phys. Metals. Metallogr., 120, No. 2: 177–183 (2019); https://doi.org/10.1134/S0031918X19020133
  38. I.E. Volokitina and A.V. Volokitin, Phys. Metals Metallogr., 119, No. 9: 917–921 (2018); https://doi.org/10.1134/S0031918X18090132
  39. B.Q. Han, E.J. Lavernia, and F.A. Mohamed, Metall. Mater. Trans. A, 35: 1343 (2004); https://doi.org/10.1007/s11661-004-0309-z
  40. K.-T. Park, S.Y. Han, B.D. Ahn, D.H. Shin, Y.K. Lee, and K.K. Um, Scripta Mater., 51: 909 (2004); https://doi.org/10.1016/j.scriptamat.2004.06.017
  41. F. Hajiakbari, M. Nili-Ahmadabadi, B. Poorganji, and T. Furuhara, Acta Mater., 58: 3073 (2010); https://doi.org/10.1016/j.actamat.2010.01.044
  42. A. Kostka, K.-G. Tak, R.J. Hellmig, Y. Estrin, and G. Eggeler, Acta Mater., 55: 539–550 (2007); https://doi.org/10.1016/j.actamat.2006.08.046
  43. P.G. Mordovskoi, M.Z. Borisova, S.P. Yakovleva, S.N. Maharova, IV Int. Conf. Functional Nanomaterials and High-Purity Substances (2012), p. 25.
  44. I. Volokitina, A. Volokitin, B. Makhmutov, Symmetry, 16, No. 8: 997 (2024); https://doi.org/10.3390/sym16080997
  45. A. Naizabekov, A. Arbuz, S. Lezhnev, E. Panin, and I. Volokitina, Physica Scripta, 94, No. 10: 105702 (2019); https://doi.org/10.1088/1402-4896/ab1e6e
  46. I.E. Volokitina and G.G. Kurapov, Metal Sci. Heat Treat., 59, Nos. 11–12: 786 (2018); https://doi.org/10.1007/s11041-018-0227-0
  47. R.Z. Valiev, Yu.V. Ivanisenko, E.F. Rauch, and B. Baudelet, Acta Mater., 44: 4705 (1997).
  48. Y. Ivanisenko, R.K. Wunderlich, R.Z. Valiev, and H.J. Fecht, Scripta Mater., 49: 947 (2003).
  49. Y. Ivanisenko, W. Lojkowski, R.Z. Valiev, and H.J. Fecht, Acta Mater., 51: 5555 (2003).
  50. A. Vorhauer, S. Kleber, and R. Pippan, Ultrafine Grained Materials III (TMS: 2004), p. 629.
  51. Y. Cao, Y.B. Wang, X.H. An, X.Z. Liao, M. Kawasaki, S.P. Ringer, T.G. Langdon, and Y.T. Zhu, Acta Mater., 63: 16–29 (2014); https://doi.org/10.1016/j.actamat.2013.09.030
  52. J. Wang, N. Li, O. Anderoglu, X. Zhang, A. Misra, J.Y. Huang, and J.P. Hirth, Acta Mater., 58: 2262 (2010); https://doi.org/10.1016/j.actamat.2009.12.013
  53. Y. Wei, Mater. Sci. Eng. A, 528: 1558 (2011); https://doi.org/10.1016/j.msea.2010.10.072
  54. Y. Cao, Y.B. Wang, Z.B. Chen, X.Z. Liao, M. Kawasaki, S.P. Ringer, T.G. Langdon, and Y.T. Zhu, Mater. Sci. Eng. A, 578: 110 (2013); https://doi.org/10.1016/j.msea.2013.04.075
  55. S. Ni, Y.B. Wang, X.Z. Liao, R.B. Figueiredo, H.Q. Li, S.P. Ringer, T.G. Langdon, and Y.T. Zhu, Acta Mater., 60: 3181 (2012); https://doi.org/10.1016/j.actamat.2012.02.026
  56. B. Efros, V. Pilyugin, A. Patselov, S. Gladkovskii, N. Efros, L. Loladze, and V. Varyukhin, Mater. Sci. Eng. A, 503: 114 (2009); https://doi.org/10.1016/j.msea.2008.01.096
  57. S.V. Bobylev and I.A. Ovid’ko, Acta Mater., 124: 333 (2017); https://doi.org/10.1016/j.actamat.2016.11.026
  58. Y. Li, B. Gu, S. Jiang, Y. Liu, Z. Shi, and J. Lin, Int. J. Plasticity, 134: 102844 (2020); https://doi.org/10.1016/j.ijplas.2020.102844
  59. C. Xu. M. Furukawa, Z. Horita, and T.G. Langdon, Nanostructured Materials by High-Pressure Severe Plastic Deformation (Eds. Y.T. Zhu and V. Varyukhin) (Dordrecht: Springer: 2006), p. 201; https://doi.org/10.1007/1-4020-3923-9_28
  60. M.P. Kashchenko, V.V. Letuchev, L.A. Teplyakova, and T.N. Yablonskaya, Fiz. Met. Metalloved., 82, No. 4: 10 (1996) (in Russian).
  61. A.D. Korotaev, A.N. Tyumentsev, and Y.P. Pinzhin, Theoretical and Applied Fracture Mechanics, 35: 163 (2001).
  62. S.J. Wang, Nature Communications, 5: 3433 (2014).
  63. Shape Memory Materials (Eds. K. Otsuka and C.M. Wayman) (Cambridge University Press: 1998).
  64. A. Kolubaev, S. Tarasov, O. Sizova, and E. Kolubaev, Tribology Int., 43: 695 (2010); https://doi.org/10.1016/j.triboint.2009.10.009
  65. G. Li, J. Chen, and D. Guan, Tribology Int., 43: 2216 (2010); https://doi.org/10.1016/j.triboint.2010.07.004
  66. S.H. Aldajah, O.O. Ajayi, G.R. Fenske, and S. David, Wear, 267: 350 (2009); https://doi.org/10.1016/j.wear.2008.12.020
  67. R.Z. Valiev, Y.V. Ivanisenko, E.F. Rauch, and B. Baudelet, Acta Mater., 44: 4705 (1996); https://doi.org/10.1016/S1359-6454(96)00156-5
  68. D.A. Hughes and N. Hansen, Acta Mater., 45: 3871 (1997); https://doi.org/10.1016/S1359-6454(97)00027-X
  69. R.D. Doherty, Mater. Sci. Eng. A, 238, No. 2: 219 (1997); https://doi.org/10.1016/S0921-5093(97)00424-3
  70. M.A. Meyers, Mater. Sci. Eng. A, 317: 204 (2001); https://doi.org/10.1016/S0921-5093(01)01160-1
  71. R. Pippan, F. Wetscher, M. Hafok, A. Vorhauer, and I. Sabirov, Advanced Eng. Mater., 8: 1046 (2006); https://doi.org/10.1002/adem.200600133
  72. I.E. Volokitina and A.V. Volokitin, Phys. Metals Metallogr., 119, No. 9: 917 (2018); https://doi.org/10.1134/S0031918X18090132
  73. G. Kurapov, E. Orlova, I. Volokitina, and A. Turdaliev, J. Chem. Technol. Metall., 51, No. 4: 451 (2016); https://journal.uctm.edu/node/j2016-4/13-Volokitina_451-457.pdf
  74. I. Volokitina, J. Chem. Technol. Metall., 57, No. 3: 631 (2022); https://journal.uctm.edu/node/j2022-3/24_21-123_br_3_pp_631-636.pdf
  75. V. Chigirinsky and I. Volokitina, Engineering Solid Mechanics, 12, No. 2: 113 (2024); https://doi.org/10.5267/j.esm.2023.11.001
  76. J. Gubicza, N.Q. Chinh, Gy. Krallics, I. Schiller, and T. Ungar, Current Appl. Phys., 6: 194 (2006); https://doi.org/10.1016/j.cap.2005.07.039
  77. H.J. Maiera, P. Gabor, N. Gupta, I. Karaman, and M. Haouaoui, Internat. J. Fatigue, 28: 243 (2006); https://doi.org/10.1016/j.ijfatigue.2005.05.004
  78. R. Pippan, S. Scheriau, A. Taylor, M. Hafok, A. Hohenwarter, and A. Bachmaier, Annual Rev. Mater. Res., 40: 319 (2010); https://doi.org/10.1146/annurev-matsci-070909-104445
  79. S.N. Lezhnev, I.E. Volokitina, and A.V. Volokitin, Phys. Metals Metallogr., 118, No. 11: 1167 (2017); https://doi.org/10.1134/S0031918X17110072
  80. I. Volokitina, B. Sapargaliyeva, A. Agabekova, S. Syrlybekkyzy, A. Volokitin, L. Nurshakhanova, F. Nurbaeva, A. Kolesnikov, G. Sabyrbayeva, A. Izbassar, O. Kolesnikova, Y. Liseitsev, and S. Vavrenyuk, Case Studies Construct. Mater., 19: e02256 (2023); https://doi.org/10.1016/j.cscm.2023.e02256
  81. A. Volokitin, I. Volokitina, and E. Panin, J. Mat. Res. Technol., 31: 2985 (2024); https://doi.org/10.1016/j.jmrt.2024.07.038.
  82. I.E. Volokitina, A.I. Denissova, A.V. Volokitin, and E.A. Panin, Prog. Phys. Met., 25, No. 1: 132 (2024); https://doi.org/10.15407/ufm.25.01.132
  83. I.E. Volokitina, A.I. Denissova, A.V. Volokitin, T.D. Fedorova, and D.N. Lavrinyuk, Prog. Phys. Met., 25, No. 1: 161 (2024); https://doi.org/10.15407/ufm.25.01.161
  84. I. Volokitina, N. Vasilyeva, R. Fediuk, and A. Kolesnikov, Materials, 15, No. 11: 3975 (2022); https://doi.org/10.3390/ma15113975
  85. A. Volokitin A. Naizabekov I. Volokitina, and A. Kolesnikov, J. Chem. Technol. Metallurgy., 57, No. 4: 809 (2022); https://journal.uctm.edu/node/j2022-4/20_22-18_br4_2022_pp809-815.pdf
  86. J. Ning, E. Courtois-Manara, L. Kurmanaeva, A.V. Ganeev, R.Z. Valiev, C. Kübel, and Y. Ivanisenko, Mater. Sci. Eng. A, 581: 8 (2013); https://doi.org/10.1016/j.msea.2013.05.008
  87. A. Nurumgaliyev, T. Zhuniskaliyev, V. Shevko, Y. Mukhambetgaliyev, B. Kelamanov, Y. Kuatbay, A. Badikova, G. Yerekeyeva, and I. Volokitina, Sci. Rep., 14, No. 1: 7456 (2024); https://doi.org/10.1038/s41598-024-57529-6
  88. L.W. Meyer, M. Hockauf, B. Zillmann, and I. Schneider, Int. J. Mater. Form., 2: 61 (2009); https://doi.org/10.1007/s12289-009-0545-2
  89. P.R. Cetlin, M.T.P. Aguilar, R.B. Figueiredo, and G. Langdon, J. Mater. Sci., 45: 4561 (2010); https://doi.org/10.1007/s10853-010-4384-9
  90. A. Hohenwarter, C. Kammerhofer, and R. Pippan, J. Mater. Sci., 45: 4805 (2010); https://doi.org/10.1007/s10853-010-4635-9
  91. K. Hockauf, L.W. Meyer, M. Hockauf, and T. Halle, J. Mater. Sci., 45: 4754 (2010); https://doi.org/10.1007/s10853-010-4544-y
  92. J.-Q. Su, T.W. Nelson, and C.J. Sterling, Scripta Mater., 52: 135 (2005); https://doi.org/10.1016/j.scriptamat.2004.09.014
  93. T. Belyakov, H. Sakai, K. Miura, and A. Ts, Philos. Mag. A, 81, No. 11: 2629 (2001); https://doi.org/10.1080/0141861011004287
  94. H. Miyamoto, A. Vinogradov, S. Hashimoto, and R. Yoda, Mater. Trans., 50: 1924 (2009); https://doi.org/10.2320/matertrans.M2009054
  95. L. Bracke, K. Verbeken, L. Kestens, and J. Penning, Acta Mater., 57, No. 2: 1512 (2009).
  96. D.A. Hughes and N. Hansen, Acta Mater., 48: 2985 (2000); https://doi.org/10.1016/s1359-6454(00)00082-3
  97. Y.B. Wang, X.Z. Liao, Y.H. Zhao, E.J. Lavernia, S.P. Ringer, Z. Horita, T. Langdon, and Y.T. Zhu, Mater. Sci. Eng. A, 527, Nos. 18–19: 4959 (2010); https://doi.org/10.1016/j.msea.2010.04.036
  98. P. Cizek, F. Bai, M. Rainforth, and J.H. Beynon, 45: 2157 (2004); https://doi.org/10.2320/matertrans.45.2157
  99. M.C. Mataya, M.J. Carr, and G. Krauss, Metall. Trans. A, 15: 347 (1994); https://doi.org/10.1007/BF02645121
  100. B. Hwang, S. Lee, Y.C. Kim, N.J. Kim, and D.H. Shin, Mater. Sci. Eng. A, 441: 308 (2006); https://doi.org/10.1016/j.msea.2006.08.045
  101. C. Donadille, R. Valle, P. Dervin, and R. Penelle, Acta Metall., 37, No. 6: 1547 (1989); https://doi.org/10.1016/0001-6160(89)90123-5
  102. T. Morikawa and K. Higashida, Proc. of the 21st RISO Int. Symp. on Materials Science (Denmark: RISO National Laboratory: 2000), p. 476.
  103. Ulrich Messerschmidt, Dislocation Dynamics during Plastic Deformation (Berlin–Heidelberg: Springer: 2010); https://doi.org/10.1007/978-3-642-03177-9
  104. I.A. Ditenberg, A.N. Tyumentsev, K.V. Grinyaev, V.M. Chernov, M.M. Potapenko, and A.V. Korznikov, Tech. Phys., 56: 815 (2011); https://doi.org/10.1134/S106378421106003X
  105. G. Krauss, Metall. Mater. Trans. B, 32: 205 (2001); https://doi.org/10.1007/s11663-001-0044-4
  106. S. Dobatkin, J. Zrnik, and I. Mamuzic, Metallurgija, 47, No. 3: 181 (2008).
  107. A. Belyakov, T. Sakai, H. Miura, and R. Kaibyshev, Scripta Mater., 42: 319 (2000); https://doi.org/10.1016/S1359-6462(99)00353-X
  108. Y. Son, Y. Lee, K. Park, Ch. Lee, and D. Shin, Acta Mater., 53: 3125 (2005); https://doi.org/10.1016/j.actamat.2005.02.015
  109. H. Zheng, H. Ye, J. Li, L. Jiang, Z. Liu, C. Wang, and B. Wang, Mater. Sci. Eng. A, 527: 7407 (2010); https://doi.org/10.1016/J.MSEA.2010.08.023
  110. M. Calcagnotto, Y. Adachi, D. Ponge, and D. Raabe, Acta Mater., 59: 658 (2011); https://doi.org/10.1016/j.actamat.2010.10.002
  111. J. Moon, S.-J. Kim, and Ch. Lee, Mater. Sci. Eng. A, 28: 7658 (2011); https://doi.org/10.1016/j.msea.2011.06.067