Шаруваті металеві композити як перспективний клас сучасних матеріялів

ЛАТИПОВА М.А., МАХМУТОВ Б.Б., ЄРЖАНОВ А.C.

Караґандинський індустріяльний університет, просп. Республіки, 30, 101400 Темиртау, Казахстан

Отримано 23.06.2024, остаточна версія 05.11.2024 Завантажити PDF logo PDF

Анотація
Інтенсивний розвиток транспортного, хемічного, атомноенергетичного машинобудування, суднобудування й авіакосмічної техніки зумовлює необхідність створення нових матеріялів, що мають унікальний набір фізико-механічних і функціональних властивостей. До таких матеріялів належить широка група шаруватих металевих композиційних матеріялів на основі різноманітних і різнорідних металів і стопів, які завдяки наявності ламінованої та сандвічевої структур дають змогу одержати комплекс властивостей, що важко поєднуються: високу міцність, пластичність, ударну в’язкість за низьких кліматичних і кріогенних температур, зносостійкість, тепло- й електропровідність. Одним з актуальних напрямів сучасного матеріялознавства є розроблення шаруватих металевих композиційних матеріялів багатофункціонального призначення з шарами із консолідованих сумішей порошків Al та зміцнювальних частинок Al2O3, SiC і B4C, які можуть використовуватися для виготовлення виробів і конструкцій із заданими трибологічними та теплофізичними характеристиками, високою балістичною стійкістю, а також для виробництва радіяційно-захисних елементів атомної чи то космічної техніки.

Ключові слова: шаруваті матеріяли, композитні матеріяли, структура, властивості, методи виробництва.

DOI: https://doi.org/10.15407/ufm.25.04.708

Citation: M.A. Latypova, B.B. Makhmutov, and A.S. Yerzhanov, Layered Metal Composites as a Promising Class of Modern Materials, 25, No. 4: 708–735 (2024)


Цитована література   
  1. A. Denissova, Y. Kuatbay, and Y. Liseitsev, Case Studies in Construction Materials, 19: e02346 (2023); https://doi.org/10.1016/j.cscm.2023.e02346
  2. A. Volokitin and D. Kuis, Journal of Chemical Technology and Metallurgy, 56: 643 (2021).
  3. I.E. Volokitina, A.V. Volokitin, M.A. Latypova, V.V. Chigirinsky, and A.S. Kolesnikov, Progress in Physics of Metals, 24, No. 1: 132–156 (2023); https://doi.org/10.15407/ufm.24.01.132
  4. A. Naizabekov and E. Panin, Journal of Materials Engineering and Performance, 28, No. 3: 1762 (2019); https://doi.org/10.1007/s11665-019-3880-6
  5. I.E. Volokitina, A.V. Volokitin, and E.A. Panin, Progress in Physics of Metals, 23, No. 4: 684–728 (2022); https://doi.org/10.15407/ufm.23.04.684
  6. A. Bychkov and A. Kolesnikov, Metallography, Microstructure, and Analysis, 12, No. 3: 564–566 (2023); https://doi.org/10.1007/s13632-023-00966-y
  7. N. Zhangabay, I. Baidilla, A. Tagybayev, Y. Anarbayev, and P. Kozlov, Case Studies in Construction Materials, 18: e02161 (2023); https://doi.org/10.1016/j.cscm.2023.e02161
  8. I.E. Volokitina, Metal Science and Heat Treatment, 63, Nos. 3–4: 163 (2021).
  9. A. Volokitin, I. Volokitina, and E. Panin, Metallography, Microstructure, and Analysis, 11, No. 4: 673 (2022).
  10. I.E. Volokitina, Progress in Physics of Metals, 24: No. 3: 593–622 (2023). https://doi.org/10.15407/ufm.24.03.593
  11. V. Bilous, V. Borysenko, V. Voyevodin, S. Didenko, M. Ilchenko, O. Rybka, O. Kuznetsov, and Y. Plisak, Journal of Materials Science and Chemical Engi-neering, 2: 6–11 (2014); https://doi.org/10.4236/msce.2014.28002
  12. S.V. Gladkovskya, I.S. Kamantsev, S.V. Kuteneva, D.A. Dvoynikov, and A.V. Kuznetsov, AIP Conference Proceedings, 2053: 020003 (2018); https://doi.org/10.1063/1.5084349
  13. A.N. Bol’shakova, I.Y. Efimochkin, and A.P. Bobrovskii, Inorganic Materials: Applied Reserach, 9: 197–200 (2018); https://doi.org/10.1134/S2075113318020077
  14. E.N. Kablov, Aviations Materials and Tekhnologies, 1: 3–33 (2015); https://doi.org/10.18577/2071-9140-2015-0-1-3-33
  15. N. Chawla and K.N. Chawla, Metal Matrix Composites (New York: Springer Science+Business Media: 2013).
  16. M.F. Ashby and Y.J.M. Bréchet, Acta Materialia, 51, No. 19: 5801–5821 (2003); https://doi.org/10.1016/S1359-6454(03)00441-5
  17. R. Alderliesten, Fatigue and Fracture of Fibre Metal Laminates (Springer: 2017). https://doi.org/10.1007/978-3-319-56227-8
  18. D. Brigante, New Composite Materials: Selection, Design, and Application (Springer: 2014); https://doi.org/10.1007/978-3-319-01637-5
  19. R.M. German, Particulate Composites: Fundamentals and Applications (Springer: 2016), p. 363; https://doi.org/10.1007/978-3-319-29917-4_11
  20. V.I. Kuz’min, V.I. Lysak, S.V. Kuz’min, and E.V. Kuz’min, Composite Interfaces 31, No. 1: 1–24 (2023); https://doi.org/10.1080/09276440.2023.2248767
  21. E.S. Karakozov, Pressure Welding of Metals (Moskva: Mashinostroenie: 1970) (in Russian).
  22. M. Parks, The Welding Journal, 5: 32 (1953).
  23. M.Y. Brovman, Russian Metallurgy (Metally), 2012: 362–369 (2012); https://doi.org/10.1134/S0036029512050060
  24. B.A. Greenberg, M.A. Ivanov, and V.V. Rybin, Physics of Metals and Metallography, 113: 176–189 (2012); https://doi.org/10.1134/S0031918X12020056
  25. I. Volokitina, A. Volokitin, E. Panin, T. Fedorova, D. Lawrinuk, A. Kolesnikov, A. Yerzhanov, Z. Gelmanova, and Y. Liseitsev, Case Studies in Construction Materials, 19: e02609 (2023); https://doi.org/10.1016/j.cscm.2023.e02609
  26. I. Volokitina, B. Sapargaliyeva, A. Agabekova, A. Volokitin, S. Syrlybekkyzy, A. Kolesnikov, G. Ulyeva, A. Yerzhanov, and P. Kozlov, Case Studies in Construction Materials, 18: e02162 (2023); https://doi.org/10.1016/j.cscm.2023.e02162
  27. I. Volokitina, Journal of Chemical Technology and Metallurgy, 57, No. 3: 631–636 (2022).
  28. I.E. Volokitinа and A.V. Volokitin, Metallurgist, 67: 232–239 (2023); https://doi.org/10.1007/s11015-023-01510-7
  29. A.V. Volokitin, I.E. Volokitina, and E.A. Panin, Progress in Physics of Metals, 23, No. 3: 411–437 (2022); https://doi.org/10.15407/ufm.23.03.411
  30. A. Nurumgaliyev, T. Zhuniskaliyev, V. Shevko, and G. Yerekeyeva, Scientific Reports, 14: 7456 (2024); https://doi.org/10.1038/s41598-024-57529-6
  31. G. Kurapov, E. Orlova, and A. Turdaliev, Journal of Chemical Technology and Metallurgy, 51, No. 4: 451–457 (2016).
  32. S. Lezhnev and T. Koinov, Journal of Chemical Technology and Metallurgy, 49, No. 6: 621–630 (2014).
  33. Ya.S. Karpov and O.V. Ivanovskaya, Composite Materials: Components, Structure, Processing into Products (Kharkiv: National Aerospace University: 2001).
  34. O.D. Sherby, J. Wadsworth, R.D. Caligiuri, and L.E. Eiisestein, Scripta Metallurgica, 13: 941–946 (1979).
  35. S. Kunda and M. Ghosh, Material Science and Engineering: A, 407, Nos. 1–2: 154–160 (2005); https://doi.org/10.1016/j.msea.2005.07.010
  36. N. Masahash and K. Komatsu, Journal of Alloys and Compounds, 379, Nos. 1–2: 272–279 (2004); https://doi.org/10.1016/j.jallcom.2004.02.043
  37. M. Talebian and M. Alizadeh, Materials Science and Engineering: A, 590: 186–193 (2014); https://doi.org/10.1016/j.msea.2013.10.026
  38. I. Itoh, K. Fujisawa, and H. Otsuka, Nippon Steel Technical Report. Overseas, 85: 118–124 (2002).
  39. B.A. Greenberg, M.A. Ivanov, A.V. Inozemtsev, M.S. Pushkin, A.M. Patselov, O.A. Elkina, S.V. Kuzmin, and V.I. Lysak, Physics of Metals and Metallography, 117: 1219–1225 (2016); https://doi.org/10.1134/S0031918X16120073
  40. A. Naizabekov, A. Arbuz, S. Lezhnev, E. Panin, and I. Volokitina, Physica Scripta, 94, No. 10: 105702 (2019); https://doi.org/10.1088/1402-4896/ab1e6e
  41. I.E. Volokitina and G.G. Kurapov, Metal Science and Heat Treatment, 59, Nos. 11–12: 786–792 (2018); https://doi.org/10.1007/s11041-018-0227-0
  42. A.B. Naizabekov, S.N. Lezhnev, and I.E. Volokitina, Metal Science and Heat Treatment, 57, Nos. 5–6: 254–260 (2015); https://doi.org/10.1007/s11041-015-9870-x
  43. I. Volokitina, B. Sapargaliyeva, A. Agabekova, S. Syrlybekkyzy, A. Volokitin, L. Nurshakhanova, F. Nurbaeva, A. Kolesnikov, G. Sabyrbayeva, A. Izbassar, O. Kolesnikova, Yu. Liseitsev, and S. Vavrenyuk, Case Studies in Construction Materials, 19: e02256 (2023); https://doi.org/10.1016/j.cscm.2023.e02256
  44. Q. Chu, M. Zhang, J. Li, and C. Yan, Materials Science and Engineering: A, 689: 323–331 (2017).
  45. I.A. Bataev, A.A. Bataev, V.I. Mali, and D.V. Pavliukova, Material & Design, 35: 225–234 (2012); https://doi.org/10.1016/j.matdes.2011.09.030
  46. I.A. Bataev, T.S. Ogneva, A.A. Bataev, V.I. Mali, M.A. Esikov, D.V. Lazurenko, Y. Guo, and A.M. Jorge Junior, Materials & Design, 88: 1082–1087 (2015); https://doi.org/10.1016/j.matdes.2015.09.103
  47. V.I. Mali, A.A. Bataev, I.N. Maliutina, V.D. Kurguzov, I.A. Bataev, M.A. Esikov, and V.S. Lozhkin, The International Journal of Advanced Manufacturing Technology, 93: 4285–4294 (2017); https://doi.org/10.1007/s00170-017-0887-8
  48. M. Konieczny, Materials Characterization, 70: 117–124 (2012); https://doi.org/10.1016/j.matchar.2012.05.007
  49. S.V. Smirnov and I.A. Veretennikova, Diagnostics, Resource and Mechanics of Materials and Structures, 4: 6–15 (2015); https://doi.org/10.17804/2410-9908.2015.4.006-017
  50. S. Lezhnev and A. Naizabekov, Journal of Chemical Technology and Metallurgy, 52, No. 4: 626 (2017).
  51. S.N. Lezhnev, I.E. Volokitina, and A.V. Volokitin, Physics of Metals and Metallography, 118, No. 11: 1167–1170 (2017); https://doi.org/10.1134/S0031918X17110072
  52. S. Lezhnev, E. Panin, and I. Volokitina, Advanced Materials Research, 814: 68–75 (2013); https://doi.org/10.4028/www.scientific.net/AMR.814.68
  53. A.V. Volokitin, M.A. Latypova, A.T. Turdaliev, and О.G. Kolesnikova, Progress in Physics of Metals, 24, No. 4: 686–714 (2023); https://doi.org/10.15407/ufm.24.04.686
  54. A.T. Turdaliev, M.A. Latypova, and E.N. Reshotkina, Progress in Physics of Metals, 24, No. 4: 792–818 (2023); https://doi.org/10.15407/ufm.24.04.792
  55. A. Volokitin, A. Naizabekov, I. Volokitina, and A. Kolesnikov, Journal of Chemical Technology and Metallurgy, 57: 809 (2022).
  56. A. Mozaffari, H. Danesh Manesh, and K. Janghorban, Journal of Alloys and Compounds, 489, No. 1: 103–109 (2010); https://doi.org/10.1016/j.jallcom.2009.09.022
  57. H. Sieber, J.S. Park, J. Weissmuller, and J.H. Perepezko, Acta Materialia, 49: 1139–1151 (2001); https://doi.org/10.1016/S1359-6454(01)00023-4
  58. Y. Saito, H. Utsunomiya, N. Tsuji, and T. Sakai, Acta Materialia, 47: 579–583 (1999); https://doi.org/10.1016/S1359-6454(98)00365-6
  59. N. Kamikawa, N. Tsuji, and Y. Minamino, Science and Technology of Advanced Materials, 5: 163–172 (2004); https://doi.org/10.1016/j.stam.2003.10.018
  60. M. Alizadeh, M. Ghaffari, H. Akbari beni, and R. Amini, Materials and Design, 50: 427–432 (2013); https://doi.org/10.1016/j.matdes.2013.03.018
  61. M. Alizadeh and M. Paydar, Materials Science and Engineering: A, 538: 14–19 (2012); http://doi.org/10.1016/j.msea.2011.12.101
  62. M. Alizadeh, Materials Letters, 64: 2641–2643 (2010); https://doi.org/10.1016/j.matlet.2010.08.039
  63. R. Vintila, A. Charest, R.A.L. Drew, and M. Brochu, Materials Science and Engineering: A, 528: 4395–4407 (2011); https://doi.org/10.1016/j.msea.2011.02.079
  64. Z. Mo, Y. Liu, J. Geng, and T. Wang, Materials Science and Engineering: A, 652: 305–314 (2016); https://doi.org/10.1016/j.msea.2015.11.089
  65. I.J. Beyerlein, N.A. Mara, J.S. Carpenter, and T. Nizolek, Journal of Materials Reserarch, 28: 1799–1812 (2013); https://doi.org/10.1557/jmr.2013.21
  66. E.H. Ekiz, T.G. Lach, R.S. Averback, N.A. Mara, I.J. Beyerlein, M. Pouryazdan, and P. Bellon, Acta Materialia, 72: 178–191 (2014); https://doi.org/10.1016/j.actamat.2014.03.040
  67. L. Ghalandari, M.M. Mahdavian, and M. Reihanian, Materials Science and Engineering: A, 593: 145–152 (2014); https://doi.org/10.1016/j.msea.2013.11.026
  68. L. Ghalandari and M.M. Moshksar, Journal of Alloys and Compounds, 506: 172–178 (2010); https://doi.org/10.1016/j.jallcom.2010.06.172
  69. P.H. Shingu, K. Yasuna, K.N. Ishihara, A. Otsuki, and M. Terauchi, Materials Science Forum, 235–238: 35–40 (1997); https://doi.org/10.4028/www.scientific.net/MSF.235-238.35
  70. B. Huang, K.N. Ishihara, and P.H. Shingu, Journal of Materials Science Letters, 20: 1669–1670 (2001); https://doi.org/10.1023/A:1012465117652
  71. R.D. Price, F. Jiang, R. Kulin, and K. Vecchio, Materials Science and Engineering: A, 528: 3134–3146 (2011). https://doi.org/10.1016/J.MSEA.2010.12.087
  72. I.E. Volokitina and A.V. Volokitin, Physics of Metals and Metallography, 119, No. 9: 917–921 (2018); https://doi.org/10.1134/S0031918X18090132
  73. I.E. Volokitina, Metal Science and Heat Treatment, 61: 234–238 (2019); https://doi.org/10.1007/s11041-019-00406-1
  74. I.E. Volokitina, Metal Science and Heat Treatment, 62: 253–258 (2020); https://doi.org/10.1007/s11041-020-00544-x
  75. S. Lezhnev, A. Naizabekov, E. Panin, and I. Volokitina, Procedia Engineering, 81: 1499–1504 (2014); https://doi.org/10.1016/j.proeng.2014.10.180
  76. S. Lezhnev and A. Naizabekov, Procedia Engineering, 81: 1505 (2014); https://doi.org/10.1016/j.proeng.2014.10.181
  77. G.R. Cowan, O.R. Bergmann, and A.H. Holtzman, Metallurgical and Materials Transactions B, 2, No. 11: 3145–3155 (1971); https://doi.org/10.1007/bf02814967
  78. D.V. Lazurenko, I.A. Bataev, V.I. Mali, E.A. Lozhkina, M.A. Esikov, and V.A. Bataev, Physics of Metals and Metallograpgy, 119: 469–476 (2018); https://doi.org/10.1134/S0031918X18050095
  79. I.A. Bataev, A. Bataev, V.I. Mali, M.A. Esikov, and V.A. Bataev, Materials Science Forum, 673: 95–100 (2011); https://doi.org/10.4028/www.scientific.net/MSF.673.95
  80. N. Tsuji, Y. Saito, S.H. Lee, and Y. Minamino, Advanced Engineering Materials, 5: 338–344 (2003); https://doi.org/10.1002/adem.200310077
  81. X. Huang, N. Tsuji, N. Hansen, and Y. Minamino, Materials Science and Engineering: A, 340: 265–271 (2003); https://doi.org/10.1016/S0921-5093(02)00182-X
  82. H. Akbari M. Alizade, M. Ghaffari, and R. Amini, Composites Part B: Engineering, 58: 438–442 (2014); https://doi.org/10.1016/j.compositesb.2013.10.037
  83. H.S. Chen, W.X. Wang, Y.S. Li, P. Zhang, H.H. Nie, and Q.C. Wu, Journal of Alloys and Compounds, 632: 23–29 (2015); https://doi.org/10.1016/j.jallcom.2015.01.048
  84. A.S. Smirnov, A.V. Konovalov, G.A. Belozerov, V.P. Shveikin, and E.O. Smirnova, International Journal of Minerals, Metallurgy, and Materi-als, 23: 563–571 (2016); https://doi.org/10.1007/s12613-016-1267-3
  85. M.R. Toroghinejad, R. Jamaati, A. Nooryan, and H. Edris, Ceramic International, 40: 10489–10498 (2014); https://doi.org/10.1016/j.ceramint.2014.03.020
  86. A. Volokitin, I. Volokitina, and E. Panin, Metallography, Microstructure, and Analysis, 13: 1013–1016 (2024); https://doi.org/10.1007/s13632-024-01078-x
  87. I.E. Volokitina, A.I. Denissova, A.V. Volokitin, and E.A. Panin, Progress in Physics of Metals, 25, No. 1: 132–160 (2024); https://doi.org/10.15407/ufm.25.01.132
  88. A.B. Nayzabekov and I.E. Volokitina, Physics of Metals and Metallography, 120, No. 2: 177–183 (2019); https://doi.org/10.1134/S0031918X19020133
  89. D.A. Sinitsin, A.E. Elrefaei, A.O. Glazachev, E.I. Kayumova, and I.V. Nedoseko, Construction Materials and Products, 6, No. 6: 2 (2023); https://doi.org/10.58224/2618-7183-2023-6-6-2
  90. I.E. Volokitina, A.I. Denissova, A.V. Volokitin, T.D. Fedorova, and D.N. Lavrinyuk, Progress in Physics of Metals, 25, No. 1: 161–194 (2024); https://doi.org/10.15407/ufm.25.01.161
  91. I. Volokitina, N. Vasilyeva, R. Fediuk, and A. Kolesnikov, Materials, 15, No. 11: 3975 (2022); https://doi.org/10.3390/ma15113975
  92. С. Lu, K. Tieu, and D. Wexler, Journal of Materials Processing Technology, 209: 4830–4834 (2009); https://doi.org/10.1016/j.jmatprotec.2009.01.003
  93. A. Alizadeh, A. Abdollahi, and M.J. Radfar, Transactions of Nonferrous Metals Society of China, 27, No. 6: 1233–1247 (2017); https://doi.org/10.1016/S1003-6326(17)60144-4
  94. J.D. Embury, N.J. Petch, and A.E. Wraith, Transaction of Metal Science, 239: 114–118 (1967).
  95. M. Pozuelo, F. Carreno, and O.A. Ruano, Composites Science and Technology, 66, No. 15: 2671–2676 (2006); https://doi.org/10.1016/j.compscitech.2006.03.018
  96. Z. Wadsworth and D.R. Lesuer, Materials Characterization, 45: 289–313 (2000); https://doi.org/10.1016/S1044-5803(00)00077-2
  97. D.W. Kum, T. Oyama, J. Wadsworth, and O.D. Sherby, Journal of the Mechanics and Physics of Solids, 31: 173–186 (1983); https://doi.org/10.1016/0022-5096(83)90049-2
  98. P. Szroeder, I. Sahalianov, T. Radchenko, V. Tatarenko, and Yu. Prylutskyy, Optical Materials, 96: 109284 (2019); https://doi.org/10.1016/j.optmat.2019.109284
  99. T.M. Radchenko, V.A. Tatarenko, and G. Cuniberti, Materials Today: Proceedings, 35, Pt. 4: 523–529 (2021); https://doi.org/10.1016/j.matpr.2019.10.014
  100. T.M. Radchenko, I.Yu. Sahalianov, V.A. Tatarenko, Yu.I. Prylutskyy, P. Szroeder, M. Kempiński, and W. Kempiński, Springer Proceedings in Physics: Nanooptics, Nanophotonics, Nanostructures, and Their Applications (Eds. O. Fesenko and L. Yatsenko) (Springer, Cham: 2018), Vol. 210, Ch. 3, p. 25–41; https://doi.org/10.1007/978-3-319-91083-3_3
  101. I.Yu. Sahalianov, T.M. Radchenko, V.A. Tatarenko, and Yu.I. Prylutskyy, Annals of Physics, 398: 80–93 (2018); https://doi.org/10.1016/j.aop.2018.09.004
  102. I.Yu. Sagalianov, T.M. Radchenko, V.A. Tatarenko, and G. Cuniberti, EPL (Europhysics Letters), 132: 48002 (2020); https://doi.org/10.1209/0295-5075/132/48002
  103. O.S. Skakunova, S.I. Olikhovskii, T.M. Radchenko, S.V. Lizunova, T.P. Vladimirova, and V.V. Lizunov, Scientific Reports, 13: 15950 (2023); https://doi.org/10.1038/s41598-023-43269-6
  104. D.M.A. Mackenzie, M. Galbiati, X.D. de Cerio, I.Y. Sahalianov, T.M. Radchenko, J. Sun, D. Peña, L. Gammelgaard, B.S. Jessen, J.D. Thomsen, P. Bøggild, A. Garcia-Lekue, L. Camilli, and J.M. Caridad, 2D Materials, 8, No. 4: 045035 (2021); https://doi.org/10.1088/2053-1583/ac28ab
  105. T.M. Radchenko, A.A. Shylau, and I.V. Zozoulenko, Physical Review B, 86, No. 3: 035418 (2012); https://doi.org/10.1103/PhysRevB.86.035418
  106. T.M. Radchenko, A.A. Shylau, I.V. Zozoulenko, and A. Ferreira, Physical Review B, 87, No. 19: 195448 (2013); https://doi.org/10.1103/PhysRevB.87.195448
  107. T.M. Radchenko, A.A. Shylau, and I.V. Zozoulenko, Solid State Communications, 195: 88–94 (2014); https://doi.org/10.1016/j.ssc.2014.07.012
  108. S.P. Repetsky, I.G. Vyshyvana, S.P. Kruchinin, V.B. Molodkin, and V.V. Lizunov, Metallofizika i Noveishie Tekhnologii, 39, No. 8: 1017–1022 (2017); https://doi.org/10.15407/mfint.39.08.1017
  109. R. Balabai, A. Solomenko, and D. Kravtsova, Molecular Crystals and Liquid Crystals, 673, No. 1: 125–136 (2018); https://doi.org/10.1080/15421406.2019.1578502
  110. R.M. Balabaі and A.G. Solomenko, Journal of Nano- and Electronic Physics, 11, No. 5: 05033 (2019); https://doi.org/10.21272/jnep.11(5).05033
  111. A.G. Solomenko, I.Y. Sahalianov, T.M. Radchenko, and V.A. Tatarenko, Molecular Crystals and Liquid Crystals, 768, No. 9: 238–250 (2024); https://doi.org/10.1080/15421406.2024.2348204
  112. A.G. Solomenko, I.Y. Sahalianov, T.M. Radchenko, and V.A. Tatarenko, Scientific Reports, 13: 13444 (2023); https://doi.org/10.1038/s41598-023-40541-7
  113. R.L. Woodward, S.R. Tracey, and I.G. Crouch, Journal of Physique IV, 1: 277–282 (1991).