Проґрес в адитивних технологіях

А. В. Волокітін$^{1}$, М. А. Латипова$^{1}$, А. Т. Турдалієв$^{2}$, О. Г. Колєснікова$^{3}$

$^1$Карагандинський індустріальний університет, пр. Республіки, 30, 101400, Темиртау, Казахстан
$^2$Міжнародний транспортно-гуманітарний університет, мікрорайон «Жетису-1», 32, 050063, Алмати, Казахстан
$^3$Південно-Казахстанський університет ім. М. Ауезова, пр. Тауке хана, 5, 160012, Шимкент, Казахстан

Отримано 06.04.2023; остаточна версія — 29.10.2023 Завантажити PDF logo PDF

Анотація
У статті проаналізовано сучасні тенденції розвитку адитивних технологій (АТ). Останніми роками розвиток адитивних технологій — одне з пріоритетних завдань промисловости. Адитивні технології, перш за все, уможливлюють ефективну реалізацію будь-яких конструкторських та інженерних ідей у наукомістких галузях виробництва, таких як авіабудування, двигуно- та моторобудування, ракетобудування, сучасні електронні прилади тощо. Натомість, розроблення проривних науково-технічних рішень у галузі АТ неможливе без нових порошкових матеріялів. Наразі є очевидна фундаментальна проблема — відсутність комплексних наукових досліджень, спрямованих на розробку нових порошкових матеріялів для адитивних технологій, адаптацію цих матеріялів щодо вимог сучасних машин адитивного виробництва та вивчення властивостей виробів, одержаних за адитивною технологією з різною варіяцією технічних параметрів.

Ключові слова: адитивні технології, виробництво, деталь, проволока, натоп.

DOI: https://doi.org/10.15407/ufm.24.04.686

Citation: A. V. Volokitin, M. A. Latypova, A. T. Turdaliev, and О. G. Kolesnikova, Progress in Additive Manufacturing, Progress in Physics of Metals, 24, No. 4: 686–714 (2023)


Цитована література   
  1. W.E. King, A.T. Anderson, R.M. Ferencz, N.E. Hodge, C. Kamath, S.A. Khairallah, and A.M. Rubenchik, Appl. Phys. Rev., 2: 41304 (2015); https://doi.org/10.1063/1.4937809
  2. I. Volokitina, A. Kolesnikov, R. Fediuk, S. Klyuev, L. Sabitov, T. Zhuniskaliyev, B. Kelamanov, D. Yessengaliev, A. Yerzhanov, and O. Kolesnikova, Materials, 15: 2584 (2022); https://doi.org/10.3390/ma15072584
  3. O. Kolesnikova, S. Syrlybekkyzy, R. Fediuk, A. Yerzhanov, R. Nadirov, A. Utelbayeva, A. Agabekova, M. Latypova, L. Chepelyan, N. Vatin, M. Amran, Materials, 15: 6980 (2022); https://doi.org/10.3390/ma15196980
  4. A. Naizabekov, S. Lezhnev, E. Panin, A. Arbuz, and T. Koinov, I. Mazur, Journal of Materials Engineering and Performance, 28: 200 (2019); https://doi.org/10.1007/s11665-018-3790-z.
  5. S. Kenzari, D. Bonina, J.-M. Dubois, and V. Fournée, J. Mater. Process. Technol., 214: 3108 (2014); https://doi.org/10.1016/j.jmatprotec.2014.07.011
  6. A.S. Kolesnikov, Russ. J. Non-ferrous Metals, 55: 513 (2014); https://doi.org/10.3103/S1067821214060121
  7. J.S. Kapil, F. Legesse, P. Kulkarni, P. Joshi, A. Desai, and K.P. Karunakaran, Progress in Additive Manufacturing, 1: 79 (2016); https://doi.org/10.1007/s40964-016-0005-8
  8. E. Louvis, P. Fox, and C.J. Sutcliffe, J. Mater. Process. Technol., 211: 275 (2011); https://doi.org/10.1016/j.jmatprotec.2010.09.019
  9. D. Ding, Z. Pan, D. Cuiuri, H. Li, S. Duin, and N. Larkin, Robotics and Computer-Integrated Manufacturing, 39: 32 (2016); https://doi.org/10.1016/j.rcim.2015.12.004
  10. E.A. Alberti, L.J. Silva, and A.S.C.M. D'Oliveira, Weld. Int., 30: 413 (2016); https://doi.org/10.1519/0104-9224/SI1902.11
  11. I. Volokitina, E. Siziakova, R. Fediuk, and A. Kolesnikov, Materials, 15:3975 (2022); https://doi.org/10.3390/ma15144930
  12. N.N. Zhanikulov, T.M. Khudyakova, B.T. Taimasov, B.K. Sarsenbayev, M.S. Dauletiarov, R.O. Karshygayev, Eurasian Chemico-Technological Journal, 21: 333 (2019); https://doi.org/10.18321/ectj890
  13. B. Szost, S. Terzi, F. Martina, D. Boisselier, A. Prytuliak, T. Pirling, M. Hofmann, and D. Jarvis, Mater. Des., 89: 559 (2016); https://doi.org/10.1016/j.matdes.2015.09.115
  14. Y. Cao, S. Zhu, X. Liang, and W. Wang, Robot. Comput. Integr. Manuf., 27: 641 (2011); https://doi.org/10.1016/j.rcim.2010.11.002.
  15. N. Zhangabay, B. Sapargaliyeva, A. Utelbayeva, Z. Aldiyarov, S. Dossybekov, E. Esimov, B. Duissenbekov, R. Fediuk, N.I. Vatin, M. Yermakhanov, S. Mussayeva, Materials, 15: 4996 (2022); https://doi.org/10.3390/ma15144996
  16. R. Kovacevic and H. Beardsley, Int. Solid Free. Fabr. Symp., 57 (1998); https://doi.org/10.26153/tsw/581
  17. I.E. Volokitina, A.V. Volokitin, and E.A. Panin, Prog. Phys. Met., 23, No. 4: 684 (2022); https://doi.org/10.15407/ufm.23.04.684
  18. S. Jhavar, N.K. Jain, and C.P. Paul, J. Mater. Process. Technol, 214: 1102 (2014); https://doi.org/10.1016/j.jmatprotec.2013.12.016
  19. S. Lezhnev, A. Naizabekov, I.E. Volokitina, and A. Volokitin, Procedia Engineering, 81: 1505 (2014); https://doi.org/10.1016/j.proeng.2014.10.181.
  20. Y. Wu and R. Kovacevic, Proc. Instn. Mech. Engrs. Part B: J. E. Manuf., 216: 555 (2001).
  21. S. Lezhnev, A. Naizabekov, and E. Panin, Procedia Engineering, 81: 1499 (2014); https://doi.org/10.1016/j.proeng.2014.10.180
  22. D. Ding, Z. Pan, D. Cuiuri, and H. Li, Robot. Comput. Integr. Manuf., 34: 8 (2015); https://doi.org/10.1016/j.rcim.2015.01.003
  23. J. Gu, J. Ding, S. Williams, Huimin Gu, Pei-hua Ma, and Y. Zhai, J. Mater. Process. Technol., 230: 26 (2016); https://doi.org/10.1016/j.jmatprotec.2015.11.006
  24. P. Colegrove, H. Coules, Julian Fairman, F. Martina, Tariq Kashoob, Hani Mamash, and L. D. Cozzolino, J. Mater. Process. Technol., 213: 1782 (2013); https://doi.org/10.1016/j.jmatprotec.2013.04.012
  25. I. Volokitina, N. Vasilyeva, R. Fediuk, and A. Kolesnikov, Materials, 15:3975 (2022); https://doi.org/10.3390/ma15113975
  26. I.E. Volokitina, A.V. Volokitin, and E.A. Panin, Metallography, Microstructure, and Analysis, 11: 673 (2022); https://doi.org/10.1007/s13632-022-00877-4
  27. G.J. Xiong, R. Li, L. Yangyang, and H. Chen, J. Mater. Process. Technol., 251: 12 (2018); https://doi.org/10.1016/j.jmatprotec.2017.08.007
  28. H. Wang, W. Jiang, and R.K.M. Valant, Res. Cent. Adv. Manuf. South., 6 (2003).
  29. D. Yang, C. He, and G. Zhang, J. Mater. Process. Technol., 227: 153 (2016); https://doi.org/10.1016/J.jmatprotec.2015.08.021
  30. A. Naizabekov, I. Volokitina, V. Volokitin, and A. Kolesnikov, Journal of Chemical Technology and Metallurgy, 57: 809 (2022); http://doi.org/10.3390/ma15144930
  31. S. Suryakumar, K. Karunakaran, A. Bernard, U. Chandrasekhar, N. Raghavender, and D. Sharma, CAD Comput. Aided Des., 43: 331 (2011); https://doi.org/10.1016/j.cad.2011.01.006
  32. M. Liberinia, A. Astaritaa, G. Campatellib, A. Scippab, F. Montevecchib, G. Venturinib, M. Durantea, L. Boccarussoa, F. Memola, C. Minutoloa, and A. Squillacea, Procedia CIRP, 62: 470 (2017); https://doi.org/10.1016/j.procir.2016.06.124
  33. F. Montevecchi, G. Venturini, A. Scippa, and G. Campatelli, Procedia CIRP., 55: 109 (2016); https://doi.org/10.1016/j.procir.2016.08.024.
  34. X. Xiong, Z. Haiou, and W. Guilan, Rapid Prototyp. J., 14: 53 (2008); https://doi.org/10.1108/13552540810841562
  35. A.I. Denissova, A.V. Volokitin, and I.E. Volokitina, Progress in Physics of Metals, 23: 268 (2022); https://doi.org/10.15407/ufm.23.02.268
  36. X. Bai, H. Zhang, and G. Wang, Int. J. Adv. Manuf. Technol., 77: 717 (2015); https://doi.org/10.1007/S00170-014-6475-2
  37. F. Youheng, W. Guilan, Z. Haiou, and L. Liye, Int. J. Adv. Manuf. Technol., 91: 301 (2017); https://doi.org/10.1007/S00170-016-9621-1
  38. V.G. Golubev, A.E. Filin, A.B. Agabekova, T.K. Akilov, A.S. Kolesnikov, Rasayan Journal of Chemistry, 15: 1905; (2022); https://doi.org/10.31788/RJC.2022.1536695
  39. S.H. Nikam, N.K. Jain, and S. Jhavar, J. Mater. Process. Technol., 230: 121 (2016); https://doi.org/10.1016/j.jmatprotec.2015.11.022
  40. D. Ding, Z. Pan, D. Cuiuri, and H. Li, International Journal of Advanced Manufacturing Technology, 81: 465 (2015); https://doi.org/10.1007/s00170-015-7077-3
  41. K. Karunakaran, S. Suryakumar, V. Pushpa, and S. Akula, Robot. Comput. Integr. Manuf., 26: 490 (2010); https://doi.org/10.1016/j.rcim.2010.03.008
  42. S. Jhavar, C.P. Paul, N.K. and Jain, Int. J. Mod. Phys. Conf. Ser., 32: 1460347 (2014); https://doi.org/10.1142/S2010194514603470
  43. J. Gua, B. Conga, J. Dinga, and S.W. Williamsa, SFF Symp. Austin Texas, 451 (2014).
  44. D. Ding, Z. Pan, D. Cuiuri, and H. Li, Robot. Comput. Integr. Manuf., 31: 101 (2015); https://doi.org/10.1016/j.rcim.2014.08.008
  45. X. Shi, S. Ma, C. Liu, Q. Wu, J. Lu, Y. Liu, and Wentian Shi, Mater. Sci. Eng. A, 684: 196 (2017); https://doi.org/10.1016/j.msea.2016.12.065.
  46. H. Toshihide and K. Soshu, Trans. JWRI, 37, No. 2: 63 (2008).
  47. V.G. Golubev, A.B. Agabekova, Т.N. Suleimenova, and R.T. Kaldybaуev, Rasayan Journal of Chemistry, 15, No. 3: 1894 (2022); https://doi.org/10.31788/RJC.2022.1536741
  48. S. Lezhnev and A. Naizabekov, Journal of Chemical Technology and Metallurgy, 52: 626 (2017).
  49. T. Abe and H. Sasahara, Precis. Eng., 45: 387 (2016); https://doi.org/10.1016/j.precisioneng.2016.03.016
  50. J. Xiong and G. Zhang, Meas. Sci. Technol, 24: 115103 (2013); https://doi.org/10.1088/0957-0233/24/11/115103
  51. X. Chen, J. Li, X. Cheng, B. He, H. Wang, and Z. Huang, Mater. Sci. Eng. A, 703: 567(2017); https://doi.org/10.1016/J.MSEA.2017.05.024
  52. I.E. Volokitina, Journal of Chemical Technology and Metallurgy, 57: 631 (2022).
  53. J. Adamczyk, Journal of Achievements in materials and Manufacturing Engineering, 14: 9 (2006).
  54. X. Xiong, H. Zhang, and G. Wang, J Mater Process Technol., 209: 124 (2009); https://doi.org/10.1016/J.JMATPROTEC.2008.01.059
  55. E.A. Panin, M.A. Latypova, and S.S. Kassymov, Eurasian Physical Technical Journal, 19: 73 (2022).
  56. C. Cui, V. Uhlenwinkel, A. Schulz, and H.W. Zoch, Metals, 10: 61(2020); https://doi.org/10.3390/met10010061.
  57. V. Uhlenwinkel, L. Achelis, S. Sheikhaliev, and S. Lagutkine, Proceedings ICLASS, 1 (2003).
  58. S. Lagutkin, L. Achelis, S. Sheikhaliev, V. Uhlenwinkel, and V. Srivastava, Materials Science and Engineering: A, 383: 1 (2004); https://doi.org/10.1016/j.msea.2004.02.059
  59. G. Zepon, N. Ellendt, V. Uhlenwinkel, and H. Henein, Metal Sprays and Spray Deposition, 297 (2017); https://doi.org/10.1007/978-3-319-52689-8_8
  60. O.D. Neikov and V.G. Gopienko, Handbook of Non-Ferrous Metal Powders, 549 2019; https://doi.org/10.1016/b978-0-08-100543-9.00018-x
  61. M. Entezarian, F. Allaire, P. Tsantrizos, and R.A.L. Drew, JOM, 48(6): 53 (1996); https://doi.org/10.1007/BF03222969
  62. J.O. Yin, G. Chen, S.Y. Zhao, Y. Ge, Z.F. Li, P.J. Yang, W.Z. Han, J. Wang, H.P. Tang, and P. Cao, Journal of Alloys and Compounds, 713: 222 (2017); https://doi.org/10.1016/j.jallcom.2017.04.195.
  63. P. Sun, Z.Z. Fang, Y. Zhang, and Y. Xia, JOM, 69(10): 1853 (2017); http://doi.org/10.1007/s11837-017-2513-5
  64. A.A. Kirsankin, T.A. Kalaida, M.A. Kaplan, M.A. Smirnov, A. Ivannikov, and M.A. Sevostyanov, IOP Conference Series: Materials Science and Engineering, 848: 012033 (2020).
  65. I.E. Volokitina, J. Chem. Technol. Metall., 55(2): 479 (2020).
  66. Y .Nie, J. Tang, B. Yang, Q. Lei, S. Yu, and Y. Li, Advanced Powder Technology, 31: 2152 (2020); https://doi.org/10.1016/j.apt.2020.03.006.
  67. S. Samal, Journal of Cleaner Production, 142: 3131(2017); https://doi.org/10.1016/j.jclepro.2016.10.154
  68. S.W. Williams, F. Martina, A.C. Addison, J. Ding, G. Pardal, and P. Colegrove, Material Science and Technology, 32: 641 (2016); http://doi.org/10.1179/1743284715Y.0000000073
  69. J. Xiong, Y. Lei, H. Chen, and G. Zhang, Journal of Materials Processing Technology, 240: 397 (2017); https://doi.org/10.1533/9781845694869.353
  70. https://www.3dnatives.com/en/directed-energy-deposition-ded-3d-printing-guide-100920194
  71. See website: https://www.engineering.com/story/metal-additive-manufacturing-for-large-parts
  72. L. Jiao, Z.Y. Chua, S.K. Moon, J. Song, G. Bi, and H. Zheng, Nanomaterials, 8(8): 1 (2018); https://doi.org/10.3390/nano8080601
  73. I. Yadroitsev and I. Yadroitsava Evaluation of residual stress in stain¬less steel 316L and Ti6Al4V samples produced by selective laser melting, Virtual and Physical Prototyping, 10: 67 (2015); https://doi.org/10.1080/17452759.2015.1026045
  74. T. Kurzynowski, K. Gruber, W. Stopyra, B. Kuźnicka, and E. Chlebus, Material Science Engineering A, 718: 64 (2018); https://doi.org/10.1016/j.msea.2018.01.103
  75. S. Leuders, M. Thöne, A. Riemer, T. Niendorf, T. Tröster, H.A. Richard, and H.J. Maier, International Journal of Fatigue, 48: 300 (2013); https://doi.org/10.1016/j.ijfatigue.2012.11.011
  76. L.E. Murr, S.M. Gaytan, E. Martinez, F. Medina, and R.B. Wicker, International Journal of Biomaterials, 2012: 245727 (2012); https://doi.org/10.1155/2012/245727
  77. Patent 7951412 (USA) 2011.
  78. V.A. Ferraresi, A. Scotti, H. Väst, and J.C. Dutra, Welding International, 25: 910 (2011); https://doi.org/10.1080/09507116.2010.527481.
  79. H. Lee, S. Park, and C. Kang, Journal of Materials Processing Technology, 223: 203 (2015); http://doi.org/10.1016/j.jmatprotec.2015.04.008.
  80. I. Blakhyna, Technology audit and production reserves, 3: 34 (2017); https://doi.org/10.15587/2312-8372.2017.105637
  81. H. Lee, K. Chun, S. Park, and C.Y. Kang, Int. J. Nav. Archit. Ocean Eng., 7: 770 (2015); https://doi.org/10.1515/ijnaoe-2015-0054
  82. A.A. De Resende, Welding International, 25: 910 (2011); https://doi.org/10.15587/2312-8372.2017.105637
  83. W.G. Essers, G. Jelmorini, and G.N. Tichelaar, Philips tech, 33: 21 (1973).
  84. W.G. Essers and R. Walter, Welding Research Supplement, 60: 37 (1981).
  85. A.A. de Resende and A. Scotti, Welding International, 20: 501 (2017); https://doi.org/10.1080/09507116.2016.1218628
  86. T. Skiba, B. Baufeld, and O. van der Biest, ISIJ International, 49: 1588 (2009); https://doi.org/10.2355/ISIJINTERNATIONAL.49.1588.
  87. P.M. Dickens, M.S. Pridham, R.C. Cobb, I. Gibson, and G. Dixon, Proceedings of the Solid Freeform Fabrication Symposium, Austin, USA, 280 (1992).
  88. S.W. Williams, F. Martina, and A.C. Addison, Materials Science and Technology, 342, No. 7: 641 (2015); https://doi.org/10.1179/1743284715Y.0000000073.
  89. D. Ding, Z. Pan, D. Cuiuri, and H. Li, International Journal of Advanced Manufacturing Technology, 81: 465 (2015); https://doi.org/10.1007/s00170-015-7077-3.
  90. V.A. Shapovalov and G.M. Grigorenko, Upravlenie Strukturoj Metalla v Processe Kristallizacii [Metal Structure Management during Crystallization] (Modern Electrometallurgy: 2015) (in Russian).
  91. M.O. Vasylyev and P.O. Gurin, Prog. Phys. Met., 24, No. 1: 106 (2023); https://doi.org/10.15407/ufm.24.01.106
  92. G. Kurapov, E. Orlova, and A. Turdaliev, Journal of Chemical Technology and Metallurgy, 51: 451 (2016).
  93. A.B. Naizabekov, S.N. Lezhnev, Metal Science and Heat Treatment, 57: 254 (2015).
  94. M. Hawryluk, P. Widomski, M. Kaszuba, and J. Krawczyk, Metallurgical and Materials Transactions A, 51: 4753 (2020); https://doi.org/10.1007/s11661-020-05893- z
  95. I. Volokitina, Metal Science and Heat Treatment, 62: 253 (2020); https://doi.org/10.1007/s11041-020-00544-x
  96. M.O. Vasylyev, B.M. Mordyuk, and S.M. Voloshko, Prog. Phys. Met., 24, No. 1: 5–37 (2023); https://doi.org/10.15407/ufm.24.01.005
  97. M.O. Vasylyev, B.M. Mordyuk, and S.M. Voloshko, Prog. Phys. Met., 24, No. 1: 38–74 (2023); https://doi.org/10.15407/ufm.24.01.038
  98. O.M. Ivasishin, D.V. Kovalchuk, P.E. Markovsky, D.G. Savvakin, O.O. Stasiuk, V.I. Bondarchuk, D.V. Oryshych, S.G. Sedov, and V.A. Golub, Prog. Phys. Met., 24, No. 1: 75 (2023); https://doi.org/10.15407/ufm.24.01.075
  99. A.V. Zavdoveev, T. Baudin, D. G. Mohan, D.L. Pakula, D.V. Vedel, and M. A. Skoryk, Prog. Phys. Met., 24, No. 3: 561 (2023); https://doi.org/10.15407/ufm.24.03.561
  100. P.E. Markovsky, D.V. Kovalchuk, S.V. Akhonin, S.L. Schwab, D.G. Savvakin, O.O. Stasiuk, D.V. Oryshych, D.V. Vedel, M.A. Skoryk, and V.P. Tkachuk, Prog. Phys. Met., 24, No. 4: 715 (2023); https://doi.org/10.15407/ufm.24.04.715
  101. P.E. Markovsky, D.V. Kovalchuk, J. Janiszewski, B. Fikus, D.G. Savvakin, O.O. Stasiuk, D.V. Oryshych, M.A. Skoryk, V.I. Nevmerzhytskyi, and V.I. Bondarchuk, Prog. Phys. Met., 24, No. 4: 741 (2023); https://doi.org/10.15407/ufm.24.04.741