Механізм анізотропного фазового перетворення на грубо- та дрібнозернистому чистому титані за низькотемпературного плазмового азотування

Дж. М. Віндажанті$^1$, М. С. Раджападні$^1$, Д. Дж. Д. Х. Санджоджо$^1$, М. А. Памунґкас$^1$, А. Абдурруф$^1$, Т. Айзава$^2$

$^1$Катедра фізики, факультет математики та природничих наук, Університет Бравіджая, Джалан Ветеран Маланґ, Східна Ява, Індонезія
$^2$Лабораторія інженерного проєктування поверхонь, Технологічний інститут Шібаура, Ота-Сіті, Токіо, Японія

Отримано 04.02.2022; остаточна версія — 09.02.2022 Завантажити PDF logo PDF

Анотація
Досліджено процес азотування грубозернистого та дрібнозернистого чистого титану, що відбувається за методом різноспрямованого кування за температур у 623, 673 і 723 К. Процес проводили плазмою радіочастотного односпрямованого струму високої густини у поєднанні з пристроєм з порожнистою катодою прямокутньої форми. В результаті одержано значне збільшення твердости поверхні за підвищення температури витримки. Твердість поверхні збільшується за рахунок утворення поверхневого шару, який складається з δ-Ti2N, ε-Ti2N і TixNx, що спостерігається за результатами Рентґенової дифракції. У цій роботі пояснюється механізм утворення поверхневого шару. Також спостерігається анізотропне фазове перетворення нітриду титану через зсув піків Рентґенової дифракції праворуч. Розсіяні атоми Нітроґену під час процесу азотування спричинюють зміну орієнтації кристалу через структурне перетворення метастабільної фази δ-Ti2N у стабільну ε-Ti2N. Структурна реконструкція продовжується шляхом формування TixNx для досягнення стехіометричної рівноваги. Більше ущільнення мікроструктури поверхні також досягається підвищенням температури азотування.

Ключові слова: плазмове азотування, низька температура, чистий титан, дрібнозернистий, анізотропне фазове перетворення.

Citation: J. M. Windajanti, M. S. Rajapadni, D. J. D. H. Santjojo, M. A. Pamungkas, A. Abdurrouf, and T. Aizawa, Anisotropic Phase Transformation Mechanism on Coarse-Grained and Fine-Grained Pure Titanium at Low-Temperature Plasma Nitriding, Progress in Physics of Metals, 23, No. 1: 90–107 (2022); https://doi.org/10.15407/ufm.23.01.090


Цитована література   
  1. G. Suzuki, M. Hirota, N. Hoshi, K. Kimoto, H. Miura, M. Yoshinari, T. Hayakawa, and Ch. Ohkubo, Effect of surface treatment of multi-directionally forged (MDF) titanium implant on bone response, Metals, 9, No. 2: 230 (2019), https://doi.org/10.3390/met9020230
  2. A.M. Khorasani, M. Goldberg, E.H. Doeven, and G. Littlefair, Titanium in biomedical applications — properties and fabrication: a review, J. Biomater. Tissue Eng., 5, No. 8: 593–619 (2015); https://doi.org/10.1166/jbt.2015.1361
  3. S.J. Gobbi, V. J. Gobbi, G. Reinke, and Y. Rocha, Orthopedic implants: coating with TiN, Biomed. J. Sci. Tech. Res., 16, No. 1: 11740–11742 (2019); https://doi.org/10.26717/BJSTR.2019.16.002786
  4. M. Pilarska, T. Frączek, and K. Maźniak, The role of complementary potential in plasma nitriding progress of technical titanium, Arch. Metall. Mater., 63, No. 4: 1637–1642 (2018); https://doi.org/10.24425/amm.2018.125087
  5. S. Farè, N. Lecis, M. Vedani, A. Silipigni, and P. Favoino, Properties of nitrided layers formed during plasma nitriding of commercially pure Ti and Ti–6Al–4V alloy, Surf. Coatings Technol., 206, Nos. 8–9: 2287–2292 (2012); https://doi.org/10.1016/j.surfcoat.2011.10.006
  6. A.M. Kamat, S.M. Copley, and J.A. Todd, Effect of processing parameters on microstructure during laser-sustained plasma (LSP) nitriding of commercially-pure titanium, Acta Mater., 107: 72–82 (2016); https://doi.org/10.1016/j.actamat.2016.01.051
  7. H. Mora-Sanchez, I. Sabirov, M.A. Monclus, E. Matykina, and J.M. Molina-Aldareguia, Ultra-fine grained pure Titanium for biomedical applications, Mater. Technol., 31, No. 13: 756–771 (2016); https://doi.org/10.1080/10667857.2016.1238131
  8. B. Ravisankar and J.K. Park, ECAP of commercially pure titanium: A review, Trans Indian Inst. Met., 61, No. 1: 51–62 (2008); https://doi.org/10.1007/s12666-008-0058-6
  9. Y. Todaka, M. Umemoto, A. Yamazaki, J. Sasaki, and K. Tsuchiya, Effect of strain path in high-pressure torsion process on hardening in commercial purity titanium, Mater. Trans., 49, No. 1: 47–53 (2008); https://doi.org/10.2320/matertrans.ME200714
  10. O. Unal, E. Maleki, and R. Varol, Effect of severe shot peening and ultra-low temperature plasma nitriding on Ti–6Al–4V alloy, Vacuum, 150, 69–78 (2018); https://doi.org/10.1016/j.vacuum.2018.01.027
  11. K. Topolski, W. Pachla, and H. Garbacz, Progress in hydrostatic extrusion of titanium, J. Mater. Sci., 48, No. 13: 4543–4548 (2013); https://doi.org/10.1007/s10853-012-7086-7
  12. Y. Beygelzimer, V. Varyukhin, D. Orlov, B. Efros, V. Stolyarov, and H. Salimgareyev, Microstructural evolution of titanium under twist extrusion, Ultrafine grained Material II (Eds. Y.T. Zhu, T.G. Langdon, R.S. Mishra, S.L. Setniatin, M.J. Saran, and T.C. Lowe) (Wiley: 2002), pp. 43–46; https://doi.org/10.1002/9781118804537.ch5
  13. M. Karimi, M.R. Toroghinejad, and J. Dutkiewicz, Nanostructure formation during accumulative roll bonding of commercial purity titanium, Mater. Charact., 122: 98–103 (2016); https://doi.org/10.1016/j.matchar.2016.10.024
  14. S.V. Zherebtsov, G.S. Dyakonov, A.A. Salem, V.I. Sokolenko, G.A. Salishchev, and S.L. Semiatin, Formation of nanostructures in commercial-purity titanium via cryorolling, Acta Mater., 61, No. 4: 1167–1178 (2013); https://doi.org/10.1016/j.actamat.2012.10.026
  15. W. J. Kim, S. J. Yoo, and J. B. Lee, Microstructure and mechanical properties of pure Ti processed by high-ratio differential speed rolling at room temperature, Scr. Mater., 62, No. 7: 451–454 (2010); https://doi.org/10.1016/j.scriptamat.2009.12.008
  16. A. Farias, G.F. Batalha, E.F. Prados, R. Magnabosco, and S. Delijaicov, Tool wear evaluations in friction stir processing of commercial titanium Ti–6Al–4V, Wear, 302, Nos. 1–2: 1327–1333 (2013); https://doi.org/10.1016/j.wear.2012.10.025
  17. I. Ansarian, M.H. Shaeri, M. Ebrahimi, P. Minárik, and K. Bartha, Microstructure evolution and mechanical behaviour of severely deformed pure titanium through multi directional forging, J. Alloys Compd., 776, 83–95 (2019); https://doi.org/10.1016/j.jallcom.2018.10.196
  18. V. Fouquet, L. Pichon, A. Straboni, and M. Drouet, Nitridation of Ti6Al4V by PBII: study of the nitrogen diffusion and of the nitride growth mechanism, Surf. Coat. Technol., 186, Nos. 1–2: 34–39 (2004); https://doi.org/10.1016/j.surfcoat.2004.04.006
  19. A. Zhecheva, W. Sha, S. Malinov, and A. Long, Enhancing the microstructure and properties of titanium alloys through nitriding and other surface engineering methods, Surf. Coatings Technol., 200, No. 7: 2192–2207 (2005); https://doi.org/10.1016/j.surfcoat.2004.07.115
  20. Y.S. Matychak, Specific kinetic features of nitriding of titanium caused by phase-structural transformations, Mater. Sci., 48, No. 5: 628–635 (2013); https://doi.org/10.1007/s11003-013-9547-9
  21. E. Metin and O.T. Inal, Kinetics of layer growth and multiphase diffusion in ion- nitrided titanium, Metall. Trans. A, 20, No. 9: 1819–1832 (1989); https://doi.org/10.1007/BF02663213
  22. K. Farokhzadeh, J. Qian, and A. Edrisy, Effect of SPD surface layer on plasma nitriding of Ti–6Al–4V alloy, Mater. Sci. Eng. A, 589: 199–208 (2014); https://doi.org/10.1016/j.msea.2013.09.077
  23. T. Aizawa, Low temperature plasma nitriding of austenitic stainless steels, Stainless Steels and Alloys (Ed. Z. Duriagina) (InTech: 2018), pp. 31–50; https://doi.org/10.5772/intechopen.78365
  24. D.J.D.H. Santjojo, M.S. Rajapadni, and S.P. Sakti, Nitriding of pure titanium by high density plasma using H2–N2 gas mixture at low temperature, Int. J. GEOMATE, 16, No. 56: 141–146 (2019); https://doi.org/10.21660/2019.56.4697
  25. I. Çelik and M. Karakan, Effect of plasma nitriding treatment on structural, tribological and electrochemical properties of commercially pure titanium, Proc. Inst. Mech. Eng. Part H J. Eng. Med., 230, No. 2: 145–152 (2016); https://doi.org/10.1177/0954411915621342
  26. J.M. Windajanti, D.J.D.H. Santjojo, Abdurrouf, and M.A. Pamungkas, Rom. J. Phys., 65, No. 502: 1–13, 2020.
  27. J.M. Windajanti, D.J.D.H. Santjojo, and A. Abdurrouf, Microstructure and phase transformation of pure titanium during nitriding process by high density plasma, J. Sains Mater. Indones., 18, No. 3: 116–122 (2017); https://doi.org/10.17146/jsmi.2017.18.3.4115
  28. J.-P. Bars, D. David, E. Etchessahar, and J. Debuigne, Titanium α-nitrogen solid solution formed by high temperature nitriding: diffusion of nitrogen, hardness, and crystallographic parameters, Metall. Trans. A, 14: 1537–1538 (1983); https://doi.org/10.1007/BF02654379
  29. V.M. Fedirko and I.M. Pohrelyuk, Kinetics of thermodiffusion saturation of VT22 titanium alloy with nitrogen within the temperature range 800–950°С, Mater. Sci., 49, No. 2: 145–157 (2013); https://doi.org/10.1007/s11003-013-9594-2
  30. A. Grill, A. Raveh, and R. Avni, Layer structure and mechanical properties of low pressure r.f. plasma nitrided Ti–6Al–4V alloy, Surf. Coatings Technol., 43–44, Pt. 2: 745–755 (1990); https://doi.org/10.1016/0257-8972(90)90017-7
  31. R. Eibler, Electronic structure of epsilon-Ti2N and delta′-Ti2N, J. Phys. Condens. Matter, 5, No. 30: 5261–5276 (1993); https://doi.org/10.1088/0953-8984/5/30/006
  32. S. Nagakura and T. Kusunoki, Structure of TiNx studied by electron diffraction and microscopy, J. Appl. Crystallogr., 10, No. 1: 52–56 (1977); https://doi.org/10.1107/s0021889877012795
  33. H. Aghajani and M.S. Motlagh, Effect of temperature on surface characteristics of nitrogen ion implanted biocompatible titanium, J. Mater. Sci. Mater. Med., 28–29: 1–16 (2017); https://doi.org/10.1007/s10856-016-5843-x
  34. P. Vlcak, J. Drahokoupil, P. Vertat, J. Sepitka, and J. Duchon, Hardness response to the stability of a Ti(+N) solid solution in an annealed TiN/Ti(+N)/Ti mixture layer formed by nitrogen ion implantation into titanium, J. Alloys Compd., 746: 490–495 (2018); https://doi.org/10.1016/j.jallcom.2018.02.301