Anisotropic Phase Transformation Mechanism on Coarse-Grained and Fine-Grained Pure Titanium at Low-Temperature Plasma Nitriding

J. M. Windajanti$^1$, M. S. Rajapadni$^1$, D. J. D. H. Santjojo$^1$, M. A. Pamungkas$^1$, A. Abdurrouf$^1$, and T. Aizawa$^2$

$^1$Physics Department, Faculty of Mathematics and Natural Sciences, Brawijaya University, Jalan Veteran Malang, East Java, Indonesia
$^2$Surface Engineering Design Laboratory, Shibaura Institute of Technology, Ota-City, Tokyo, Japan

Received 04.02.2022; final version — 09.02.2022 Download PDF logo PDF

The nitriding process of the coarse-grained and fine-grained pure titanium proceeded by multidirectional forging technique has been investigated at temperatures of 623, 673, and 723 K. The process was carried out by high-density radiofrequency-direct current plasma combined with a rectangular hollow cathode device. The result obtained is a significant increase in surface hardness with increasing holding temperature. The surface hardness increases due to forming a surface layer composed of δ-Ti2N, ε-Ti2N and TixNx observed from x-ray diffraction results. This paper explains the mechanism of surface layer formation. We also observed anisotropic phase transformation of titanium nitride through the right shift of the x-ray diffraction peaks. Diffused nitrogen atoms during the nitriding process cause a change in crystal orientation through structural transformation of the metastable δ-Ti2N to the stable ε-Ti2N. The structural reconstruction will continue by forming TixNx to achieve stoichiometric equilibrium. More compacting of the surface microstructure is also obtained by increasing nitriding temperature.

Keywords: plasma nitriding, low temperature, pure titanium, fine-grained, anisotropic phase transformation.


Citation: J. M. Windajanti, M. S. Rajapadni, D. J. D. H. Santjojo, M. A. Pamungkas, A. Abdurrouf, and T. Aizawa, Anisotropic Phase Transformation Mechanism on Coarse-Grained and Fine-Grained Pure Titanium at Low-Temperature Plasma Nitriding, Prog. Phys. Met., 23, No. 1: 90–107 (2022)

  1. G. Suzuki, M. Hirota, N. Hoshi, K. Kimoto, H. Miura, M. Yoshinari, T. Hayakawa, and Ch. Ohkubo, Effect of surface treatment of multi-directionally forged (MDF) titanium implant on bone response, Metals, 9, No. 2: 230 (2019),
  2. A.M. Khorasani, M. Goldberg, E.H. Doeven, and G. Littlefair, Titanium in biomedical applications — properties and fabrication: a review, J. Biomater. Tissue Eng., 5, No. 8: 593–619 (2015);
  3. S.J. Gobbi, V. J. Gobbi, G. Reinke, and Y. Rocha, Orthopedic implants: coating with TiN, Biomed. J. Sci. Tech. Res., 16, No. 1: 11740–11742 (2019);
  4. M. Pilarska, T. Frączek, and K. Maźniak, The role of complementary potential in plasma nitriding progress of technical titanium, Arch. Metall. Mater., 63, No. 4: 1637–1642 (2018);
  5. S. Farè, N. Lecis, M. Vedani, A. Silipigni, and P. Favoino, Properties of nitrided layers formed during plasma nitriding of commercially pure Ti and Ti–6Al–4V alloy, Surf. Coatings Technol., 206, Nos. 8–9: 2287–2292 (2012);
  6. A.M. Kamat, S.M. Copley, and J.A. Todd, Effect of processing parameters on microstructure during laser-sustained plasma (LSP) nitriding of commercially-pure titanium, Acta Mater., 107: 72–82 (2016);
  7. H. Mora-Sanchez, I. Sabirov, M.A. Monclus, E. Matykina, and J.M. Molina-Aldareguia, Ultra-fine grained pure Titanium for biomedical applications, Mater. Technol., 31, No. 13: 756–771 (2016);
  8. B. Ravisankar and J.K. Park, ECAP of commercially pure titanium: A review, Trans Indian Inst. Met., 61, No. 1: 51–62 (2008);
  9. Y. Todaka, M. Umemoto, A. Yamazaki, J. Sasaki, and K. Tsuchiya, Effect of strain path in high-pressure torsion process on hardening in commercial purity titanium, Mater. Trans., 49, No. 1: 47–53 (2008);
  10. O. Unal, E. Maleki, and R. Varol, Effect of severe shot peening and ultra-low temperature plasma nitriding on Ti–6Al–4V alloy, Vacuum, 150, 69–78 (2018);
  11. K. Topolski, W. Pachla, and H. Garbacz, Progress in hydrostatic extrusion of titanium, J. Mater. Sci., 48, No. 13: 4543–4548 (2013);
  12. Y. Beygelzimer, V. Varyukhin, D. Orlov, B. Efros, V. Stolyarov, and H. Salimgareyev, Microstructural evolution of titanium under twist extrusion, Ultrafine grained Material II (Eds. Y.T. Zhu, T.G. Langdon, R.S. Mishra, S.L. Setniatin, M.J. Saran, and T.C. Lowe) (Wiley: 2002), pp. 43–46;
  13. M. Karimi, M.R. Toroghinejad, and J. Dutkiewicz, Nanostructure formation during accumulative roll bonding of commercial purity titanium, Mater. Charact., 122: 98–103 (2016);
  14. S.V. Zherebtsov, G.S. Dyakonov, A.A. Salem, V.I. Sokolenko, G.A. Salishchev, and S.L. Semiatin, Formation of nanostructures in commercial-purity titanium via cryorolling, Acta Mater., 61, No. 4: 1167–1178 (2013);
  15. W. J. Kim, S. J. Yoo, and J. B. Lee, Microstructure and mechanical properties of pure Ti processed by high-ratio differential speed rolling at room temperature, Scr. Mater., 62, No. 7: 451–454 (2010);
  16. A. Farias, G.F. Batalha, E.F. Prados, R. Magnabosco, and S. Delijaicov, Tool wear evaluations in friction stir processing of commercial titanium Ti–6Al–4V, Wear, 302, Nos. 1–2: 1327–1333 (2013);
  17. I. Ansarian, M.H. Shaeri, M. Ebrahimi, P. Minárik, and K. Bartha, Microstructure evolution and mechanical behaviour of severely deformed pure titanium through multi directional forging, J. Alloys Compd., 776, 83–95 (2019);
  18. V. Fouquet, L. Pichon, A. Straboni, and M. Drouet, Nitridation of Ti6Al4V by PBII: study of the nitrogen diffusion and of the nitride growth mechanism, Surf. Coat. Technol., 186, Nos. 1–2: 34–39 (2004);
  19. A. Zhecheva, W. Sha, S. Malinov, and A. Long, Enhancing the microstructure and properties of titanium alloys through nitriding and other surface engineering methods, Surf. Coatings Technol., 200, No. 7: 2192–2207 (2005);
  20. Y.S. Matychak, Specific kinetic features of nitriding of titanium caused by phase-structural transformations, Mater. Sci., 48, No. 5: 628–635 (2013);
  21. E. Metin and O.T. Inal, Kinetics of layer growth and multiphase diffusion in ion- nitrided titanium, Metall. Trans. A, 20, No. 9: 1819–1832 (1989);
  22. K. Farokhzadeh, J. Qian, and A. Edrisy, Effect of SPD surface layer on plasma nitriding of Ti–6Al–4V alloy, Mater. Sci. Eng. A, 589: 199–208 (2014);
  23. T. Aizawa, Low temperature plasma nitriding of austenitic stainless steels, Stainless Steels and Alloys (Ed. Z. Duriagina) (InTech: 2018), pp. 31–50;
  24. D.J.D.H. Santjojo, M.S. Rajapadni, and S.P. Sakti, Nitriding of pure titanium by high density plasma using H2–N2 gas mixture at low temperature, Int. J. GEOMATE, 16, No. 56: 141–146 (2019);
  25. I. Çelik and M. Karakan, Effect of plasma nitriding treatment on structural, tribological and electrochemical properties of commercially pure titanium, Proc. Inst. Mech. Eng. Part H J. Eng. Med., 230, No. 2: 145–152 (2016);
  26. J.M. Windajanti, D.J.D.H. Santjojo, Abdurrouf, and M.A. Pamungkas, Rom. J. Phys., 65, No. 502: 1–13, 2020.
  27. J.M. Windajanti, D.J.D.H. Santjojo, and A. Abdurrouf, Microstructure and phase transformation of pure titanium during nitriding process by high density plasma, J. Sains Mater. Indones., 18, No. 3: 116–122 (2017);
  28. J.-P. Bars, D. David, E. Etchessahar, and J. Debuigne, Titanium α-nitrogen solid solution formed by high temperature nitriding: diffusion of nitrogen, hardness, and crystallographic parameters, Metall. Trans. A, 14: 1537–1538 (1983);
  29. V.M. Fedirko and I.M. Pohrelyuk, Kinetics of thermodiffusion saturation of VT22 titanium alloy with nitrogen within the temperature range 800–950°С, Mater. Sci., 49, No. 2: 145–157 (2013);
  30. A. Grill, A. Raveh, and R. Avni, Layer structure and mechanical properties of low pressure r.f. plasma nitrided Ti–6Al–4V alloy, Surf. Coatings Technol., 43–44, Pt. 2: 745–755 (1990);
  31. R. Eibler, Electronic structure of epsilon-Ti2N and delta′-Ti2N, J. Phys. Condens. Matter, 5, No. 30: 5261–5276 (1993);
  32. S. Nagakura and T. Kusunoki, Structure of TiNx studied by electron diffraction and microscopy, J. Appl. Crystallogr., 10, No. 1: 52–56 (1977);
  33. H. Aghajani and M.S. Motlagh, Effect of temperature on surface characteristics of nitrogen ion implanted biocompatible titanium, J. Mater. Sci. Mater. Med., 28–29: 1–16 (2017);
  34. P. Vlcak, J. Drahokoupil, P. Vertat, J. Sepitka, and J. Duchon, Hardness response to the stability of a Ti(+N) solid solution in an annealed TiN/Ti(+N)/Ti mixture layer formed by nitrogen ion implantation into titanium, J. Alloys Compd., 746: 490–495 (2018);