Структура, магнетні та магнеторезистивні властивості композиційних матеріалів на основі феромагнетних металів і стопів з різними типами діелектричної матриці

І. М. Пазуха, В. В. Щоткін, Ю. О. Шкурдода

Сумський державний університет, вул. Римського-Корсакова, 2, 40007 Суми, Україна

Отриманo 14.07.2019; остаточний варіант — 12.11.2019 Завантажити: PDF logo PDF

Представлено літературний огляд експериментальних результатів стосовно структурно-фазового стану, магнеторезистивних і магнетних властивостей тонкоплівкових композитних матеріалів, сформованих на основі ґранул феромагнетного металу Co або стопу FexCo1–x, втілених у діелектричну матрицю (SiO, SiO2, Al2O3) шляхом використання різних метод одержання. Показано, що величина магнетоопору, характер його польових залежностей і магнетні характеристики залежать від концентрації та розподілу за розмірами феромагнетних ґранул. За певних умов у структурах типу феромагнетна ґранула–діелектрична матриця може бути реалізованою перпендикулярна анізотропія, найбільш ймовірні причини виникнення якої проаналізовано.

Ключові слова: композит, феромагнетний матеріал, діелектрична матриця, магнетоопір, магнетні властивості.

Citation: I. M. Pazukha, V. V. Shchotkin, and Yu. O. Shkurdoda, Magnetic and Magnetoresistive Properties of Composite Materials Based on Ferromagnetic Metals and Alloys with Different Types of Dielectric Matrix, Prog. Phys. Met., 20, No. 4: 672–692 (2019); doi: 10.15407/ufm.20.04.672


Цитована література (53)  
    1. I. Yu. Protsenko, P. K. Mehta, L. V. Odnodvorets, C. J. Panchal, K. V. Tyschenko, Yu. M. Shabelnyk, and N. I. Shumakova, J. Nano- Electron. Phys., 6, No. 1: 01031 (2014).
    2. Ia. M. Lytvynenko, I. M. Pazukha, and B. B. Bibyk, J. Nano- Electron. Phys., 6, No. 2: 02014 (2014).
    3. A. P. Singh, M. Mishra, and S. K. Dhawan, Conducting multiphase magnetic nanocomposites for microwave shielding application, Nanomagnetism (UK: One Central Press: 2014), Ch. 10, p. 246.
    4. D. Lisjak and A. Mertelj, Prog. Mater. Sci., 95: 286 (2018). Crossref
    5. Yu. O. Shkurdoda, I. M. Pazukha, and A. M. Chornous, Int. J. Min. Metall. Mater., 24, No. 12: 1459 (2017). Crossref
    6. L. Vicarelli, S. J. Heerema, C. Dekker, and H. W. Zandbergen, ACS Nano., 9, No. 4: 3428 (2015). Crossref
    7. A. Hirohata and K. Takanashi, J. Phys. D: Appl. Phys., 47, No. 19: 193001 (2014). Crossref
    8. S. B. Dalavi, J. Theerthagiri, M. M. Raja, and R. N. Panda, J. Magn. Magn. Mater., 344: 30 (2014). Crossref
    9. A. R. Akbashev, A. V. Telegin, A. R. Kaul, and Yu. P. Sukhorukov, J. Magn. Magn. Mater., 384: 75 (2015). Crossref
    10. S. Behrens and I. Appel, Curr. Opin. Biotechnol., 39: 89 (2016). Crossref
    11. Yu. I. Dzhezherya, A. F. Kravets, I. M. Kozak, A. Ya. Vovk, and A. M. Pogorily, J. Nano- Electron. Phys., 6, No. 2: 02027 (2014).
    12. X. Li, Y. Li, Y. Shia, F. Du, Y. Bai, Z. Quan, and X. Xu, Mater. Lett., 194: 227 (2017). Crossref
    13. D. S. McLachlana, B. T. Doyle, and G. Sauti, J. Magn. Mater. Magn., 458: 365 (2018). Crossref
    14. C. Wang, Y. Zhang, P. Zhang, Y. Rong, and T. Y. Hsu, J. Magn. Magn. Mater., 320, No. 5: 683 (2008). Crossref
    15. R. Walia, J. C. Pivin, A. K. Chawla, R. Jayaganthanc, and R. Chandra, J. Alloys Compd., 509, No. 6: L103 (2011). Crossref
    16. H. Kockar and M. Alper, J. Magn. Magn. Mater., 373: 128 (2015). Crossref
    17. D. Yao, S. Ge, and X. Zhou, Physica B, 405, No. 5: 1321 (2010). Crossref
    18. E. Cattaruzza, G. Battaglin, P. Canton, C. de Julián Fernández, M. Ferroni, F. Gonella, C. Maurizio, P. Riello, C. Sada, C. Sangregorio, and B. F. Scremin, Appl. Surf. Sci., 226, Nos. 1–3: 62 (2004). Crossref
    19. R. Sen, G. C. Das, and S. Mukherjee, J. Alloys Compd., 490, Nos. 1–2: 515 (2010). Crossref
    20. P. Gangopadhyay, T. R. Ravindran, B. Sundaravel, K. G. M. Nair, and B. K. Panigrahi, Nucl. Instrum. Methods B, 266, No. 8: 1647 (2008). Crossref
    21. G. Li, J. Wang, J. Du, Y. Ma, T. Liu, and Q. Wang, J. Magn. Magn. Mater., 441: 448 (2017). Crossref
    22. J. C. Denardin, M. Knobel, L. S. Dorneles, and L. F. Schelp, Mater. Sci. Engineer. B, 112, Nos. 2–3: 120 (2004). Crossref
    23. J. L. Maurice, J. Briatico, J. Carrey, F. Petroff, L. F. Schelp, and A. Vaures, Philos. Mag. A, 79, No. 12: 2921 (1999). Crossref
    24. W. Wernsdorfer, C. Thirion, N. Demoncy, H. Pascard, and D. Mailly, J. Magn. Magn. Mater., 242–245, Part 1: 132 (2002). Crossref
    25. O. Kitakami, H. Sato, and Y. Shimada, Phys. Rev. B, 56, No. 21: 13849 (1997). Crossref
    26. M. Jergel, I. Cheshko, Y. Halahovets, P. Siffalovic, I. Mat’ko, R. Senderak, S. Protsenko, E. Majkova, and S. Luby, J. Phys. D: Appl. Phys., 42, No. 13: 135406 (2009). Crossref
    27. T. Hinotsu, B. Jeyadevan, C. N. Chinnasamy, K. Shinoda, and K. Tohji, J. Appl. Phys., 95, No. 11: 7477 (2004). Crossref
    28. V. V. Matveev, D. A. Baranov, G. Yu. Yurkov, N. G. Akatiev, I. P. Dotsenko, and S. P. Gubin, Chem. Phys. Lett., 422, Nos. 4–6: 402 (2006). Crossref
    29. R. H. Kodama and A. S. Edelstein, J. Appl. Phys., 85, No. 8: 4316 (1999). Crossref
    30. D. I. Saltykov, Yu. O. Shkurdoda, and I. Yu. Protsenko, J. Nano- Electron. Phys., 10, No. 4: 04031 (2018). Crossref
    31. H. Fujimori, S. Mitani, and S. Ohnuma, Mater. Sci. Eng. B, 31, Nos. 1–2: 219 (1995). Crossref
    32. S. Honda and Y. Yamamoto, J. Appl. Phys., 93, No. 10: 7936 (2003). Crossref
    33. S. Honda, M. Hirata, M. Ishimaru, J. Magn. Magn. Mater., 290–291, Part 2: 1053 (2005). Crossref
    34. I. M. Pazukha, Y. O. Shkurdoda, A. M. Chornous and L. V. Dekhtyaruk, Int. J. Modern Phys. B, 33, No. 12: 1950113 (119). Crossref
    35. H. Wang, W. Q. Li, S. P. Wong, W. Y. Cheung, N. Ke, J. B. Xu, X. Lu, and X. Yan, Mater. Charact., 48, Nos. 2–3: 153 (2002). Crossref
    36. H. Sang, Z. S. Jiang, and Y. W. Du, J. Magn. Magn. Mater., 140–144, Part 1: 589 (1995). Crossref
    37. C. Wang, Z. Guo, Y. Rong, T. Y. Hsu (Xu Zuyao), Phys. Lett. A, 329, No. 3: 236 (2004). Crossref
    38. C. Wang, Y. Rong, and T. Y. Hsu (Xu Zuyao), Mater. Lett., 60, No. 3: 379 (2006). Crossref
    39. I. M. Pazukha, D. O. Shuliarenko, O. V. Pylypenko, and L. V. Odnodvorets, J. Magn. Magn. Mater., 485: 89 (2019). Crossref
    40. M. Tamisari, F. Spizzo, M. Sacerdoti, G. Battaglin, and F. Ronconi, J. Nanopart. Res., 13: 5203 (2011). Crossref
    41. O. V. Stogneĭ, A. V. Sitnikov, Yu. E. Kalinin, S. F. Avdeev, and M. N. Kopytin, Phys. Solid State, 49, No. 1: 164 (2007). Crossref
    42. E. B. Dokukin, R. V. Erhan, A. Kh. Islamov, M. E. Dokukin, N. S. Perov, and E. A. Gan’shina, Phys. Status Solidi B, 250, No. 8: 1656 (2013). Crossref
    43. S. Sankar, A. E. Berkowitz, and D. J. Smith, Phys. Rev. B, 62, No. 21: 14273 (2000). Crossref
    44. J. C. Slonczewski, Phys. Rev. B, 39, No. 10: 6995 (1989). Crossref
    45. D. I. Saltykov, Yu. O. Shkurdoda, and I. Yu. Protsenko, J. Nano- Electron. Phys., 10, No. 3: 03024 (2018). Crossref
    46. A. A. Timopheev, S. M. Ryabchenko, V. M. Kalita, A. F. Lozenko, P. A. Trotsenko, O. V. Stognei, and A. V. Sitnikov, Phys. Solid State, 53, No. 3: 494 (2011). Crossref
    47. A. Vovk, V. Golub, L. Malkinski, A. Kravets, A. Pogoriliy, O. Shipil’, J. Magn. Magn. Mater., 272–276: e1403 (2004). Crossref
    48. A. Ya. Vovk, J. Q. Wang, J. He, W. Zhou, A. M. Pogoriliy, O. V. Shypil’, A. F. Kravets, and H. R. Khan, J. Appl. Phys., 91, No. 12: 10017 (2002). Crossref
    49. A. Ya. Vovk, V. O. Golub, A. M. Pogoriliy, O. V. Shypil’, and A. F. Kravets, Metallofiz. Noveishie Tekhnol., 24, No. 9: 1277 (2002).
    50. A. A. Timofeev, S. M. Ryabchenko, A. F. Lozenko, P. A. Trotsenko, O. V. Stogneĭ, A. V. Sitnikov, and S. F. Avdeev, Low Temp. Phys., 33, No. 11: 974 (2007). Crossref
    51. A. E. Varfolomeev and M. V. Sedova, Phys. Solid State, 45, No. 3: 529 (2003). Crossref
    52. I. M. Melnyk, T. M. Radchenko, and V. A. Tatarenko, Metallofiz. Noveishie Tekhnol., 32, No. 9: 1191 (2010).
    53. T. Sourmail, Prog. Mater. Sci., 50, No. 7: 816 (2005). Crossref