Модулювання розподілу взаємодійних вакансій у пружньо анізотропних ОЦК-кристалах після опромінення

О. В. Олійник, В. А. Татаренко

Інститут металофізики ім. Г.В. Курдюмова НАН України, бульв. Академіка Вернадського, 36, 03142 Київ, Україна

Отримана: 02.05.2018; остаточний варіант - 15.06.2018. Завантажити: PDF

Розглянуто спинодальний механізм можливого формування надґратниці нанопор в об’ємно-центрованому кубічному (ОЦК) кристалі після опромінення. Проаналізовано критерій формування модульованої структури із взаємодійних вакансій у пружньо анізотропних ОЦК-кристалах. Оцінено залежність періоду модульованої структури розчину вакансій в ОЦК-Mo та ОЦК-Fe від температури. Як показано, у випадку позитивного фактора анізотропії пружности ($\xi > 0$ для Мо, Nb, W) модульовані структури можуть бути сформовані в напрямку [111], а у випадку неґативного фактора анізотропії пружности ($\xi < 0$ для ОЦК-Fe) модульовані структури можуть бути сформовані в напрямку [100]. Період модульованої структури в просторовому розподілі вакансій, утвореної через спинодальний механізм (у закритій системі вакансій), зростає з температурою і визначається ентропійним чинником, «(електро)хемічною» взаємодією вакансій і пружніми властивостями ОЦК-кристалу.

Ключові слова: вакансії, «деформаційна» взаємодія, «(електро)хемічна» взаємодія, спинодальний розпад, модульована структура.

PACS: 05.65.+b, 61.50.Lt, 61.72.Bb, 61.72.jd, 61.72.Qq, 61.80.Az, 61.82.Rx, 64.60.an, 82.40.Ck

Citation: O. V. Oliinyk and V. A. Tatarenko, Post-Irradiation Modulation of Distribution of Interacting Vacancies in the Elastically Anisotropic B.C.C. Crystals, Usp. Fiz. Met., 19, No. 2: 152—167 (2018), doi: 10.15407/ufm.19.02.152


Цитована література (39)  
  1. A. Seeger, Vacancies and Interstitials in Metals (Amsterdam: North-Holland: 1970).
  2. E. Vives, Kinetics of a Vacancy-Driven Order–Disorder Transition in Two-Dimensional Binary Alloy, Phys. Rev. Lett., 68: 812 (1992). Crossref
  3. R. de Ridder, G. van Tendeloo, and S. Amelinckx, The Ordering of Vacancies in Ni(1−x)Al Study of the Transition State by Electron Diffractions, phys. status solidi (a), 43: 133 (1977). Crossref
  4. P.W.M. Jacobs and E. Kotomin, Defect Energies for Pure Corundum and for Corundum Doped with Transition Metals Ions, Philos. Mag. A, 68: 695 (1993). Crossref
  5. J.H. Evans, Observations of Regular Void Array in High Purity Molybdenum Irradiated with 2 MeV Nitrogen Ions, Nature, 229: 403 (1971). Crossref
  6. N.M. Ghoniem, D. Walgraef, and S.J. Zinkle, Theory and Experiment of Nanostructure Self-Organization in Irradiated Materials, Comput.-Aided Mol. Des., No. 8: 1 (2002). Crossref
  7. V.K. Sikka and J. Moteff, Superlattice of Voids in Neutron-Irradiated Tungsten, J. Appl. Phys., 43: 4942 (1972). Crossref
  8. F.W. Wiffen, The Microstructure and Swelling of Neutron Irradiated Tantalum, J. Nucl. Mater., 67: 119 (1977). Crossref
  9. F.W. Wiffen, The Effect of Alloying and Purity on the Formation and Ordering of Voids in B.C.C. Metals, Proc. Int. Conf. Radiation Induced Voids in Metals (June 9–11, 1971, Albany, Oak Ridge) (Oak Ridge, TN, United States: Oak Ridge National Lab.: 1972), p. 386.
  10. J.L. Brimhall and G.I. Kulcinski, Void Formation in Ion Bombarded Niobium, Radiat. Eff., 20: 25 (1973). Crossref
  11. B.A. Loomis, S.B. Gerber, and A. Taylor, Voids Ordering in Ion-Irradiated Nb and Nb–1% Zr, J. Nucl. Mater., 68: 19 (1977). Crossref
  12. V.V. Bryk, V.N. Voevodin, V.F. Zelenskiy, B.V. Matvienko, I.M. Neklyudov, V.K. Khorenko, T.P. Chernyaeva, A.N. Rakitskiy, and V.I. Trefilov, Issledovanie Radiatsionnogo Raspukhaniya Malolegirovannogo Splava Khroma pri Obluchenii na Uskoritele, Voprosy Atomnoi Nauki i Tekhniki. Ser. Fizika Radiats. Povrezhd. i Radiats. Mater., 15: 33 (1981) (in Russian).
  13. G.L. Kulcinski, J.L. Brimhall, and H.E. Kissinger, Production of Voids in Nickel with High Energy Selenium Ions, J. Nucl. Mater., 40: 166 (1971). Crossref
  14. D.J. Mazey, S. Francis, and J.A. Hudson, Observation of a Partially-Ordered Void Lattice in Aluminium Irradiated with 400 keV Al+ Ions, J. Nucl. Mater., 47: 137 (1973). Crossref
  15. P. Fratzl, S. Klaumunzer, M. Rammensee, and G. Vogl, Formation of a Modulated Void Structure in Heavy-Ion-Irradiated Amorphous Silicon, Europhys. Lett., 11: 547 (1990). Crossref
  16. S.B. Fisher and K.R. Williams, Void Spatial Regularity in an Electron-Irradiated Stainless Steel, Radiat. Eff., 32: 123 (1977). Crossref
  17. L.J. Chen and A.J. Ardell, Ordering in Nitrogen-Ion Irradiated Nickel–Aluminium Solid Solution, J. Nucl. Mater., 75: 177 (1978). Crossref
  18. O.V. Oliinyk and V.A. Tatarenko, Physical Kinetics of Redistribution of Point Defects in Irradiated Crystals, Usp. Fiz. Met., 13: 417 (2012) (in Ukrainian). Crossref
  19. R. Chang, A Vacancy Superlattice in Metals?, Scr. Metall., 10: 861 (1976). Crossref
  20. R. Chang, A Vacancy Superlattice in Metals?, Scr. Metall., 10: 611 (1976). Crossref
  21. W.A. Harrison, Pseudopotentials in the Theory of Metals (New York: W.A. Benjamin: 1966).
  22. A.G. Khachaturyan, Theory of Structural Transformations in Solids (Mineola, N.Y.: Dover: 2008).
  23. O.V. Oliinyk and V.A. Tatarenko, Temperature Dependence of the Modulated Structure in Atom-Vacancy Solid Solution Based on F.C.C. Nickel, Journal of Nano- and Electronic Physics, 4: 01023 (4pp) (2012).
  24. O.V. Oliinyk and V.A. Tatarenko, Features of Energy Parameters of ‘Strain-Induced’ and ‘Electrochemical’ Interactions of Vacancies in B.C.C. Metals, Metallofiz. Noveishie Tekhnol., 37: 1147 (2015) (in Ukrainian). Crossref
  25. I.N. Frantsevich, F.F. Voronov, and S.A. Bakuta, Elastic Constants and Elasticity Moduli of Metals and Nonmetals: Handbook (Kiev: Naukova Dumka Publ.: 1982) (in Russian).
  26. J.W. Edwards, R. Speiser, and H. Johnson, High Temperature Structure and Thermal Expansion of Some Metals as Determined by X-Ray Diffraction Data in Platinum, Tantalum, Niobium, and Molybdenum, J. Appl. Phys., 22: 424 (1951). Crossref
  27. W.G. Wolfer, Fundamental Properties of Defects in Metals, In: Comprehensive Nuclear Materials (Eds. R.J.M. Konings, T.R. Allen, R.E. Stoller, Sh. Yamanaka) (Amsterdam–Kidlington–Oxford–Waltham: Elsevier Science: 2012), pp. 1–45. Crossref
  28. G.M. Stoica, A.D. Stoica, M.K. Miller, and D. Ma, Temperature-Dependent Elastic Anisotropy and Mesoscale Deformation in a Nanostructured Ferritic Alloy, Nature Communications, 5: 1 (2014). Crossref
  29. Z.S. Basinski, W. Hume-Rothery, and A.L. Sutton, The Lattice Expansion of Iron, Proc. R. Soc. Lond. A, 229: 459 (1955). Crossref
  30. J. Zarestky, C. Stassis, B.N. Harmon, K.M. Ho, and C.L. Fu, Temperature Dependence of the Vibrational Modes of Molybdenum, Phys. Rev. B, 28: 697 (1983). Crossref
  31. Electronic Properties Metals: Phonon States. Electron States and Fermi Surfaces Phonon State of Elements, Electron States and Fermi Surfaces of Alloys (Eds. H.R. Schober and P.H. Dederichs) (Berlin: Springer-Verlag: 1981).
  32. J. Neuhaus, W. Petry, and A. Krimmel, Phonon Softening and Martensitic Transformation in α-Fe, Physica B, 234–236: 897 (1997). Crossref
  33. E.S. Machlin, Pair Potential Model of Intermetallic Phases—I, Acta Metall., 22: 95 (1974).
  34. L. Brewer, Prediction of High Temperature Metallic Phase Diagrams. In: High-Strength Materials (Ed. V.F. Zackay) (New York: John Wiley and Sons: 1965), Ch. 2, pp. 12–103.
  35. L. Brewer, The Cohesive Energies of the Elements (Rep. LBL-3720, Revised May 4, 1977) (Berkeley, CA, USA: Lawrence Berkeley Laboratory: 1977).
  36. D. Fuks and S. Dorfman, Thermodynamics of Atom–Vacancy Solid Solution from a Self-Diffusion Arrhenius Plot, Phys. Rev. B., 50: 16340 (1994). Crossref
  37. A.A. Katsnelson and A.I. Olemskoi, Microscopic Theory of Nonhomogeneous Structures (New York: Amer. Inst. of Physics Publ.: 1991).
  38. V.I. Sugakov, Lectures in Synergetics (Singapore: World Scientific: 1998).
  39. V. O. Kharchenko, I. O. Lysenko, O. M. Shchokotova, A. I. Bashtova, D. O. Kharchenko, Yu. M. Ovcharenko, S. V. Kokhan, X. Wu, B. Wen, L. Wu, and W. Zhang, Usp. Fiz. Met., 18, No. 4: 295 (2017) (in Ukrainian) Crossref