Conditions for the Fabrication of Metallic Glasses and Truly Amorphous Materials

O. B. Lysenko$^1$, I. V. Zagorulko$^2$, and T. V. Kalinina$^1$

$^1$Dniprovsky State Technical University, Dniprobudivska Str., 2, UA-51918 Kamianske, Ukraine
$^2$G. V. Kurdyumov Institute for Metal Physics of the N.A.S. of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine

Received 23.07.2019; final version — 18.03.2020 Download PDF logo PDF

Abstract
A review of the literature data on the problem of the disordered structural-states’ formation during the rapid cooling of metallic melts is performed. The author’s approach novelty consists in the fact that, in addition to the generally accepted model of metallic glasses (MG), which are structurally amorphous–nanocrystalline composites, the conditions for fixing single-phase amorphous structures lacking inclusions of the crystalline component are analysed. The criteria for the tendency of melts to noncrystalline solidification are considered: ‘deep eutectic’, thermodynamic, structural (topological), physicochemical, and kinetic ones. Particular attention is paid to the works, in which the critical values of the thickness and cooling rate of melts providing the MG formation are defined through a consistent solution of thermal and kinetic problems formulated regarding the quenching from the liquid state (QLS) process. As shown, using the model of effective rates of nucleation and crystals’ growth in studies of mass-crystallization kinetics allows analysing the complex transformations, which occur under conditions of competition between several crystalline phases and/or transformation mechanisms, and simplifies the calculations of the microstructure parameters of the QLS products. The authors propose a detailed description of the thermokinetic analysis of amorphization conditions for metal melts, which is also contained in the present work. As proved, the probability of metal glasses structure formation is primarily determined by the crystal-growth rate, the value of which is controlled by the ratio of the difference between the free energies of the liquid and crystalline phases, Δ$G_V$, to the viscosity of the melt, η. The intervals of the Δ$G_V$/η criterion values are determined for materials of four groups with significantly different vitrification ability. The final section contains the results of a computational analysis of the conditions for suppressing the nucleation processes and fixation of truly amorphous structural states. As follows from the relevant literature data, only alloys, which solidify as MG when casting into a metal mould, demonstrate the real prospect for obtaining the fully amorphous structures. As concluded, the main factors increasing the ability to absolute amorphization are relatively low (up to 10$^{20}$ m$^{–3}$·s$^{–1}$) values of the stationary frequency of crystallization-centres’ formation and a pronounced tendency to retardation of the nucleation processes with increasing cooling rate of the melts.

Keywords: quenching from the liquid state, criteria for tendency to amorphization, metallic glasses, truly amorphous states, nonequilibrium crystallization models, crystal-growth rate, nucleation frequency.

Citation: O. B. Lysenko, I. V. Zagorulko, and T. V. Kalinina, Conditions for the Fabrication of Metallic Glasses and Truly Amorphous Materials, Progress in Physics of Metals, 21, No. 1: 102–135 (2020)


References (85)  
  1. W. Klement and R. H. Willens, Nature, 187: 869 (1960). https://doi.org/10.1038/187869b0
  2. M. E. McGenry, M. A. Willard, and D. E. Laughlin, Progr. Mater. Sci., 44, No. 4: 291 (1999). https://doi.org/10.1016/S0079-6425(99)00002-X
  3. I. S. Miroshnichenko, Izvestiya VUZov. Chernaya Metallurgiya, 7: 97 (1982) (in Russian).
  4. A. B. Lysenko, G. V. Borisova, O. L. Kravets, and A. A. Lysenko, Phys. Met. and Metallogr., 106: 435 (2008). https://doi.org/10.1134/S0031918X0811001X
  5. A. B. Lysenko, O. L. Kravets, and G.V. Borisova, Kharkiv NFTTS MON i NAN Ukrainy, 2: 369 (2009) (in Russian).
  6. A. B. Lysenko, O. L. Kosynska, and D. G. Skipochka, Visnyk Dnipropetrovs’kogo Universytetu. Seriya: Fizyka. Radioelektronika, 24, No. 23: 75 (2016) (in Russian).
  7. O. B. Lysenko, I. V. Zagorulko, T. V. Kalinina, and N. O. Kugai, Metallofiz. Noveishie Tekhnol., 40, No. 1: 1 (2018) (in Russian). https://doi.org/10.15407/mfint.40.01.0001
  8. A. B. Lysenko, O. L. Kravets, and A. A. Lysenko, Metallofiz. Noveishie Tekhnol., 30, No. 3: 415 (2008) (in Russian).
  9. N. F. Gadzyra, Ye. I. Khar’kov, and I. A. Yakubtsov, Metallofizika, 11, No. 1: 88 (1989) (in Russian).
  10. A. L. Greer, Acta Metal., 30: 171 (1982). https://doi.org/10.1016/0001-6160(82)90056-6
  11. J. Z. Jianga, J. Saida, H. Kato, T. Ohsuna, and A. Inoue, Appl. Phys. Lett., 28, No. 23: 4041 (2003). https://doi.org/10.1063/1.1581001
  12. R. Sellger, W. Loser, and G. Righter, Mater. Sci. Eng., 97, 203 (1988). https://doi.org/10.1016/0025-5416(88)90042-0
  13. V. I. Tkatch, S. N. Denisenko, and B. I. Selyakov, Acta Metallurg. Mater., 43, No. 6: 2485 (1995). https://doi.org/10.1016/0956-7151(94)00413-7
  14. A. M. Glezer and Ye. I. Permyakova, Nanokristally, Zakalennyye iz Rasplava [Nanocrystals Quenched from the Melt] (Moscow: Fizmatlit: 2012) (in Russian).
  15. H. W. Yang, J. Gong, R. D. Li, and J. Q. Wang, J. Non-Cryst. Solids, 355, Nos. 45–47: 2205 (2009). https://doi.org/10.1016/j.jnoncrysol.2009.08.001
  16. Yu. K. Kovneristyy, E. K. Osipov, and Ye. A. Trofimova, Fiziko-Khimicheskie Osnovy Sozdaniya Amorfnykh Metallicheskikh Splavov [Physical and Chemical Basis for the Formation of Amorphous Metallic Alloys] (Moscow: Nauka: 1983) (in Russian).
  17. H. A. Davies, Amorfnyye Metallicheskiye Splavy [Amorphous Metallic Alloys] (Ed. F. E. Luborsky) (Moscow: Metallurgiya: 1987), p. 16 (Russian translation).
  18. A. Inoue, Acta Mater., 48, No. 1: 279 (2000). https://doi.org/10.1016/S1359-6454(99)00300-6
  19. G. V. Borisova, Issledovanie Struktury i Svoystv Zakalyonnykh iz Zhidkogo Sostoyaniya Splavov na Osnove RZM [Study of the Structure and Properties of the Rare-Earth-Based Alloys Quenched from a Liquid State] (Disser. for Cand. Phys.-Math. Sci.) (Kiev: Institute for Metal Physics, A.S. Ukr.SSR: 1984) (in Russian).
  20. S. Pang, T. Zhang, K. Asami, and A. Inoue, Mater. Sci. Eng. A, 375–377: 368 (2004); idem, Mater. Sci. Eng. A, 392, Nos. 1–2: 455 (2005). https://doi.org/10.1016/j.msea.2003.10.152; https://doi.org/10.1016/j.msea.2004.10.023
  21. Y. Li, S. C. Wang, C. K. Ong, H. H. Hug, and T. T. Goh, Scripta Mater., 36, No. 7: 783 (1997). https://doi.org/10.1016/S1359-6462(96)00448-4
  22. Z. P. Lu and C. T. Lin, Acta Mater, 50: 3501 (2002). https://doi.org/10.1016/S1359-6454(02)00166-0
  23. T. Egami and Y. Waseda, J. Non-Cryst. Solids, 64: 113 (1984). https://doi.org/10.1016/0022-3093(84)90210-2
  24. O. N. Senkov and D. B. Miracle, J. Non-Cryst. Solids, 317: 34 (2003). https://doi.org/10.1016/S0022-3093(02)01980-4
  25. O. N. Senkov and J. M. Scott, Scr. Mater., 50: 440 (2004). https://doi.org/10.1016/j.scriptamat.2003.11.004
  26. D. B. Miracle and O. N. Senkov, J. Non-Cryst. Solids, 319: 174 (2003). https://doi.org/10.1016/S0022-3093(02)01917-8
  27. D. B. Miracle, W. S. Sanders, and O. N. Senkov, Philos. Mag., 83, No. 20: 2409 (2003). https://doi.org/10.1080/1478643031000098828
  28. A. Inoue, Progr. Mater. Sci., 43: 365 (1998). https://doi.org/10.1016/S0079-6425(98)00005-X
  29. O. N. Senkov and J. M. Scott, Mater. Lett., 58: 1375 (2004). https://doi.org/10.1016/j.matlet.2003.09.030
  30. A. Inoue, B. N. Shen, and C. T. Chang, Acta Mater., 52, No. 14: 4093 (2004). https://doi.org/10.1016/j.actamat.2004.05.022
  31. Yu. A. Skakov, MiTOM, 10: 3 (2000).
  32. A. B. Lysenko, I. V. Zagorulko, T. V. Kalinina, and A. A. Lysenko, Nanostrukturnoye Materialovedenie, 1: 58 (2015) (in Russian).
  33. I. V. Zahorulko, Formuvannya Metastabil’nykh Krystalichnykh, Umovno ta Istynno Amorfnykh Faz pry Shvydkomu Okholodzhenni Rozplaviv [Formation of Metastable Crystalline, Conditionally and Truly Amorphous Structures under Rapid Cooling of Melts] (Diss. Cand. Phys.-Math. Sci.) (Dnipro: Oles Honchar Dnipro National University: 2017) (in Ukrainian).
  34. A. F. Polesya and L. S. Slipchenko, Izvestiya AN SSSR. Metally, 6: 173 (1973) (in Russian).
  35. S. R. Nagel and Y. Tauk, Zhidkie Metally [Liquid Metals] (Moscow: Metallurgiya: 1980) (in Russian).
  36. A. Takeuchi and A. Inoue, Mater. Sci. Eng., 304–306: 446 (2001). https://doi.org/10.1016/S0921-5093(00)01446-5
  37. D. Wang, Y. Li, and B. B. Sun, Appl. Phys. Lett., 84, No. 20: 4029 (2004). https://doi.org/10.1063/1.1751219
  38. N. Mattern, U. Kuhn, and A. Gerbert, Scr. Mater., 53, No. 3: 271 (2005). https://doi.org/10.1016/j.scriptamat.2005.04.018
  39. A. A. Kundg, M. Ohnuma, T. Ohkubo, and K. Hono, Acta Mater., 53, No. 7: 2091 (2005). https://doi.org/10.1016/j.actamat.2005.01.022
  40. D. S. Park, D. H. Kim, and W. T. Kim, Appl. Phys. Lett., 86, No. 6: 061907 (2005). https://doi.org/10.1063/1.1862790
  41. I. W. Donald and H. A. Davies, J. Non-Cryst. Solids, 30, No. 2: 77 (1978). https://doi.org/10.1016/0022-3093(78)90058-3
  42. D. R. Uhlmann, J. Non-Cryst. Solids, 7, No. 4: 337 (1972). https://doi.org/10.1016/0022-3093(72)90269-4
  43. Rapidly Quenched Metals (Eds. S. Steeb and H. Warlimont) (North-Holland: Elsevier: 1985). https://doi.org/10.1016/B978-0-444-86939-5.X5001-5
  44. R. Sellger and W. Loser, Acta Metall., 34, No. 5: 831 (1986). https://doi.org/10.1016/0001-6160(86)90057-X
  45. H. W. Bergmann and H. U. Fritsch, Metal Science, 16: 197 (1982). https://doi.org/10.1179/msc.1982.16.4.19
  46. Y. J. Kim, R. Busch, and W. L. Johnson, Appl. Phys. Lett., 68, No. 8: 1057 (1996). https://doi.org/10.1063/1.116247
  47. S. Mukherjee, J. Schroers, W. L. Johnson, and W.-K. Rhim, Phys. Rev. Lett., 94: 245501 (2005). https://doi.org/10.1103/PhysRevLett.94.245501
  48. T. Zhang, X. Zhang, and W. Zhang, Mater. Lett., 65: 2257 (2011). https://doi.org/10.1016/j.matlet.2011.04.033
  49. S. S. Vil’kovskiy, V. P. Naberezhnykh, and B. I. Selyakov, Amorfnyye Metallicheskie Splavy [Amorphous Metallic Alloys] (Moscow: Metallurgiya: 1983) (in Russian).
  50. A. B. Lysenko, O. L. Kravets, and G. V. Borisova, Fizika i Tekhnika Vysokikh Davleniy, 17, No. 3: 52 (2007) (in Russian).
  51. A. N. Kolmogorov, Izvestiya AN SSSR. Seriya Matematicheskaya, 3: 355 (1937) (in Russian).
  52. V. Z. Belen’kiy, Geometriko-Veroyatnostnyye Modeli Kristallizatsii [Geometrical Probability Models of Crystallization] (Moscow: Nauka: 1980) (in Russian).
  53. E. Pineda, T. Pradell, and D. Crespo, J. Non-Cryst. Solids, 287, Nos. 1–3: 88 (2001). https://doi.org/10.1016/S0022-3093(01)00548-8
  54. A. B. Lysenko, Visnyk Dnipropetrovskoho Universytetu. Seriya: Fizyka. Radioelektronika, 19, No. 2: 3 (2011) (in Russian).
  55. V. I. Tkach, Fizika i Tekhnika Vysokikh Davleniy, 8, No. 4: 91 (1998) (in Russian).
  56. S. G. Rassolov and V. I. Tkach, Izvestiya RAN. Seriya Fizicheskaya, 69, No. 8: 1218 (2005) (in Russian).
  57. O. B. Lysenko, O. L. Kosynska, S. V. Gubarev, and T. V. Kalinina, Metallofiz. Noveishie Tekhnol., 36, No. 10: 1411 (2014) (in Russian). https://doi.org/10.15407/mfint.36.10.1411
  58. A. B. Lysenko, G. V. Borisova, and O. L. Kravets, Fizika i Tekhnika Vysokikh Davleniy, 15, No. 2: 96 (2005) (in Russian).
  59. A. B. Lysenko, G. V. Borisova, O. L. Kravets, and A. A. Lysenko, Phys. Met. Metallogr., 101: 484 (2006). https://doi.org/10.1134/S0031918X06050097
  60. A. B. Lysenko, G. V. Borisova, O. L. Kravets, and A. A. Lysenko, Phys. Met. Metallogr., 113: 588 (2012). https://doi.org/10.1134/S0031918X12060099
  61. A. B. Lysenko, Fizika i Khimiya Obrabotki Materialov, 2: 25 (2001) (in Russian).
  62. A. B. Lysenko, N. A. Korovina, and Ye. A. Yakunin, Metallofiz. Noveishie Tekhnol., 27, No. 4: 1503 (2005) (in Russian).
  63. A. B. Lysenko, N. A. Korovina, and I. A. Pavluchenkov, Proc. 2nd Int. Conf. Laser Technologies in Welding and Materials Proceeding (May 23–27, 2005, Katsiveli, Crimea, Ukraine) (Kyiv: E. O. Paton Electric Welding Institute of the N.A.S. of Ukraine: 2005), p. 85.
  64. A. B. Lysenko, N. A. Savinskaya, and Ye. A. Yakunin, Proc. V Int. Conf Mathematic Modelling and Information Technologies in Welding and Related Processes (25–28 May, 2010 Katsiveli, Crimea, Ukraine) (Kyiv: E. O. Paton Electric Welding Institute of the N.A.S. of Ukraine: 2010), p. 97.
  65. A. B. Lysenko, O. L. Kravets, and A. A. Lysenko, The 13th Int. Conf. on Rapidly Quenched and Metastable Materials (August 24–29, 2008, Dresden) (Dresden: IFW: 2008), p. 72.
  66. A. B. Lysenko, O. L. Kravets, and A. A. Lysenko, Metallofiz. Noveishie Tekhnol., 31, No. 10: 1311 (2009).
  67. H. B. Davies and J. B. Hull, J. Mater. Sci., 11: 215 (1976). https://doi.org/10.1007/BF00551430
  68. H. B. Davies and J. B. Hull, Scr. Metall., 7: 637 (1973). https://doi.org/10.1016/0036-9748(73)90227-5
  69. L. A. Davies, R. Ray, C. P. Chou, and R. C. O’Handley, Scr. Metall., 10: 541 (1976). https://doi.org/10.1016/0036-9748(76)90257-X
  70. D. E. Polk and H. S. Chen, Alloy Digest, 10: 4 (1976).
  71. H. Jones, Mater. Lett., 53, Nos. 4–5: 364 (2002). https://doi.org/10.1016/S0167-577X(01)00508-0
  72. K. Mondal and B. S. Murty, Mater. Sci. Eng. A, 454–455: 654 (2007). https://doi.org/10.1016/j.msea.2006.11.123
  73. K. Mondal, U. K. Chatterjee, and B. S. Murty, Appl. Phys. Lett., 83, No. 4: 671 (2013). https://doi.org/10.1063/1.1595725
  74. A.-H. Cai, H. Wang, and X. S. Li, Mater. Sci. Eng. A, 435–436: 478 (2006). https://doi.org/10.1016/j.msea.2006.07.021
  75. L. Battezzati and A. L. Greer, Acta Metal., 37, No. 7: 1791 (1989). https://doi.org/10.1016/0001-6160(89)90064-3
  76. T. A. Wanink, R. Busch, A. Masuhr, and W. L. Johnson, Acta Mater., 46, No. 15: 5229 (1998). https://doi.org/10.1016/S1359-6454(98)00242-0
  77. A. Feltz, Amorfnyye i Stekloobraznyye Neorganicheskiye Tverdyye Tela [Amorphous and Vitreous Inorganic Solids] (Moscow: Mir: 1986) (Russian translation).
  78. J. C. A. Wreswijk, R. G. Gossink, and J. M. Stevels, J. Non-Cryst. Solids, 16: 15 (1974). https://doi.org/10.1016/0022-3093(74)90065-9
  79. A. B. Lysenko, I. V. Zagorulko, and O. L. Kosinskaya, Abstr. ІІІ Int. Conf. HighMatTech (October 3–7, 2011, Kyiv) (Kyiv: I. M. Frantsevych Institute for Problems of Materials Science: 2011), p. 103.
  80. A. B. Lysenko, I. V. Zagorulko, and O. L. Kosynskaya, Abstr. III Int. Conf. Modern Problems of Condensed Matter (October 10–13, 2012, Kyiv) (Kyiv: Taras Shevchenko National University of Kyiv: 2012), p. 164.
  81. A. B. Lysenko, I. V. Zagorulko, T. V. Kalinina, and A. A. Kazantseva, Physics and Chemistry of Solid State, 14, No. 4: 886 (2013).
  82. J. W. Christian, The Theory of Transformations in Metals and Alloys (Oxford: Elsevier: 2002). https://doi.org/10.1016/B978-0-08-044019-4.X5000-4
  83. R. Busch, W. Lin, and W. L. Johnson, J. Appl. Phys., 83, No. 8: 4134 (1998). https://doi.org/10.1063/1.367167
  84. Z. P. Lu, H. Tan, S. C. Ng, and Y. Li, Scripta Mater., 42, No. 7: 667 (2000). https://doi.org/10.1016/S1359-6462(99)00417-0
  85. T. G. Jabbarov, O. A. Dyshin, M. B. Babanli, and I. I. Abbasov, Usp. Fiz. Met., 20, No. 4: 584 (2019). https://doi.org/10.15407/ufm.20.04.584