The Structure and Properties of a Hypoeutectic Silumin Subjected to Complex Electron–Ion-Plasma Processing

Yu. F. Ivanov$^1$, V. E. Gromov$^2$, D. V. Zagulyaev$^2$, S. V. Konovalov$^3$, Yu. A. Rubannikova$^2$, and A. P. Semin$^2$

$^1$Institute of High-Current Electronics, SB RAS, 2/3 Akademicheskiy Ave., 634055 Tomsk, Russia
$^2$Siberian State Industrial University, 42 Kirov Str., 654007 Novokuznetsk, Russia
$^3$Academician S. P. Korolyov Samara National Research University, 34 Moskovskoye Shosse, 443086 Samara, Russia

Received 04.07.2019; final version — 08.11.2019 Download: PDF logoPDF

The structural-phase states, microhardness, and tribological properties of hypoeutectic silumin after electron-beam treatment are studied by the methods of contemporary physical materials science. The object of the study is hypoeutectic АК10М2Н-type silumin containing 87.88 wt.% of Al and 11.1 wt.% of Si as the base components. The silumin surface is subjected to electron-beam treatment in six various regimes distinct in the density of electron-beam energy. The microhardness measurements of the modified silumin-surface layers enabled to determine three optimal impact regimes (with electron-beam energy densities of 25, 30, and 35 J/cm$^{2}$), when the modified-layer microhardness exceeds that for the cast silumin. The obtained parameters are as follow: 0.86 ± 0.41 GPa for the cast state; 0.93 ± 0.52 GPa for 25 J/cm$^{2}$; 0.97 ± 0.071 GPa for 30 J/cm$^{2}$; 0.96 ± 0.103 GPa for 35 J/cm$^{2}$. As found, the electron-beam treatment with the optimal parameters results in the formation of the surface whose mechanical and tribological characteristics sufficiently exceed corresponding values for the cast state of silumin. The atomic-force microscopy data correlate with the results on microhardness. The samples treated in the presented regimes are characterised with the fine-grained cellular structure and have the least roughness of the treated layer (of 17–33 nm) and substrate (of 45–57 nm) as compared to other regimes. As revealed, in the treated layer, the fine-grained, graded, and cellular structure is formed, and it transforms into the mixed-type structure when deepening away from the surface of treatment. Depending on the parameters of electron-beam treatment, the thickness of homogenized layer varies and reaches the maximum values of 100 μm at the energy density of 35 J/cm$^{2}$. As detected, the modified layer is free from intermetallides and consists of the nanocrystalline structure of cellular crystallization. As assumed, these two factors are responsible for the increased mechanical and tribological characteristics of the modified layer. The formation mechanism for structure of cellular and columnar crystallization consisting in the initiation of thermocapillary instability over the ‘evaporated substance/liquid phase’ interface is offered. The mathematical model of the thermal effect of electron beam on the silumin-surface layers is developed.

Keywords: hypoeutectic silumin, electroexplosion alloying, titanium, yttrium, electron beam processing, structure, phase composition, wear resistance.

DOI: https://doi.org/10.15407/ufm.20.04.634

Citation: Yu. F. Ivanov, V. E. Gromov, D. V. Zagulyaev, S. V. Konovalov, Yu. A. Rubannikova, and A. P. Semin, The Structure and Properties of a Hypoeutectic Silumin Subjected to Complex Electron–Ion-Plasma Processing, Prog. Phys. Met., 20, No. 4: 634–671 (2019); doi: 10.15407/ufm.20.04.634


References (52)  
    1. V. E. Gromov, S. V. Konovalov, K. V. Aksenova, and T. Yu. Kobzareva, Ehvolutsiya Struktury i Svoistv Legkikh Splavov pri Ehnergeticheskikh Vozdeistviyakh [Evolution of Structure and Properties of Light Alloys under Energy Impacts] (Novosibirsk: SB RAS: 2016) (in Russian).
    2. A. Ya. Bagautdinov, E. A. Budovskikh, Yu. F. Ivanov, and V. E. Gromov, Fizicheskie Osnovy Ehlektrovzryvnogo Legirovaniya Metallov i Splavov [Physical Fundamentals of Electroexplosion Alloying of Metals and Alloys] (Novokuznetsk: SibSIU: 2007) (in Russian).
    3. V. E. Gromov, Yu. F. Ivanov, S. E. Vorobiev, and S. V. Konovalov, Fatigue of Steels Modified by High Intensity Electron Beams (Cambridge: 2015).
    4. Yu. F. Ivanov, V. E. Gromov, S. V. Konovalov, and S. Chen, Fundamental’nyye Problemy Sovremennogo Materialovedeniya, 15, No. 4: 506 (2018). Crossref
    5. D. V. Zagulyaev, V. E. Gromov, Yu. F. Ivanov, E. A. Petrikova, A. D. Teresov, S. V. Konovalov, and A. P. Semin, J. Phys.: Conf. Ser., 1115: 032021 (2018). Crossref
    6. V. V. Shlyarov, K. A. Osintsev, K. A. Butakova, D. V. Zagulyaev, and D. A. Romanov, Promising Materials and Technologies: Int. Symposium Proc. (2017), p. 91.
    7. S. Konovalov, V. Gromov, and Yu. Ivanov, Mater. Res. Express, 5: 116520 (2018). Crossref
    8. D. Zagulyaev, S. Konovalov, V. Gromov, A. Glezer, Yu. Ivanov, and R. Sundeev, Mater. Lett., 229: 377 (2018). Crossref
    9. V. E. Gromov, Yu. F. Ivanov, D. V. Zagulyaev, O. S. Tolkachev, E. A. Petrikova, and S. V. Konovalov, IOP Conf. Ser.: Mater. Sci. Eng., 411: 012023 (2018). Crossref
    10. Yu. F. Ivanov, V. Е. Gromov, S. V. Konovalov, D. V. Zagulyaev, Е. А. Petrikova, and А. P. Semin, Uspehi Fiziki Metallov, 19, No. 2: 195 (2018). Crossref
    11. Ye. A. Budovskikh, V. D. Sarychev, V. E. Gromov, P. S. Nosarev, and E. V. Martusevich, Osnovy Tekhnologii Obrabotki Poverkhnosti Materialov Impulsnoy Geterogennoy Plazmoy [Fundamentals of Technology of Surface Treatment of Materials by Pulsed Heterogeneous Plasma] (Novokuznetsk: SibSIU: 2002) (in Russian).
    12. N. N. Koval’ and Yu. F. Ivanov, Ehvolyutsiya Struktury Poverkhnostnogo Sloya Stali, Podvergnutoy Ehlektronno-Ionno-Plazmennym Metodam Obrabotki [Evolution of Surface Layer Structure of Steel Subjected to Electron-Ion-Plasma Methods] (Tomsk: NTL: 2016) (in Russian).
    13. N. N. Koval’ and Yu. F. Ivanov, Ehlektronno-Ionno-Plazmennaya Modifikatsiya Poverkhnosti Tsvetnykh Metallov i Splavov [Electron-Ion-Plasma Modification of Surface of Non-Ferrous Metals and Alloys] (Tomsk: NTL: 2016) (in Russian).
    14. Y. Hao, B. Gao, G. F. Tu, H. Cao, S. Z. Hao, and C. Dong, Appl. Surf. Sci., 258, No. 6: 2052 (2012). Crossref
    15. B. Gao, Y. Hao, Z. Wang, G. F. Tu, W. X. Shi, S. W. Li, S. Z. Hao, and C. Dong, Trans. Mater. Heat Treatment, No. 3: 135 (2010).
    16. B. Gao, Y. Hao, W. F. Zhuang, G. F. Tu, W. X. Shi, S. W. Li, S. Z. Hao. C. Dong, and M. C. Li, Phys. Proc., 18: 187 (2011). Crossref
    17. Y. Hao, B. Gao, G. F. Tu, S. W. Li, and C. Dong, Nucl. Instrum. Methods Phys. Res. B, 269, No. 13: 1499 (2011). Crossref
    18. Y. Hao, B. Gao, G. F. Tu, S. W. Li, S. Z. Hao, and C. Dong, Appl. Surf. Sci., 257, No. 9: 3913 (2011). Crossref
    19. Y. Hao, B. Gao, G. F. Tu, S. W. Li, S. Z. Hao, and C. Dong, Trans. Mater. Heat Treatment, No. 9: 115 (2010).
    20. Y. Hao, B. Gao, G. F. Tu, Z. Wang, and C. Z. Hao, Mater. Sci. Forum., 675–677: 693 (2011). Crossref
    21. J. An, X. X. Shen, Y. Lu, Y. B. Liu, R. G. Li, C. M. Chen, and M. J. Zhang, Surf. Coat. Technol., 200, No.: 18-19: 5590 (2006). Crossref
    22. J. An, X. X. Shen, and Y. Lu, Wear, 261, No. 2: 208 (2006). Crossref
    23. S. Hao, S. Yao, J. Guan, A. Wu, P. Zhong, and C. Dong, Curr. Appl. Phys., 1, Nos. 2–3: 203. (2001). Crossref
    24. T. Grosdidier, J. X. Zou, N. Stein, C. Boulanger, S. Z. Hao, and C. Dong, Scripta Mater., 58, No. 12: 1058 (2008). Crossref
    25. Yu. F. Ivanov, V. E. Gromov, S. V. Konovalov, D. V. Zagulyaev, and E. A. Petrikova, Russian Metallurgy (Metally), 2019, No. 4: 398 (2019). Crossref
    26. D. Zagulyaev, S. Konovalov, V. Gromov, A. Melnikov, and V. Shlyarov, Bulletin of the Polish Academy of Sciences: Technical Sciences, 67, No. 2: 173 (2019). Crossref
    27. D. V. Zagulyaev, V. E. Gromov, S. V. Konovalov and Yu. F. Ivanov, Inorganic Mater.: Appl. Res., 10, No. 3: 622 (2019). Crossref
    28. V. Gromov, S. Konovalov, Y. Ivanov, D. Zaguliaev, E. Petrikova, and Y. Serenkov, Mater. Res. Express, 6, No. 7: 076574 (2019). Crossref
    29. S. Konovalov, V. Gromov, D. Zaguliyaev, Y. Ivanov, A. Semin, and J. Rubannikova, Archives of Foundry Engineering, 19, No. 2: 79 (2019).
    30. Yu. F. Ivanov, S. V. Karpii, M. M. Morozov, N. N. Koval’, E. A. Budovskikh, and V. E. Gromov, Struktura, Fazovyi Sostav i Svoystva Titana Posle Ehlektrovzryvnogo Legirovaniya i Ehlektronno-Puchkovoy Obrabotki [Structure, Phase Composition and Properties of Titanium after Electroexplosive Alloying and Electron-Beam Processing] (Novokuznetsk: Publishing House NPK: 2010) (in Russian).
    31. E. A. Budovskikh, E. S. Vashchuk, V. E. Gromov, Yu. F. Ivanov, and N. N. Koval’ Formirovanie Strukturno-Fazovykh Sostoyaniy Metallov i Splavov pri Ehlektrovzryvnom Legirovanii i Ehlektronno-Puchkovoy Obrabotke [Formation of Structural-Phase States of Metals and Alloys at Electroexplosion Doping and Electron-Beam Processing] (Novokuznetsk: Inter-Kuzbass: 2011) (in Russian).
    32. V. E. Gromov, K. V. Sosnin, Yu. F. Ivanov, and O. A. Semina, Uspehi Fiziki Metallov, 16, No. 3: 175 (2015) (in Russian). Crossref
    33. V. E. Gromov, Yu. F. Ivanov, O. A. Peregudov, K. V. Morozov, and A. P. Semin, Uspehi Fiziki Metallov, 17, No. 3: 253 (2016) (in Russian). Crossref
    34. K. V. Sosnin, V. E. Gromov, and Yu. F. Ivanov, Struktura i Fazovyi Sostav Titana posle Ehlektrovzryvnogo Legirovaniya Ittriem i Ehlektronno-Luchevoy Obrabotki [Structure and Phase Composition of Titanium after Electro-Explosive Alloying by Yttrium and Electron Beam Processing] (Novokuznetsk: Poligrafist: 2015) (in Russian).
    35. V. F. Terekhova and E. M. Savitskiy, Ittriy [Yttrium] (Moscow: Science: 1967) (in Russian).
    36. A. E. Vol and I. K. Kagan, Struktura i Svoistva Dvoinykh Metallicheskikh Sistem [The Structure and Properties of Binary Metal Systems] (Moscow: Science: 1976) (in Russian).
    37. Splavy Alyuminievyye dlya Proizvodstva Porshney [Aluminium Alloys for Manufacturing of Plungers] (GOST 30620-98) (Minsk: Interstate Committee on Standardization, Metrology and Certification: 2000) (in Russian).
    38. N. N. Koval’ and Yu. F. Ivanov, Russ. Phys. J, 51, No. 5: 505 (2008). Crossref
    39. Yu. A. Denisova, Yu. F. Ivanov, O. V. Ivanova, I. A. Ikonnikova, N. N. Koval, O. V. Krysina, E. A. Petrikova, A. D. Teresov, and V. V. Shugurov, Strukturnaya Ehvolutsiya Poverkhnostnogo Sloya Stali, Podvergnutogo Ehlektronno-Ionno-Plazmovym Metodam Obrabotki [Structure Evolution of Steel Surface Layer Subjected to Electron–Ion-Plasma Methods of Processing] (Tomsk: NTL: 2016) (in Russian).
    40. Yu. Kh. Akhmadeev, V. V. Denisov, Yu. F. Ivanov, O. V. Ivanova, I. A. Ikonnikova, N. N. Koval’, O. V. Krysina, I. V. Lopatin, E. A. Petrikova, M. S. Petyukevich, A. D. Teresov, O. S. Tolkachev, and V. V. Shugurov, Ehlektronno-Ionno-Plazmovaya Modifikatsiya Poverkhnosti Tsvetnykh Metallov i Splavov [Electron–Ion-Plasma Modification of Surface of Non-Ferrous Metals and Alloys] (Tomsk: NLT: 2016) (in Russian).
    41. Yu. F. Ivanov, N. N. Koval, V. I. Vlasov, A. D. Teresov, E. A. Petrikova, V. V. Shugurov, O. V. Ivanova, I. A. Ikonnikova, and A. A. Klopotov, High-Temp. Mater. Processes, 17, No. 4: 241 (2013). Crossref
    42. Yu. F. Ivanov, O. V. Krysina, M. Rygina, E. A. Petrikova, A. D. Teresov, V. V. Shugurov, O. V. Ivanova, and I. A. Ikonnikova, High Temp. Mater. Processes, 18, No. 4: 311 (2014). Crossref
    43. Transmission Electron Microscopy Characterization of Nanomaterials (Ed. C.S.S.R. Kumar) (New York: Springer: 2014). Crossref
    44. D. B. Williams and C. B. Carter, Transmission Electron Microscopy. A Textbook for Materials Science (Boston: Springer: 2009). Crossref
    45. R. F. Egerton, Physical Principles of Electron Microscopy. An Introduction to TEM, SEM, and AEM (Springer International Publishing: 2016). Crossref
    46. L. F. Mondolfo, Aluminum Alloys: Structure and Properties (London: Butterworth-Heinemann: 1976). Crossref
    47. N. A. Belov, Fazovyy Sostav Alyuminievykh Splavov [Phase Composition of Aluminium Alloys] (Moscow: MISiS: 2009) (in Russian).
    48. M. M. Makhloufе and H. V. Guthy, J. Light Metals, 1, No. 4: 199 (2001). Crossref
    49. А. P. Laskovnev, Yu. F. Ivanov, E. A. Petrikova, N. N. Koval’, V. V. Uglov, N. N. Cherenda, N. V. Bibik, and V. M. Astashensky, Modifikatsiya Struktury i Svoistv Ehvtekticheskogo Silumina Ehlektronno-Ionno-Plazmennoy Obrabotkoy [Modification of Structure and Properties of Eutectic Silumin by Electron–Ion-Plasma Processing] (Minsk: Navuka: 2013) (in Russian).
    50. D. Brandon and W. D. Kaplan, Microstructural Characterization of Materials (Chichester: John Wiley & Sons Ltd.: 2008).
    51. L. M. Utevskiy, Difraktsionnaya Ehlektronnaya Mikroskopiya v Metallurgii [Diffraction Electron Microscopy in Metallurgy] (Moscow: Metallurgiya: 1973) (in Russian).
    52. K. W. Andrews, D. J. Dyson, and S. R. Keown, Interpretation of Electron Diffraction Patterns (New York: Springer: 1967). Crossref