Modelling of Lattices of Two-Dimensional Quasi-Crystals

V. V. Girzhon and O. V. Smolyakov

Zaporizhzhya National University, 66 Zhukovsky Str., UA-69600 Zaporizhzhya, Ukraine

Received 14.06.2019; final version — 10.10.2019 Download: PDF logo PDF

We propose the method for modelling of quasi-periodic structures based on an algorithm being a geometrical interpretation of the Fibonacci-type numerical sequences. The modelling consists in a recurrent multiplication of basis groups of the sites, which possess the 10-th, 8-th or 12-th order rotational symmetry. The advantage of the proposed method consists in an ability to operate with only two-dimensional space coordinates rather than with hypothetical spaces of dimension more than three. The correspondence between the method of projection of quasi-periodic lattices and the method of recurrent multiplication of basis-site groups is shown. As established, the six-dimensional reciprocal lattice for decagonal quasi-crystals can be obtained from orthogonal six-dimensional lattice for icosahedral quasi-crystals by changing the scale along one of the basis vectors and prohibiting the projection of sites, for which the sum of five indices (corresponding to other basis vectors) is not equal to zero. It is shown the sufficiency of using only three indices for describing diffraction patterns from quasi-crystals with 10-th, 8-th and 12-th order symmetry axes. Original algorithm enables direct obtaining of information about intensity of diffraction reflexes from the quantity of self-overlaps of sites in course of construction of reciprocal lattices of quasi-crystals.

Keywords: quasi-periodic structures, Fibonacci sequence, projection method, basis vectors, rotation symmetry, reciprocal lattice.

DOI: https://doi.org/10.15407/ufm.20.04.551

Citation: V. V. Girzhon and O. V. Smolyakov, Modelling of Lattices of Two-Dimensional Quasi-Crystals, Prog. Phys. Met., 20, No. 4: 551–583 (2019); doi: 10.15407/ufm.20.04.551


References (53)  
    1. J. W. Cahn, D. Shechtman, and D. Gratias, J. Mater. Res., 1, No. 1: 30 (1986). Crossref
    2. А. Katz and М. Duneau, Scr. Metall., 20, No. 9: 1211 (1986). Crossref
    3. D. Levine and P. J. Steinhardt, Phys. Rev. B, 34, No. 2: 596 (1986). Crossref
    4. S. Ebalard and F. Spaepen, J. Mater. Res., 4, No. 1: 39 (1989). Crossref
    5. J. Socolar, Phys. Rev. B, 39, No. 15: 10519 (1989). Crossref
    6. W. Bogdanowicz, Cryst. Res. Technol., 38, Nos. 3–5: 307 (2003). Crossref
    7. W. Bogdanowicz, Cryst. Res. Technol., 40, Nos. 4–5: 488 (2005). Crossref
    8. D. A. Shulyatev, Crystallogr. Rep., 52, No. 6: 938 (2007). Crossref
    9. W. Steurer, T. Haibach, and B. Zhang, Acta Cryst. B, 49: 661 (1993). Crossref
    10. A. Yamamoto and K. N. Ishihara, Acta Cryst. A, 44: 707 (1988). Crossref
    11. P. Schall, M. Feuerbacher, and K. Urban, Phys. Rev. B, 69, No. 13: 134105 (2004). Crossref
    12. Y. Yan, R. Wang, J. Gui, and M. Dai, Acta Cryst., 49: 435 (1993). Crossref
    13. X. B. Liu, G. C. Yang, J. F. Fan, and G. S. Song, J. Mater. Sci. Lett., 22, No. 2: 103 (2003). Crossref
    14. X. B. Liu, J. Mater. Sci., 38, No. 5: 885 (2003). Crossref
    15. G. Rosas, C. Angeles-Chavez, and R. Perez, J. New Mater. Electrochem. Syst., 8: 149 (2005).
    16. M. Boström and S. Hovmöller, Solid State Chem., 153, No. 2: 398 (2000). Crossref
    17. Z. M. Mo and K. H. Kuo, Mater. Sci. Eng., 294–296: 242 (2000). Crossref
    18. Y. Vekilov and M. Chernikov, Phys.-Usp., 53: 537 (2010). Crossref
    19. J. S. Wu and K. H. Kuo, Metall. Mater. Trans. A, 28, No. 3: 729 (1997). Crossref
    20. V. Elser, Phys. Rev. B, 32, No. 8: 4892 (1985). Crossref
    21. V. V. Girzhon, V. M. Kovalyova, O. V. Smolyakov, and M. I. Zacharenko, J. Non-Cryst. Solids, 358: 137 (2012). Crossref
    22. V. V. Girzhon, O. V. Smolyakov, and I. V. Gayvoronsky, Sposib Modelyuvannya Struktury Dodekagonalnykh Kvazykrystaliv: Patent No. 80699 MPK G09B 23/26 G09B 23/06 (Patent na korysnu model No. 11) (2012) (in Ukrainian).
    23. V. V. Girzhon, O. V. Smolyakov, and M. I. Zakharenko, ZhETF, 5, No. 11: 973 (2014). Crossref
    24. O. V. Smolyakov and V. V. Girzhon, ZhETF, 3, No. 9: 521 (2017). Crossref
    25. V. V. Girzhon, O. V. Smolyakov, and I. V. Gayvoronsky, Visnyk Lvivskogo Universytetu. Seriia Fizychna, 54: 13 (2017).
    26. S. Ritsch, Philos. Mag. Lett., 74, No. 2: 99 (1996). Crossref
    27. S. A. Ranganathan, E. A. Lord, N. K. Mukhopadhyay, and A. Singh, Acta Cryst. A, 63, No. 1: 1 (2007). Crossref
    28. J. Dubois, Useful Quasicrystals (Singapore–London: World Scientific: 2005).
    29. M. A. Bicknell, The Fibonacci Quart, 13, No. 4: 345 (1975).
    30. S. Burkov, Phys. Rev. B, 47: 12325 (1993). Crossref
    31. W. Steurer and S. Deloudi Crystallography of Quasicrystals: Concepts, Methods and Structures (London–New York: Springer: 2009).
    32. R. Amman, B. Grünbaum, and G. Shephard, Discrete & Computational Geometry, 8, No. 1: 1 (1992).
    33. F. P. N. Beenker, Algebraic Theory of Non-Periodic Tilings of the Plane by Two Simple Building Blocks: a Square and a Rhombus (Eindhoven: Eindhoven University of Technology: 1982).
    34. C. Janot, Quasicrystals (Oxford: Oxford Clarendon Press: 1994).
    35. Y. Roichman and D. Grier, Holographic Assembly of Quasicrystalline Photonic Heterostructures (New York: Department of Physics and Center for Soft Matter Research: 2005).
    36. W. Steurer and S. Deloudi, Crystallography of Quasicrystals: Concepts, Methods and Structures (London–New York: Springer: 2009).
    37. D. Levine, P. Steinhardt, Phys. Rev. Lett., 53: 2477 (1984). Crossref
    38. K. Kuo, J. Non-Cryst. Solids, 117–118: 756 (1990). Crossref
    39. H. Chen, D. X. Li, and K. H. Kuo, Phys. Rev. Lett., 60, No. 16: 1645 (1988). Crossref
    40. T. Ishimasa, H.-U. Nissen, and Y. Fukano, Phys. Rev. Lett., 55, No. 5: 511 (1985). Crossref
    41. K. Yoshida, T. Yamada, and Y. Taniguchi, Acta Cryst. B, 45: 40 (1989). Crossref
    42. M. Uchida and S. Horiuchi, J. Appl. Cryst., 31: 634 (1998). Crossref
    43. H. Iga, M. Mihalkovic, and T. Ishimasa, Philos. Mag., 91, Nos. 19–21: 2624 (2011). Crossref
    44. X. Zeng, G. Ungar, Y. Liu, V. Percec, A. E. Dulcey, and J. K. Hobbs, Nature, 428: 157 (2004). Crossref
    45. S. Fischer, A. Exner, K. Zielske, J. Perlich, S. Deloudi, W. Steurer, P. Lindner, and S. Förster, Proc. Natl. Acad. Sci. U.S.A., 108, No. 5: 1810 (2011). Crossref
    46. K. Hayashida, T. Dotera, and A. Takano, Phys. Rev. Lett., 98, No. 19: 195502 (2007). Crossref
    47. A. E. Madison, Struct. Chem., 26, No. 4: 923 (2015). Crossref
    48. S. Iwami and T. Ishimasa, Philos. Mag. Lett., 95, No. 4: 229 (2015). Crossref
    49. M. Conrad, F. Krumeich, and B. Harbrecht, Angew. Chem. Int. Ed., 37, No. 10: 1383 (1998). Crossref
    50. B. Souvignier, Acta Cryst. A, 59: 210 (2003). Crossref
    51. P. A. Bancel, Phys. Rev. Lett., 54, No. 22: 2422 (1985). Crossref
    52. F. Gähler, Quasicrystalline Materials. Proc. I.L.L. / Codest Workshop, Grenoble, 21–25 March 1988 (Singapore: World Scientific: 1988), p. 272.
    53. S. Förster, K. Meinel, R. Hammer, M. Trautmann, and W. Widdra, Nature, 502: 215 (2013). Crossref