Microstructure and Properties of Hypoeutectic Silumin Treated by High-Current Pulsed Electron Beams

Yu. F. Ivanov$^{1,2}$, D. V. Zagulyaev$^{3}$, S. A. Nevskii$^{3}$, V. Е. Gromov$^{3}$, V. D. Sarychev$^{3}$, A. P. Semin$^{3}$

$^1$Institute of High Current Electronics SB RAS, 2/3 Akademicheskiy Ave., 634055 Tomsk, Russia
$^2$National Research Tomsk Polytechnic University, 2/3 Akademicheskiy Ave., 634055 Tomsk, Russia
$^3$Siberian State Industrial University, 42 Kirov Str., 654007 Novokuznetsk, Russia

Received: 26.03.2019; final version — 17.08.2019. Download: PDF logoPDF

The structural-phase states, microhardness, and tribological properties of hypoeutectic silumin after electron-beam treatment are studied by the methods of contemporary physical materials science. The object of the study is hypoeutectic АК10М2Н-type silumin containing 87.88 wt.% of Al and 11.1 wt.% of Si as the base components. The silumin surface is subjected to electron-beam treatment in six various regimes distinct in the density of electron-beam energy. The microhardness measurements of the modified silumin-surface layers enabled to determine three optimal impact regimes (with electron-beam energy densities of 25, 30, and 35 J/cm$^{2}$), when the modified-layer microhardness exceeds that for the cast silumin. The obtained parameters are as follow: 0.86 ± 0.41 GPa for the cast state; 0.93 ± 0.52 GPa for 25 J/cm$^{2}$; 0.97 ± 0.071 GPa for 30 J/cm$^{2}$; 0.96 ± 0.103 GPa for 35 J/cm$^{2}$. As found, the electron-beam treatment with the optimal parameters results in the formation of the surface whose mechanical and tribological characteristics sufficiently exceed corresponding values for the cast state of silumin. The atomic-force microscopy data correlate with the results on microhardness. The samples treated in the presented regimes are characterised with the fine-grained cellular structure and have the least roughness of the treated layer (of 17–33 nm) and substrate (of 45–57 nm) as compared to other regimes. As revealed, in the treated layer, the fine-grained, graded, and cellular structure is formed, and it transforms into the mixed-type structure when deepening away from the surface of treatment. Depending on the parameters of electron-beam treatment, the thickness of homogenized layer varies and reaches the maximum values of 100 μm at the energy density of 35 J/cm$^{2}$. As detected, the modified layer is free from intermetallides and consists of the nanocrystalline structure of cellular crystallization. As assumed, these two factors are responsible for the increased mechanical and tribological characteristics of the modified layer. The formation mechanism for structure of cellular and columnar crystallization consisting in the initiation of thermocapillary instability over the ‘evaporated substance/liquid phase’ interface is offered. The mathematical model of the thermal effect of electron beam on the silumin-surface layers is developed.

Keywords: physical nature, mathematical model, structure, properties, hypoeutectic silumin, electron beam treatment, phase composition.

DOI: https://doi.org/10.15407/ufm.20.03.447

Citation: Yu. F. Ivanov, D. V. Zagulyaev, S. A. Nevskii, V. Е. Gromov, V. D. Sarychev, and A. P. Semin, Microstructure and Properties of Hypoeutectic Silumin Treated by High-Current Pulsed Electron Beams, Usp. Fiz. Met., 20, No. 3: 447–484 (2019); doi: 10.15407/ufm.20.03.447

References (59)  
    1. A. B. Belov, O. A. Bytsenko, A. V. Krainikov, A. F. Lvov, A. S. Novikov, A. G. Paikin, A. D. Teriaev, D. A. Teriaev, K. I. Tvagenko, V. A. Shulov, and V. I. Engelko, Sil’notochnyye Impul’snyye Ehlektronnyye Puchki dlya Aviatsionnogo Dvigatelestroeniya [High-Current Pulsed Electron Beams for Aircraft Engine Construction] (Moscow: Dipak: 2012) (in Russian).
    2. V. Engelko, B. Yatsenko, G. Mueller, and Y. Bluhm, Vacuum, 62: 211 (2001). Crossref
    3. G. E. Ozur, D. I. Proskurovsky, V. P. Rotshtein, and A. B. Markov, Laser and Part. Beams, 21: 157 (2003). Crossref
    4. V. P. Rotshtein, Yu F. Ivanov, D. I. Proskurovsky, K. V. Karlik, I. A. Shulepov, and A. B. Markov, Surf. Coat. Tech., 180–181: 382 (2004). Crossref
    5. D. I. Proskurovsky, V. P. Rotshtein, G. E. Ozur, Yu F. Ivanov, and A. B. Markov, Surf. Coat. Tech., 125: 49 (2000). Crossref
    6. P. Wenhai, H. Shengzhi, C. Jun, L. Wei, Z. Limin, D. Jun, Int. J. Refr. Met. Hard Mat., 78: 233 (2019). Crossref
    7. Y. Hangyu, C. Yuyong, W. Xiaopeng, and K. Fantao, J. Alloys and Comp., 750: 617 (2018). Crossref
    8. J. Wei, W. Langping, and W. Xiaofeng, Nucl. Inst. Meth. Phys. Res. B, 436: 63 (2018). Crossref
    9. P. Petrov, D. Dechev, N. Ivanov, T. Hikov, S. Valkov, M. Nikolova, E. Yankov, S. Parshorov, R. Bezdushnyi, and A. Andreeva, Vacuum, 154: 264 (2018). Crossref
    10. B. Gao, N. Xu, and P. Xing, Mat. Lett., 237: 180 (2019). Crossref
    11. Z. Chen, Y. Liu, H. Wu, W. Zhang, W. Guo, H. Tang, and N. Liu, Appl. Surf. Sci., 357: 2347 (2015). Crossref
    12. P. Yu, M. Yan, D. Tomus, C. A. Brice, C. J. Bettles, B. Muddle, and M. Qian, Mat. Charact., 143: 43 (2018). Crossref
    13. B. Gao, S. Hao, J. Zou, W. Wu, G. Tu, and C. Dong, Surf. Coat. Tech., 201: 6297 (2007). Crossref
    14. Y. Qin, C. Dong, X. Wang, S. Hao, A. Wu, J. Zou, and Y. Liu, J. Vac. Sci. Tech. A, 21: 1934 (2003). Crossref
    15. J. Zou, Y. Qin, C. Dong, X. Wang, W. Almin, and S. Hao, J. Vac. Sci. Tech. A, 22: 545 (2004). Crossref
    16. Yu. F. Ivanov, V. Е. Gromov, S. V. Konovalov, D. V. Zagulyaev, Е. А. Petrikova, and А. P. Semin, Usp. Fiz. Met., 19, No. 2: 195 (2018). Crossref
    17. D. Lu, B. Gao, G. Zhu, J. Lv, and L. Hu, High Temp. Mat. Process., 36: 97 (2017). Crossref
    18. B. Gao, L. Hu, S. Li, Y. Hao, Y. Zhang, and G. Tu, Appl. Surf. Sci., 346: 147 (2015). Crossref
    19. J. Feng, H. Wu, J. He, B. Zhang, Mat. Charact., 54: 99 (2005). Crossref
    20. V. D. Sarychev, S. A. Nevskii, S. V. Konovalov, A. Yu. Granovskii, and V. E. Gromov, Mat. Res. Express, 6: 026540 (2019). Crossref
    21. S. Biamino, A. Penna, U. Ackelid, S. Sabbadini, and O. Tassa, Intermetallics, 19: 776 (2011). Crossref
    22. D. V. Zagulyaev, S. V. Konovalov, V. E. Gromov, A. M. Glezer, Yu. F. Ivanov, and R. V. Sundeev, Mat. Lett., 229: 377 (2018). Crossref
    23. F. Kh. Mirzoev, V. Ya. Panchenko, and L. A. Shelepin, Phys.-Usp., 39: 1 (1996). Crossref
    24. E. B. Levchenko and A. L. Chernyakov, Sov. Phys. JETP, 54: 102 (1981).
    25. E. B. Levchenko and A. L. Chernyakov, Fiz. Kh. Obr. Mat., 1: 129 (1983) (in Russian).
    26. M. Takashima, J. Phys. Soc. Japan, 50: 2745 (1981). Crossref
    27. E. A. Ryabitskii, Fluid Dynamics, 27: 313 (1992). Crossref
    28. M. G. Velarde, P. L. Garcia-Ybarra, and J. L. Castillo, Phys. Chem. Hydr., 9: 387 (1987).
    29. I. Hashim and S. K. Wilson, Z. angew. Math. Phys., 50: 546 (1999). Crossref
    30. V. D. Sarychev, S. A. Nevskii, S. V. Konovalov, I. A. Komissarova, and E. V. Chermushkina, IOP Conf. Ser. Mater. Sci. Eng., 91: 012028 (2015). Crossref
    31. S. V. Konovalov, X. Chen, V. D. Sarychev, S. A. Nevskii, V. E. Gromov, and M. Trtica, Metals, 7: 1 (2017). Crossref
    32. Yu. F. Ivanov, O. V. Krysina, M. Rygina, E. A. Petrikova, A. D. Teresov, V. V. Shugurov, O. V. Ivanova, and I. A. Ikonnikova, High. Temp. Mat. Process., 18, No. 4: 311 (2014). Crossref
    33. Yu. F. Ivanov and N. N. Koval, Nizkoehnergeticheskie Ehlektronnyye Puchki Submillisekundnoy Dlitel’nosti Vozdeistviya: Poluchenie i Nekotoryye Aspekty Primeneniya v Oblasti Materialovedeniya [Low-Energy Electron Beams of Submillisecond Exposure Duration: Production and Some Aspects of Application in Materials Science] (Ed. A. I. Potekaeva) (Tomsk: Publishing House of NTL: 2007) (in Russian).
    34. K. V. Sosnin, V. E. Gromov, and Yu. F. Ivanov, Struktura, Fazovyy Sostav i Svoistva Titana Posle Ehlektrovzryvnogo Legirovaniya Ittriem i Ehlektronno-Puchkovoy Obrabotki [Structure, Phase Composition and Properties of Titanium after Electroexplosive Doping with Yttrium and Electron Beam Processing] (Novokuznetsk: Poligrafist: 2015) (in Russian).
    35. C. A. Schuh, Mater. Today, 9: 32 (2007). Crossref
    36. Modul’ Obrabotki Izobrazheniy Image Analysis P9: Spravochnoye Rukovodstvo [Image Analysis P9: Reference Guide] (Zelenograd: NT-MDT: 2016) (in Russian).
    37. Sherokhovatost’ Poverkhnosti. Terminy i Opredeleniya [Surface Roughness. Terms and Definitions.]: GOST 25142-82 (1982) (in Russian).
    38. Transmission Electron Microscopy Characterization of Nanomaterials (Ed. Challa S. S. R. Kumar) (Berlin–Heidelberg: Springer-Verlag: 2014). Crossref
    39. Transmission Electron Microscopy (Eds. B. Carter and D. B. Williams) (Springer International Publishing Switzerland: 2016). Crossref
    40. R. F. Egerton, Physical Principles of Electron Microscopy: An Introduction to TEM, SEM, and AEM (Springer International Publishing Switzerland: 2016). Crossref
    41. A. G. Prigunova, N. A. Belov, and Yu. N. Taran, Siluminy. Atlas Mikrostruktur i Fraktogramm Promyshlennykh Splavov [Silumins. Atlas of Microstructures and Fractographs of Industrial Alloys] (Moscow: MISiS: 1996) (in Russian).
    42. Yu. V. Milman, S. I. Chugunova, I. V. Goncharova, and А. А. Golubenko, Usp. Fiz. Met., 19, No. 3: 271 (2018). Crossref
    43. A. P. Laskovnev, Yu. F. Ivanov, amd E. A. Petrikova, Modifikatsiya Struktury i Svoistv Ehvtekticheskogo Silumina Ehlektronno-Ionno-Plazmennoy Obrabotkoy [Modification of the Structure and Properties of Eutectic Silumin by Electron–Ion–Plasma Treatment] (Minsk: Navuka: 2013) (in Russian).
    44. S. V. Panin, A. E. Kolgachev, Yu. I. Pochivalov, V. E. Panin, and I. G. Goriacheva, Fizicheskaya Mezomekhanika, 8: 101 (2005) (in Russian).
    45. Yu. F. Ivanov and N. N. Koval, Struktura i Svoistva Perspektivnykh Metallicheskikh Materialov [Structure and Properties of the Promising Metallic Materials] (Ed. A. Potekaev) (Tomsk: Publishing House of NTL: 2007), Ch. 13, p. 345 (in Russian).
    46. V. Rotshtein, Yu. Ivanov, and A. Markov, Materials Surface Processing by Directed Energy Techniques (Ed. Y. Pauleau) (Amsterdam: Elsevier Science: 2006), Ch. 6, p. 205.
    47. Yu. A. Denisova, Yu. F. Ivanov, and O. V. Ivanova, Ehvolyutsiya Struktury Poverkhnostnogo Sloya Stali, Podvergnutoy Ehlektronno-Ionno-Plazmennym Metodam Obrabotki [Evolution of the Structure of the Steel Surface Layer Subjected to Electron–Ion–Plasma Processing Methods] (Eds. N. N. Koval and Yu. F. Ivanov) (Tomsk: Publishing House of NTL: 2007).
    48. Yu. Ivanov, K. Alsaraeva, V. Gromov, S. Konovalov, and O. Semina, Mat. Sci. Technol., 31: 1523 (2015). Crossref
    49. N. A. Belov, S. V. Savchenko, and A. V. Hvan, Fazovyy Sostav i Struktura Siluminov [Phase Composition and Structure of Silumins] (Moscow: MISiS: 2008) (in Russian).
    50. V. S. Zolotorevskiy and N. A. Belov, Metallovedenie Liteinykh Alyuminievykh Splavov [Metal Science of Cast Aluminium Alloys] (Moscow: MISiS: 2005) (in Russian).
    51. N. A. Belov, Fazovyy Sostav Alyuminievykh Splavov [Phase Composition of Aluminium Alloys] (Moscow: MISiS: 2009) (in Russian).
    52. G. B. Stroganov, V. A. Rotenberg, and G. B. Gershman, Splavy Alyuminiya s Kremniem [Aluminium Alloys with Silicon] (Moscow: Metallurgiya: 1977) (in Russian).
    53. A. P. Babichev, Fizicheskie Velichiny: Spravochnik [Physical Quantities: Handbook] (Eds. I. S. Grigorieva and E. Z. Meilikhov) (Moscow: Energoatomizdat: 1991) (in Russian).
    54. D. Brandon and U. Kaplan, Mikrostruktura Materialov. Metody Issledovaniya i Kontrolya [Microstructure of Materials. Methods of Study and Control] (Moscow: Tekhnosfera: 2006) (in Russian).
    55. B. Cheynet, J.-D. Dubois, and M. Milesi, Technique de l’Ingenier, Traité Materiaux Metalliques (Strasbourg: Imprimerie Strasbourgeoise: 1993), p. M 64-1 (in French).
    56. A. Samarskii, P. N. Vabishchevich, O. P. Iliev, and A. G. Churbanov, Int. J. Heat Mass Transfer., 36: 4095 (1993). Crossref
    57. Y. F. Ivanov, E. A. Petrikova, O. V. Ivanova, I. A. Ikonnikova, and A. V. Tkachenko, Rus. Phys. J., 58: 478 (2015). Crossref
    58. E. Aursand, S. H. Davis, and T. Ytrehus, J. Fluid Mech., 852: 283 (2018). Crossref
    59. V. A. Urpin and D. G. Yakovlev, Zh. Tekhn. Fiz., 59, No. 2: 19 (1989) (in Russian).