The Secondary-Ion Emission: Matrix Effect

V. T. Cherepin$^{1}$, M. O. Vasylyev$^{1}$, S. I. Sidorenko$^{2}$, S. M. Voloshko$^{2}$, І. O. Kruhlov$^{2}$

$^1$G.V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine
$^2$National Technical University of Ukraine ‘Igor Sikorsky Kyiv Polytechnic Institute’, 37 Peremohy Ave., UA-03056 Kyiv, Ukraine

Received: 20.08.2018; final version - 18.10.2018. Download: PDF logoPDF

The paper is concerned with the description of the physical nature of the dependence of the sputtered-atoms’ ionization probability on the atomic and electronic structures of a metal target bombarded with ions of neutral gases (matrix effect). A systematic analysis of the literature data and results of authors of this review is carried studying the secondary ion emission (SIE) of pure metals, dilute solid solutions, and concentrated alloys. The practical importance of such studies is because the phenomenon of renewable energy is the basis of a unique method of chemical, isotope as well as physical and chemical analysis not only of metallic materials, but of semiconductors and organic substances too. The high sensitivity of SIE to the change in the forces of interatomic interaction and the parameters of the electronic structure is revealed. Experimental and theoretical studies in this direction have made it possible to deepen the knowledge of the nature of the phenomenon of secondary ion emission that arises when metal targets are bombarded with inert-gas ions, and to outline ways for further studying and applying this phenomenon for diagnostics of solid surfaces and bulks. Particularly, the method of mass-spectrometry of secondary ions based on the SIE can be used to study the phase equilibrium diagrams as well as the first and second kind phase transformations. Taking into account the high sensitivity of SIE to the change in the forces of interatomic interaction and the parameters of the electronic structure, further investigations should be aimed at establishing stricter correlations between these properties of the material and such characteristics of SIE as the emission coefficient and the ionization probability of sputtered atoms. The solution of this problem will create a new quantitative method for determination of the binding energy of various atoms in the composition of multicomponent materials.

Keywords: metal alloys, secondary ion emission, mass spectrometry, chemical analysis, isotopes, binding energy, electronic structure.

PACS: 07.75.+h, 34.35.+a, 41.75.Ak, 61.80.Lj, 68.49.Sf, 79.20.Rf, 82.80.Ms

DOI: https://doi.org/10.15407/ufm.19.04.418

Citation: V. T. Cherepin, M. O. Vasylyev, S. I. Sidorenko, S. M. Voloshko, and І. O. Kruhlov, The Secondary-Ion Emission: Matrix Effect, Usp. Fiz. Met., 19, No. 4: 418—441 (2018) (in Russian), doi: 10.15407/ufm.19.04.418


References (43)  
  1. J. A. McHugh, Methods of Surface Analysis (Ed. A. W. Czanderna) (North Holland: Elsevier: 1975), Chapter 6, p. 223. Crossref
  2. V. T. Cherepin and M. A. Vasiliev, Metody i Pribory dlya Analiza Poverkhnosti Materialov: Spravochnik [Methods and Devices for the Materials’ Surface Analysis: A Handbook] (Kiev: Naukova Dumka: 1982) (in Russian).
  3. V. T. Cherepin and M. A. Vasiliev, Vtorichnaya Ionno-Ionnaya Ehmissiya Metallov i Splavov [Secondary Ion-Ion Emission of Metals and Alloys] (Kiev: Naukova Dumka: 1975) (in Russian).
  4. A. Tynkova, G. L. Katona, G. Erdélyi, L. Daróczi, А. I. Oleshkevych, I. A. Vladymyrskyi, S. I. Sidorenko, S. M. Voloshko, and D. L. Beke, Thin Solid Films, 589: 173 (2015). Crossref
  5. P. Jorchel, P. Helm, F. Brunner, A. Thies, O. Kruger, and M. Weyers, J. Vac. Sci. Technol. B, 34, Iss. 3: 03H128 (2016). Crossref
  6. A. M. Alnajeebi, J. C. Vickerman, and N. P. Lockyer, Biointerphases, 11, Iss. 2: 02A317 (2016). Crossref
  7. Ch. K. Singh, S. Ilango, S. Dash, and A. K. Tyagi, Mater. Chem. Phys., 173: 475 (2016). Crossref
  8. B. Gong and Ch. E. Marjo, Surf. Interface Analys., 48, Iss. 7: 422 (2016). Crossref
  9. H. Tian, A. Wucher, and N. Winograd, J. Am. Soc. Mass Spectrom., 27, Iss. 12: 2014 (2016). Crossref
  10. D. Huang, X. Hua, G.-L. Xiu, Y.-J. Zheng, X.-Y. Yu, and Y.-T. Long, Analyt. Chim. Acta, 989: 1 (2017). Crossref
  11. K. Takahashi, S. Aoyagia, and T. Kawashima, Surf. Interface Analys., 49, Iss. 8: 721 (2017). Crossref
  12. A. C. Patrick, D. N. Marc, and C. B. Vickie, Chem. Geol., 467: 122 (2017). Crossref
  13. A. V. Walker, Microsc. Microanal., 23: 1042 (2017). Crossref
  14. V. T. Cherepin, M. O. Vasylyev, I. M. Makeeva, V. M. Kolesnik, and S. M. Voloshko, Usp. Fiz. Met., 19, No. 1: 49 (2018). Crossref
  15. R. R.-M. Smith, S. Sayen, N. Nuns, and E. Berrier, Sci. Total Environment, 639: 841 (2018). Crossref
  16. M. P. Seah and A. G. Shard, Appl. Surf. Sci., 439: 605 (2018). Crossref
  17. V. T. Cherepin, Secondary Ion Mass Spectroscopy of Solid Surfaces (The Netherlands, Utrecht: VNU Science Press BV: 1987).
  18. A. E. Barrington, R. P. K. Herzog, and W. P. Poschensieder, J. Vac. Sci. Technol., 3, Iss. 5: 239 (1966). Crossref
  19. M. A. Vasiliev, Yu. N. Ivashchenko, and V. T. Cherepin, Fazovye Prevrashcheniya (Kiev: Naukova Dumka: 1970), p. 148 (in Russian).
  20. M. A. Vasiliev, Yu. N. Ivashchenko, and V. T. Cherepin, Metallofizika (Kiev: Naukova Dumka: 1973), p. 42 (in Russian).
  21. G. Blaise and A. Nourtier, Surf. Sci., 90, Iss. 2: 495 (1979). Crossref
  22. W. H. Gries, Int. J. Mass Spectrom. Ion Phys., 30, Iss. 2: 97 (1979). Crossref
  23. P. Sigmund, Phys. Rev., 184, Iss. 2: 383 (1969). Crossref
  24. M. A. Vasiliev, Yu. N. Ivashchenko, and V. T. Cherepin, Doklady AN USSR, 2: 45 (1970) (in Russian).
  25. J. M. Schroeer, T. N. Rhodin, and R. C. Bradley, Surf. Sci., 34, Iss. 3: 571 (1973). Crossref
  26. R. Weissmann, R. Stier, and Z. Naturforsch, Rad. Eff., 19, Iss. 2: 69 (1973). Crossref
  27. L. Pauling, The Nature of the Chemical Bonds (Ithaca, New-York: Cornel Univ. Press: 1960).
  28. A. K. Vijh, Surf. Sci., 46, Iss. 1: 282 (1974). Crossref
  29. I. Ya. Dekhtyar and V. V. Nemoshkalenko, Ehlektronnaya Struktura i Ehlektronnye Svoistva Perekhodnykh Metallov i Splavov [Electronic Structure and Electronic Properties of Transition Metals and Alloys] (Kiev: Naukova Dumka: 1971) (in Russian).
  30. J. Friedel, Nuovo Cimento, 7, Suppl. 2: 287 (1958). Crossref
  31. M. M. Riedel, J. Antal, and S. Kugler, Acta Phys. Academ. Sci. Hung., 49, Iss. 1–3: 105 (1980). Crossref
  32. H. C. Z. Beske, Z. Naturforschung, 22a: 459 (1967).
  33. G. Blaise and M. C. Cadeville, J. Phys. France, 36, No. 6: 545 (1975). Crossref
  34. M. O. Vasylyev, S. I. Sidorenko, S. M. Voloshko, and T. Ishikawa, Usp. Fiz. Met., 17, No. 3: 209 (2016). Crossref
  35. V. A. Tatarenko, S. M. Bokoch, V. M. Nadutov, T. M. Radchenko, and Y. B. Park, Defect Diffus. Forum, 280–281: 29 (2008). Crossref
  36. T. M. Radchenko and V. A. Tatarenko, Usp. Fiz. Met., 9, No. 1: 1 (2008). Crossref
  37. F. Henennequin, R.-L. Inglebert, and P. V. De Lesegno, Surf. Sci., 140, Iss. 1: 197 (1984). Crossref
  38. M. Abon, J. C. Bertolini, and H. Montes, Appl. Surf. Sci., 32, Iss. 4: 343 (1988). Crossref
  39. J.-F. Hennequin and J.-L. Bernard, Surf. Sci., 234, Iss. 1–2: 127 (1990). Crossref
  40. L. M. Hennequin, O. Fade, J. G. Fays, J. F. Bic, S. Jaafar, A. Bertal, and D. Anthoine, Radiology, 196, No. 2: 45 (1995). Crossref
  41. S. A. Firstov, N. A. Krapivka, M. A. Vasiliev, S. I. Sidorenko, S. M. Voloshko, Powder Metall. Met. Ceram., 55, Iss. 7–8: 458 (2016). Crossref
  42. C. Kittel, Introduction to Solid State Physics, 6th ed. (New York: Jonn Wiley: 1986).
  43. U. Bardi, F. Niccolaic, M. Tostic, and A. Tolstogouzov, Int. J. Mass Spectrom., 273, Iss. 3: 138 (2008). Crossref