Studying of Properties of Silicon Junctions with the Schottky Barrier Fabricated on the Base of Amorphous and Polycrystalline Various Metal Alloys

I. G. Pashayev

Baku State University, 23 Akademik Zahid Xəlilov Str., 1148 Baku, Azerbaijan

Received: 08.02.2012; final version - 29.04.2012. Download: PDF

In a given article, results on electrophysical properties of the Schottky diodes (HCD) fabricated of different metal alloys are reviewed. Results of author of a given review as well as other authors on the change of HCD properties depending on the chosen metal compositions and structures of metal films are presented. As revealed from X-ray diffraction analysis of the Ni–Ti, Pb–Sb, Al–Ni, TiB systems investigated, the main alloys have the amorphous structure at a certain proportion of components, while other films have the polycrystalline structure. Critical parameters of HCD depending on the composition and structure of the studied films are determined. The reasons of excess current and other observed effects near the crystallisation temperature of the investigated amorphous metal films are ascertained. As shown, the effects observed at the thermal annealing are concerned with the changes in the structure of metallic amorphous film during transition into polycrystalline state.

Keywords: composition and structure of amorphous metals, Schottky diodes, semiconductor alloy film, degradation, excess current.

PACS: 73.30.+y, 73.40.Cg, 73.40.Ei, 81.40.Rs, 85.30.Hi, 85.30.Kk, 85.40.Ls

DOI: https://doi.org/10.15407/ufm.13.04.397

Citation: I. G. Pashayev, Studying of Properties of Silicon Junctions with the Schottky Barrier Fabricated on the Base of Amorphous and Polycrystalline Various Metal Alloys, Usp. Fiz. Met., 13, No. 4: 397—416 (2012) (in Russian), doi: 10.15407/ufm.13.04.397


References (37)  
  1. D. K. Wickenden et al., Solid-State Electron., 27: 515 (1984). Crossref
  2. Sh. G. Askerov, N. S. Boltovets, I. G. Pashaev, Sh. S. Aslanov, Elektronnaya tekhnika. Ser. 10. Mikroelektronnye ustroystva, 2(68): 39 (1988).
  3. M. J. Cole et al., Electron. Lett., 19: 474 (1983). Crossref
  4. R. T. Tung, J. Vac. Sci. Technol., 2, No. 3: 465 (1984). Crossref
  5. I. V. Zolotukhin, Yu. E. Kalinin, Ukr. Fiz. Zhurnal, 160, No. 9: 75 (1990).
  6. Sh. G. Askerov, I. G. Pashaev, Mezhdunarodnaya konferentsiya 'Fizika–2005' (Azerbaydzhan: 2005), t. 49, s. 193.
  7. Sh. C. Askerov and I. G. Pashaev, 2nd Int. Conference (Tabriz, Iran: 2004), p. 367.
  8. A. Gin'e, Rentgenografiya kristallov: Teoriya i praktika (Moskva: Gos. izd. fiz.-mat. lit.: 1961).
  9. K. Sudzuki, K. Khasimoto, Kh. Fudzimori, Amorfnye metally (Moskva: Metallurgiya: 1987).
  10. A. I. Ivashchenko, B. E. Samorukov, A. Solomanov, Fiz. tekhn. poluprovod., 4: 770 (1979).
  11. I. V. Zolotukhin, Sorosovskiy obrazovatel'nyy zhurnal, 4: 74 (1997).
  12. Sh. G. Askerov, Vliyanie stepeni neodnorodnosti granitsy razdela na elektrofizicheskie svoystva struktur metall–vakuum i metall–poluprovodnik (Avtoref. dis. … dokt. fiz.-mat. n.) (Baku: 1992).
  13. V. K. Komar i dr., Fiz. tekhn. poluprovod., 6: 711 (2007).
  14. N. A. Penin, Fiz. tekhn. poluprovod., 5: 562 (2000).
  15. Tonkie plenki. Vzaimnaya diffuziya i reaktsii (Red. Dzh. Pout, K. Tu, Dzh. Meyer) (Moskva: Mir: 1982).
  16. I. V. Zolotukhin, N. Yu. Sokolov, Elektronnaya tekhnika. Mikroelektronika, 1: 23 (1989).
  17. K. T. Y. Kung et al., J. Appl. Phys. Lett., 55: 3882 (1984).
  18. M. Finetti, E. T. S. Pan, I. Suni, and M. A. Nicolet, Appl. Phys. Lett., 42, No. 11: 987 (1983). Crossref
  19. G. Tod, P. G. Naris, I. H. Scoby, and M. Q. Kelly, Solid-State Electron., 27, No. 6: 507 (1984). Crossref
  20. V. Šmíd, S. Kozár, J. J. Mares et al., J. Non-Cryst. Solids, 90, No. 1–3: 347 (1987). Crossref
  21. S. Takatani, N. Natsuoka, J. Shigeta, and N. Hashimoto, J. Appl. Phys., 61, No. 1: 220 (1987). Crossref
  22. J. D. Wiley, J. H. Perepezko, J. E. Nordman, and K.-J. Guo, IEEE Trans. Ind. Electron., 29, No. 2: 154 (1982). Crossref
  23. W. Novak, R. Keukelaer, and W. Weng, J. Vac. Sci. Technol., 3, No. 6: 2242 (1985). Crossref
  24. M. Suzuki et al., Jap. J. Appl. Phys., 22: L709 (1983). Crossref
  25. P. N. Krylov, Fizika, 4: 125 (2006).
  26. P. N. Krylov, Fiz. tekhn. poluprovod., 3: 306 (2000).
  27. A. A. Gurbanov, Degradatsiya svoystv diodnykh struktur s bar'erom Shottki na osnove kremniya (Dis. … kand. fiz.-mat. n.) (Baku: 1998).
  28. I. G. Pashaev, Vestnik Bakinskogo Universiteta, 1: 68 (1999).
  29. I. G. Pashaev, Vestnik Bakinskogo Universiteta, 3: 94 (1999).
  30. Sh. G. Askerov, I. G. Pashaev, R. F. Mekhtiev, Vestnik Bakinskogo Universiteta, 1: 79 (2006).
  31. Sh. G. Askerov, R. F. Mekhtiev, I. G. Pashaev, Vestnik Bakinskogo Universiteta, 3: 162 (2006).
  32. Sh. G. Askerov, I. G. Pashaev, R. F. Mekhtiev, Vestnik Bakinskogo Universiteta, 2: 135 (2007).
  33. Sh. G. Askerov, R. F. Mekhtiev, I. G. Pashaev, Vestnik Bakinskogo Universiteta, 3: 141 (2008).
  34. I. G. Pashaev, Int. J. Techn. Phys. Probl. Eng., 41, No. 10: 41 (2012).
  35. Sh. G. Askerov, Sh. S. Aslanov, I. G. Pashaev, Elektronnaya tekhnika. Ser. 10. Mikroelektronnye ustroystva, 6, No. 78: 46 (1989).
  36. Sh. G. Askerov, Sh. S. Aslanov, I. G. Pashaev, Tezisy dokladov Vsesoyuznoy konferentsii «Fizika i primenenie kontakta metall–poluprovodnik» (Kiev: 1987), s. 16.
  37. I. G. Pashaev, Baku AN. Fizika, 3, No. 4: 64 (1997).