Covalent-Band Model of the Condensed Matter

O. I. Mitsek

G.V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine

Received: 12.05.2005. Download: PDF

The Coulomb interaction of electron pair in $\textbf{r}_i$ of neighbour ions at $\textbf{R}_j$ within the tight-binding representation comes either to the covalent-bond energy ($\Gamma$) or to the hopping integral ($t$) that is calculated for two-dimensional systems such as fullerenes (FUL) and carbon nanotubes (CNT). The theory of semiconductor (s/c) systems leads to the dependence of bond energy $\Gamma(T)$ on temperature $T$, which is caused by the chemical (covalent) bond fluctuations (CBF). The calculated s/c characteristics (forbidden-band width $E_g(T)$, effective mass of electrons $m_e^*$ and holes ($|m_h^*| > m_e^*$), electrical resistance (ER), etc.) depend on the set of parameters – $\Gamma$ and CBF. The catalytic properties of FUL and CNT, the hydrogen accumulation into them, the work function are expressed through $\Gamma(T)$. The calculation precision is conditioned by the definiteness of introduction of the many-electron operator spinors (MEOS) in the Fock spaces. Fe atomic and magnetic diagrams are caused by the competition of band and covalent (within the MEOS representation) $3d$−$t_{2g}$- and $e_g$-electrons. Antibonding electrons of neighbour sites in $\gamma$-Fe form antiferromagnetic (AFM) order. Its Neel temperature $T_N < 10^2$ K is determined by the AFM exchange ($A_{ex}^* \sim \Gamma^e$) and rises when particle-size is decreased (in nanoparticles, $T_N > 10^2$ K) that is explained by the $|\Gamma_e|$ increase on a particle surface. At $T < T_M$, the $t_{2g}$-electrons’ localization in the covalent state with $S_r$ spin at the $r$ site leads to the ferromagnetic (FM) order of $\alpha$-Fe when $T < T_c \sim A_{ex}^t(T)$. The dependence $T_M(B)$ on magnetic field $B$ (even in the presence of FM phase) is strengthened by the competition of band and covalent energies of $t_{2g}$-electrons. The observed nonlinearities for magnetization $M^2(T)$ and susceptibility $\chi^{−1}(T)$ are interpreted as the effect of $A_{ex}^t(T)$ renormalization by CBF spectrum. The theory of ferroelectric (FE) phase of dielectrics within the deformation FE model interprets the square-law dependence of FE polarization $P(T)$ and its jump $Р(Т_с) \sim Р(0)$ in the first-kind transition points $T_c$ for BaTiO$_3$ and other FE crystals.

Keywords: covalent bonds and conduction zones, many-electron operator spinors, chemical bond fluctuations, band gap, electron and hole mobilities, $\alpha$-Fe—$\gamma$-Fe transition, covalent nature of spin exchange and ferroelectric polarization.

PACS: 71.10.Fd, 75.10.-b, 75.20.Hr, 75.30.-m, 75.40.Cx, 75.75.+a, 77.80.Bh

DOI: https://doi.org/10.15407/ufm.06.03.233

Citation: O. I. Mitsek, Covalent-Band Model of the Condensed Matter, Usp. Fiz. Met., 6, No. 3: 233—272 (2005) (in Russian), doi: 10.15407/ufm.06.03.233


References (33)  
  1. D. I. Blokhintsev, Osnovy kvantovoy mekhaniki (Moskva: Vysshaya shkola: 1961).
  2. A. I. Mitsek, Metallofiz. Noveishie Tekhnol., 26, No. 12: 1553 (2004).
  3. O. Madelung, Teoriya tverdogo tela (Moskva: Nauka: 1980).
  4. Yu. P. Irkhin, V. Yu. Irkhin, Elektronnoe stroenie i fizicheskie svoystva perekhodnykh metallov (Sverdlovsk: Izd. Ural. gos. un-ta: 1989).
  5. J. S. Phillips, Bonds and Bands in Semiconductors (New York: Academic Press: 1973).
  6. A. I. Mitsek, V. N. Pushkar', Metallofiz. Noveishie Tekhnol., 27, No. 10: 1369 (2005).
  7. A. I. Mitsek, V. N. Pushkar', Metallofiz. Noveishie Tekhnol., 27, No. 12: 1591 (2005).
  8. S. V. Vonsovskiy, Magnetizm (Moskva: Nauka: 1971).
  9. D. N. Zubarev, UFN, 71, No.1: 71 (1960).
  10. A. S. Davydov, Teoriya tverdogo tela (Moskva: Nauka: 1976).
  11. Ch. Kittel', Vvedenie v fiziku tverdogo tela (Moskva: Nauka: 1978).
  12. A. I. Mitsek, UFZh, 47, No. 5: 469 (2002).
  13. Magnetic Properties of Metals (Ed. H. P. J. Wijn) (Berlin: Springer—Verlag: 1991).
  14. A. I. Mitsek, V. N. Pushkar', V. A. Mitsek, Metallofiz. Noveishie Tekhnol., 26, No. 11: (2004).
  15. E. I. Kondorskiy, Zonnaya teoriya magnetizma (Moskva: Izd. MGU: 1977).
  16. K. Lagarec, D. G. Rancourt, S. K. Rose et al., J. Magn. and Magn. Mater., 236, No. 1: 107 (2001).
  17. V. K. Grigorovich, Metallicheskaya svyaz' i struktura metallov (Moskva: Nauka: 1988).
  18. A. I. Mitsek, UFZh, 46, No. 8: 850 (2001).
  19. Yu-mei Zhou, Ding-sheng Wang, and Y. Kawazoe, Phys. Rev. B, 50, No. 13: 8387 (1999). Crossref
  20. V. G. Gavriljuk and H. Berns, High Nitrogen Steels (Berlin: Springer—Verlag: 1999).
  21. Zh. Zhermen, Geterogennyy kataliz (Moskva: Mir: 1961).
  22. V. Kentsig, Segnetoelektriki i antisegnetoelektriki (Moskva: Izd. inostr. lit.: 1960).
  23. G. A. Smolenskiy, N. I. Kraynik, Segnetoelektriki i antisegnetoelektriki (Moskva: Nauka: 1968).
  24. I. S. Zheludev, Elektricheskie kristally (Moskva: Nauka: 1979).
  25. D. Gudenaf, Magnetizm i khimicheskaya svyaz' (Moskva: Metallurgiya: 1968).
  26. A. I. Mitsek, UFZh, 47, No. 12: 146 (2002).
  27. A.I.Mitsek, Metallofiz. Noveishie Tekhnol., 23, No. 9: 1149 (2001).
  28. A.I.Mitsek, Metallofiz. Noveishie Tekhnol., 25, No. 5: 561 (2003).
  29. H. Vogt, T. A. Sanjurjo, and G.Rossbroich, Phys. Rev. B, 26, No. 10: 5904 (1982). Crossref
  30. R. Pirc and B. Blinc, Phys. Rev. B, 70, No. 13: 134107 (2004). Crossref
  31. R. Z. Tai, K. Namikawa, and A. Sawada, Phys. Rev. Lett., 93, No. 8: 087601 (2004). Crossref
  32. I.E.Tamm, Osnovy teorii elektrichestva (Moskva: Nauka: 1976).
  33. A. I. Mitsek, V. N. Pushkar', Real'nye kristally s magnitnym poryadkom (Kiev: Naukova dumka: 1978).
Cited By (2)