Strain-Induced and 'Electrochemical' Interactions of Solute Atoms in Solid Solutions of the F.C.C.-(Fe,Ni)–C System and Isomorphous Ones

V. A. Tatarenko, V. M. Nadutov

G.V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine

Received: 30.12.2003; final version - 12.10.2004. Download: PDF

Within the framework of the lattice-statics method and of the method of static fluctuation waves, the energies of strain-induced interaction of interstitial—interstitial (i—i), interstitial—substitutional (i—s), and substitutional—substitutional (s—s) impurity-atoms’ pairs are calculated and analysed for f.c.c.-(Fe,Ni)—C-isomorphous solid solutions with account of discrete atomic structure of the host-crystal lattice. The lattice spacing, elasticity moduli and/or quasi-elastic force (Born—von Karman) parameters of the host-crystal lattice, and concentration coefficients of the dilatation of the solid-solution lattice due to the corresponding solute atoms are the input numerical experimental data used. Energy of this interaction prove to be nonmonotonically decreasing (‘quasi-oscillating’) and anisotropic function of the discrete interatomic radius-vector, and itself interaction is strong and long-range. In all f.c.c.-(Fe,Ni)-base solid solutions, there is strain-induced attraction in some co-ordination shells. Generally, the strain-induced interaction between impurity atoms in $\gamma$-Fe is weaker than in $\alpha$-Ni, but in some solid solutions, it may be of the same order. The verification of applicability of the model of strain-induced interaction between impurities for Fe—C austenite by means of calculation of thermodynamical C activity and the ‘short-range order’ parameters of C-atoms’ distribution revealed by the Mössbauer spectroscopy showed that it must be supplemented by the additional short-range ‘electrochemical’ repulsion inside the first co-ordination shell. In any case, the strain-induced interaction of impurity atoms must be taken into account for analysis of structure and properties of f.c.c.-(Fe,Ni)-base interstitial (substitutional) solid solutions.

Keywords: $\gamma$-Fe, $\alpha$-Ni, C-austetnite, deformation interaction, ‘electrochemical’ interaction, thermodynamical activity, Mössbauer spectroscopy.

PACS: 61.18.Fs, 61.72.Bb, 61.72.Ji, 61.72.Yx, 62.20.Dc, 65.40.Gr

DOI: https://doi.org/10.15407/ufm.05.04.503

Citation: V. A. Tatarenko and V. M. Nadutov, Strain-Induced and 'Electrochemical' Interactions of Solute Atoms in Solid Solutions of the F.C.C.-(Fe,Ni)–C System and Isomorphous Ones, Usp. Fiz. Met., 5, No. 4: 503—534 (2004) (in Ukrainian), doi: 10.15407/ufm.05.04.503


References (81)  
  1. A. G. Khachaturyan, Theory of Structural Transformations in Solids (New York: John Wiley & Sons: 1983).
  2. A. G. Khachaturyan, Teoriya fazovykh prevrashcheniy i struktura tverdykh rastvorov (Moskva: Nauka: 1974).
  3. V. N. Bugaev, V. A. Tatarenko, Vzaimodeystvie i raspredelenie atomov v splavakh vnedreniya na osnove plotnoupakovannykh metallov (Kiev: Naukova dumka: 1989).
  4. V. G. Gavrilyuk, Raspredelenie ugleroda v stali (Kiev: Naukova dumka: 1987).
  5. R. B. McLellan and C. Ko, Acta Metall., 35: 2151 (1987). Crossref
  6. K. Alex and R. B. McLellan, Acta Metall., 19: 439 (1971). Crossref
  7. G. E. Murch and R. J. Thorn, Acta Metall., 27, No. 2: 201 (1979). Crossref
  8. A. L. Sozinov, A. G. Balanyuk, and V. G. Gavriljuk, Acta Mater., 45, No. 1: 225 (1997). Crossref
  9. G. Balanyuk, A. L. Sozinov, and V. G. Gavriljuk, Metallofiz. noveyshie tekhnol., 20, No. 7: 11 (1998); idem, Met. Phys. Adv. Tech., 18, No. 7: 733 (2000).
  10. S. Ban-ya, J. F. Elliott, and J. Chipman, Trans. Met. Soc. AIME, 245, No. 6: 1199 (1969).
  11. S. Ban-ya, J. F. Elliott, and J. Chipman, Metall. Trans., 1, No. 5: 1313 (1970). Crossref
  12. J. A. Lobo and G. H. Geiger, Metall. Trans. A, 7, No. 9: 1359 (1976). Crossref
  13. K. Bungardt, H. Preisendanz, and G. Lehnert, Arch. Eisenhuttenw., 35, No. 10: 999 (1964). Crossref
  14. E. Scheil, T. Schmidt, and J. Wunning, Arch. Eisenhuttenw., 32, No. 4: 251 (1961). Crossref
  15. H. Schenk and H. Keiser, Arch. Eisenhüttenw., 31, No. 4: 227 (1960).
  16. R. P. Smith, J. Amer. Chem. Soc., 68, No. 6: 1163 (1946). Crossref
  17. C. Bodsworth, I. M. Davidson, and D. Atkinson, Trans. AIME, 242: 1135 (1968).
  18. H. Horner and H. Wagner, J. Phys. C, 7, No. 18: 3305 (1974).
  19. H. Wagner and H. Horner, Adv. Phys., 23, No. 4: 587 (1974). Crossref
  20. M. S. Blanter and A. G. Khachaturyan, Metall. Trans. A, 9, No. 6: 753 (1978). Crossref
  21. V. G. Vaks, N. E. Reyn, V. I. Zinenko, V. G. Orlov, Zh. eksp. teor. fiz., 87, No. 6(12): 2030 (1984).
  22. M. S. Blanter, V. V. Gladilin, Izvestiya AN SSSR: Metally, No. 6: 124 (1985).
  23. A. I. Shirley, C. K. Hall, and N. J. Prince, Acta Metall., 31, No. 7: 985 (1983). Crossref
  24. S. V. Beiden and V. G. Vaks, Phys. Lett. A, 163, No. 3: 209 (1992). Crossref
  25. M. S. Blanter, Phys. Stat. Solidi B, 181, No. 2: 377 (1994). Crossref
  26. M. S. Blanter, Phys. Stat. Solidi B, 200, No. 2: 423 (1997). Crossref
  27. M. S. Blanter, Fiz. met. metalloved., 51, No. 3: 609 (1981).
  28. A. I. Schirley and C. K. Hall, Acta Metall., 32, No. 1: 49 (1984). Crossref
  29. V. M. Nadutov, V. A. Tatarenko, C. L. Tsynman, and K. Ullakko, Metallofiz. Noveishie Tekhnol., 16, No. 8: 34 (1994); idem, Phys. Metals, 14, No. 8: 870 (1995).
  30. V. A. Tatarenko, K. L. Tsinman, Metallofiz. Noveishie Tekhnol., 18, No. 10: 32 (1996); idem, Met. Phys. Adv. Tech., 16, No. 10: 1131 (1997).
  31. S. Dietrich and H. Wagner, Z. Phys. B, 36, No. 2: 121 (1979). Crossref
  32. V. A. Tatarenko, K. L. Tsinman, Metallofizika, 14, No. 10: 14 (1992); idem., Phys. Metals, 12, No. 10: 1043 (1993).
  33. R. V. Chepulskii and V. A. Tatarenko, Phil. Mag. A, 81, No. 2: 311 (2001). Crossref
  34. M. S. Blanter, J. Alloys&Comp., 282, No. 1: 137 (1999). Crossref
  35. M. S. Blanter, J. Alloys&Comp., 291, No. 1: 167 (1999). Crossref
  36. M. S. Blanter, Metalloved. termich. obrabotka met., No. 8: 41 (1999).
  37. M. S. Blanter, Phys. Rev. B, 50, No. 6: 3603 (1994). Crossref
  38. I. S. Golovin, M. S. Blanter, and R. Schaller, Phys. Stat. Solidi A, 160, No. 1: 49 (1997). Crossref
  39. I. S. Golovin, M. S. Blanter, T. V. Pozdova, K. Tanaka, and L. B. Magalaz, Phys. Stat. Solidi A, 168: 403 (1998). Crossref
  40. M. S. Blanter and M. Ya. Fradkov, Acta Metall. Mater., 40, No. 9: 2201 (1992). Crossref
  41. V. M. Nadutov, V. A. Tatarenko, and C. L. Tsynman, Proc. of the 3rd International Conference 'High Nitrogen Steels—HNS 93' (Kiev, Sept. 14–16, 1993) (Eds. V. G. Gavriljuk and V. M. Nadutov) (Kiev: Inst. for Metal Physics, A.S. of Ukraine: 1993), part 1, p. 106.
  42. V. M. Nadutov, V. A. Tatarenko, K. L. Tsinman, Metallofizika, 14, No. 11: 42 (1992); idem., Phys. Metals, 12, No. 11: 1170 (1993).
  43. V. A. Tatarenko and C. L. Tsynman, Solid State Ionics, 101–103: 1061 (1997). Crossref
  44. V. A. Tatarenko, Metallofizika, 21, No. 11: 60 (1999); idem., Met. Phys. Adv. Tech., 19, No. 11: 1479 (2001).
  45. M. S. Blanter and A. V. Vasiljev, Stability of Materials (Eds. A. Gonis, P. E. A. Turchi, and J. Kudrnovský), NATO ASI Series, Series B: Physics (New York: Plenum Press: 1996), vol. 355, p. 211.
  46. V. A. Somenkov and S. S. Schilschtein, Prog. Mater. Sci., 24, No. 3/4: 267 (1979).
  47. J. Zarestky and C. Stassis, Phys. Rev. B, 35, No. 9: 4500 (1987). Crossref
  48. H. Schober and P. H. Dederichs, Metals: Phonon States, Electron States and Fermi Surfaces (Eds. K.-H. Hellwege and J. L. Olsen), Landolt-Börnstein Series, Numerical Data and Functional Relationships in Science and Technology, Group III: Crystal and Solid State Physics (Berlin–Heidelberg–New York: Springer-Verlag: 1981), vol. 13, subvol. a, p. 1.
  49. D. H. Dutton, B. N. Brockhouse, and A. P. Miller, Canad. J. Phys., 50: 2915 (1972). Crossref
  50. R. J. Birgeneau, J. Cordes, G. Dolling, and A. D. B. Woods, Phys. Rev., 136, part A: 1359 (1964).
  51. G. L. Squires, Ark. Fys. (Sweden), 25: 21 (1963).
  52. M. S. Kushwaha and S. S. Kushwaha, Phys. Status Solidi B, 87: 247 (1978). Crossref
  53. G. Simmons, J. Grad. Res. Cent., 34: 1 (1965).
  54. D. E. Williams, J. Chem. Phys., 47, No. 11: 4680 (1967). Crossref
  55. K. V. Mirskaya, I. E. Kozlova, and V. F. Bereznitskaya, Phys. Status Solidi B, 62, No. 1: 291 (1974). Crossref
  56. A. A. Abrahamson, Phys. Rev., 178, No. 1: 76 (1969). Crossref
  57. T.-S. Kuan, A. Warshel, and O. Schnepp, J. Chem. Phys., 52, No. 6: 3012 (1970). Crossref
  58. J. R. Sweet and W. A. Steele, J. Chem. Phys., 47, No. 8, Part 2: 3029 (1967).
  59. J. H. Rose, J. R. Smith, and J. Ferrante, Phys. Rev. B, 28, No. 4: 1835 (1983). Crossref
  60. V. V. Ogorodnikov, K. V. Malishevskiy, Metallofiz. Noveishie Tekhnol., 23, No. 8: 1029 (2001).
  61. Shu Zhen and G. J. Davies, Phys. Status Solidi, 78, No. 2: 595 (1983). Crossref
  62. P. R. Furth, Proc. R. Soc. A, 183: 87 (1944). Crossref
  63. M. Sanati, R. C. Albers, and F. J. Pinski, J. Phys.: Condens. Matter, 13, No. 22: 5387 (2001). Crossref
  64. N. Ridley and H. Stuart, Met. Sci. J., 4, No. 11: 219 (1970). Crossref
  65. L. Cheng, A. Böttger, Th. H. de Keijser, and E. J. Mittemeijer, Scr. Metall., 24, No. 3: 509 (1990). Crossref
  66. A. P. Miodownik, Physics and Applications of Invar Alloys (Eds. H. Saito et al.), Honda Memorial Series on Materials Science (Tokyo: Maruzen Company, Ltd.: 1978), No. 3, chap. 12, p. 288.
  67. W. B. Pearson, Handbook of Lattice Spacings and Structures of Metals and Alloys (New York: Pergamon Press: 1967), vol. 2.
  68. Y. Endoh and Y. Ishikawa, J. Phys. Soc. Japan, 30: 1614 (1971). Crossref
  69. Y. Endoh, Y. Noda, and M. Iizumi, J. Phys. Soc. Japan, 50: 469 (1981). Crossref
  70. R. Kohlhaas, Ph. Dunner, und N. Schmitz-Pranghe, Zeitschr. Angew. Phys., 23, No. 4: 245 (1967).
  71. K. Oda, H. Fujimura, and H. Ino, J. Phys. Condens. Matter., 6, No. 3: 679 (1994). Crossref
  72. A. G. Balanyuk, V. N. Bugaev, V. M. Nadutov, and A. L. Sozinov, Phys. Stat. Solidi B, 207: 3 (1998). Crossref
  73. A. A. Zhukov, R. L. Snezhnoy, V. A. Tatarenko, Metallofiz. Noveishie Tekhnol., 19, No. 12: 41 (1997); idem., Met. Phys. Adv. Tech., 17, No. 12: 1399 (1999).
  74. V. M. Nadutov, V. A. Tatarenko, S. A. Pankrat'єv, Metallofiz. Noveishie Tekhnol., 25, No. 12, 1633 (2003).
  75. V. M. Nadutov, Mater. Sci. Eng., A254: 234 (1998). Crossref
  76. V. G. Gavrilyuk, V. M. Nadutov, Fiz. met. metalloved., 55: 520 (1983).
  77. K. F. Laneri, J. Desimoni, G. J. Zarragoicoechea, and A. Fernández-Guillermet, Phys. Rev. B, 66: 134201 (2002). Crossref
  78. Ph. Bauer, O. N. C. Uwakweh, and J. M. R. Genin, Hyperfine Interact., 41, 555 (1988). Crossref
  79. O. N. C. Uwakweh, J. P. Bauer, and J. M. Genin, Metall. Trans. A, 21: 589 (1990). Crossref
  80. A. G. Balanyuk, V. M. Nadutov, Fiz. met. metalloved., No. 3, 28 (1997).
  81. M. S. Blanter and L. B. Magalas, Scripta Materialia, 43, Iss. 5: 435 (2000). Crossref
Cited By (1)
  1. S. M. Bokoch and V. A. Tatarenko, Usp. Fiz. Met. 11, 413 (2010).