Перспективы применения поверхностной обработки сплавов электронными пучками в современных технологияхи

Ю. Ф. Иванов$^1$, В. Е. Громов$^2$, Д. В. Загуляев$^2$, С. В. Коновалов$^3$, Ю. А. Рубанникова$^2$, А. П. Семин$^2$

$^1$Институт сильноточной электроники СО РАН, просп. Академический, 2/3, 634055 Томск, РФ
$^2$Сибирский государственный индустриальный университет, ул. Кирова, 42, 654007 Новокузнецк, РФ
$^3$Самарский национальный исследовательский университет имени академика С. П. Королёва, Московское шоссе, 34, 443086 Самара, РФ

Получена 17.04.2020; окончательный вариант — 03.07.2020 Скачать PDF logo PDF

Аннотация
Обозреваются последние работы по применению интенсивных импульсных электронных пучков для поверхностной обработки металлов, сплавов, металлокерамических и керамических материалов. Отмечаются преимущества использования электронных импульсных пучков по сравнению с лучами лазера, потоками плазмы, ионными пучками. Проанализированы перспективные направления использования электронно-пучковой обработки: (1) выглаживание поверхности, избавление от поверхностных микротрещин с одновременным изменением структурно-фазового состояния поверхностного слоя для создания высокопроизводительных технологий финишной обработки ответственных металлических изделий сложной формы из титанового сплава Ti–6Al–4V и титана, сталей различного класса, твёрдого сплава WC–10 вес.% Co, алюминия; (2) удаление микрозаусенцев, образующихся при изготовлении прецизионных пресс-форм (сталь SKD11) и биомедицинских изделий (сплав Ti–6Al–4V); (3) финишная обработка поверхности пресс-форм и штампов; (4) улучшение функциональных свойств металлических биоматериалов: нержавеющей стали, титана и его сплавов, сплавов на основе никелида титана, обладающих эффектом памяти формы, сплавов магния; (5) обработка изделий медицинского назначения и имплантатов; (6) формирование поверхностных сплавов для мощных электродинамических систем; (7) улучшение характеристик лопаток авиационных двигателей и лопаток компрессоров; (8) формирование термобарьерных покрытий, наносимых на поверхность камер сгорания; (9) повышение усталостного ресурса сталей и сплавов; (10) упрочение поверхности катания рельсов. Показано, что при правильном выборе параметров процесса, таких как (а) ускоряющее напряжение, (б) плотность энергии пучка электронов, (в) количество импульсов и (г) длительность импульса, возможен тщательный контроль и/или манипулирование характеристиками структурно-фазового состояния и свойств поверхности. Отмечено, что для улучшения свойств материала и длительности эксплуатации изделий из него важным фактором является модификация структуры с целью формирования субмикро- и наноразмерного зерна (или субзёренной структуры).

Ключевые слова: электронно-пучковая обработка, модифицирование поверхности, сплавы, перспективы применения, наноразмерная структура.

Citation: Yu. F. Ivanov, V. Е. Gromov, D. V. Zagulyaev, S. V. Konovalov, Yu. A. Rubannikova, and A. P. Semin, Prospects for the Application of Surface Treatment of Alloys by Electron Beams in State-of-the-Art Technologies, Progress in Physics of Metals, 21, No. 3: 345–362 (2020); doi: 10.15407/ufm.21.03.345


Цитированная литература (113)  
  1. G.E. Mesyats and D.I. Proskurovsky, Pulsed Electric Discharge in Vacuum (Novosibirsk: Nauka: 1984) (in Russian).
  2. N.N. Koval’, E.M. Oks, Yu. S. Protasov, and N.N. Semashko, Emission Electronics (Moscow: N.E. Bauman MSTU: 2009) (in Russian).
  3. D.I. Proskurovsky, Emission Electronics (Tomsk: TSU: 2010) (in Russian).
  4. N.N. Koval, S.V. Grigoriev, V.N. Devyatkov, A.D. Teresov, and P.M. Schanin, IEEE Transactions on Plasma Science, 37, No. 10: 1890 (2009). https://doi.org/10.1109/TPS.2009.2023412
  5. A.B. Belov, O.A. Bytsenko, A.V. Krainikov, A.F. L’vov, A.S. Novikov, A.G. Paykin, A.D. Teryaev, D.A. Teryaev, K.I. Tvagenko, V.A. Shulov, and V.I. Engel’ko, High-Current Pulsed Electron Beams for Aircraft Engine Building (Moscow: Dipak: 2012) (in Russian).
  6. G.E. Ozur and D.I. Proskurovsky, Sources of Low-Energy High-Current Electron Beams with Plasma Cathode (Novosibirsk: Nauka: 2018) (in Russian).
  7. Structure Evolution of Steel Surface Layer Subjected to Electron-Ion-Plasma Methods of Processing (Eds. N.N. Koval and Yu.F. Ivanov) (Tomsk: NTL: 2016) (in Russian).
  8. Electron–Ion-Plasma Surface Modification of Non-Ferrous Metals and Alloys (Eds. N.N. Koval and Yu.F. Ivanov) (Tomsk: NTL: 2016) (in Russian).
  9. Structure, Phase Composition and Properties of Surface Layers of Titanium Alloys after Electroexplosive Alloying and Electron-Beam Processing (Eds. V.E. Gromov, Yu.F. Ivanov, and E.A. Budovskikh) (Novokuznetsk: Inter-Kuzbass: 2012) (in Russian).
  10. V.A. Grishunin, V.E. Gromov, Y.F. Ivanov, A.D. Teresov, and S.V. Konovalov, J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech., 7, No. 5: 990 (2013). https://doi.org/10.1134/S1027451013050091
  11. A.P. Laskovnev, Yu.F. Ivanov, and E.A. Petrikova, Structure and Property Modification of Eutectic Silumin by Electron–Ion-Plasma Processing (Minsk: Belarus, Navuka: 2013) (in Russian).
  12. K.V. Sosnin, Y.F. Ivanov, A.M. Glezer, V.E. Gromov, S.V. Raykov, and E.A. Budovskikh. Bulletin of the Russian Academy of Sciences: Physics, 78, No. 11: 1183 (2014). https://doi.org/10.3103/S1062873814110264
  13. Y.F. Ivanov, N.N. Koval, S.V. Gorbunov, S.V. Vorobyov, S.V. Konovalov, and V.E. Gromov, Russ. Phys. J., 54, No. 5: 575 (2011). https://doi.org/10.1007/s11182-011-9654-8
  14. V.E. Gromov, K.V. Sosnin, Yu.F. Ivanov, and O.A. Semina, Usp. Fiz. Met., 16, No. 3: 175 (2015). https://doi.org/10.15407/ufm.16.03.175
  15. Y.F. Ivanov, K.V. Alsaraeva, V.E. Gromov, N.A. Popova, and Konovalov. J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech., 9, No. 5: 1056 (2015). https://doi.org/10.1134/S1027451015050328
  16. S.V. Konovalov, V.E. Kormyshev, V.E. Gromov, Y.F. Ivanov, E.V. Kapralov, and A.P. Semin, J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech., 10, No. 5: 1119 (2016). https://doi.org/10.1134/S1027451016050098
  17. Y. Uno, A. Okada, K. Uemura, and P. Raharjo, Method for Surface Treating a Die by Electron Beam Irradiation and a Die Treated Thereby (US patent No: US 7, 049, 539 B2, 2006).
  18. K. Uemura, S. Uehara, P. Raharjo, D.I. Proskurovsky, G.E. Ozur, and V.P. Rotshtein, Surface Modification Process on Metal Dentures, Products Produced Thereby and the Incorporated System Thereof (US Patent No: US 6, 836, 531, B2, 2005).
  19. J.W. Murray, P.K. Kinnell, A.H. Cannon, B. Bailey, and A. T. Clare, Precision Engineering, 37, No. 2: 443 (2013). https://doi.org/10.1016/j.precisioneng.2012.11.007
  20. V. Goriainov, R.B. Cook, J.W. Murray, J.C. Walker, D.G. Dunlop, A.T. Clare, and R.O.C. Oreffo, Front. Bioeng. Biotechnol., 6: 91 (2018). https://doi.org/10.3389/fbioe.2018.00091
  21. Manufacturing Techniques for Materials. Engineering and Engineered (Eds. T.S. Srivatsan, T.S. Sudarshan, and K. Manigandan) (Taylor & Francis Group, LLC: 2018). https://doi.org/10.1201/b22313
  22. P. Raharjo, H. Wada, Y. Nomura, G.E. Ozur, D.I. Proskurovsky, V.P. Rotshtein, and K. Uemura, Proc. of 6th Intern. Conf. on Modification of Materials with Particle Beams and Plasma Flows.: 679 (2002).
  23. A. Okada, Y. Uno, N. Yabushita, K. Uemura, and P. Raharjo, J. Mater. Process. Technol., 149, Nos. 1–3: 506 (2004). https://doi.org/10.1016/j.jmatprotec.2004.02.017
  24. P. Raharjo, K. Uemura, A. Okada, and Y. Uno, Proc. of 7th Intern. Conf. on Modification of Materials with Particle Beams and Plasma Flows, p. 267 (2004).
  25. A. Okada, Y. Uno, A. Iio, K. Fujiwara, and K. Doi, J. Advanced Mechanical Design, Systems and Manufacturing, 2, No. 4: 695 (2008). https://doi.org/10.1299/jamdsm.2.694
  26. J. Tokunaga, T. Kojima, S. Kinuta, K. Wakabayashi, T. Nakamura, H. Yatani, and T. Sohmura, Dent. Mater. J., 28, No. 5: 571 (2009). https://doi.org/10.4012/dmj.28.571
  27. A. Okada, Y. Uno, J.A. McGeough, K. Fujiwara, K. Doi, K. Uemura, and S. Sano, CIRP Annals, 57, No. 1: 223 (2008). https://doi.org/10.1016/j.cirp.2008.03.062
  28. 28. Y. Uno, A. Okada, K. Uemura, P. Raharjo, T. Furukawa, and K. Karato, Precis. Eng., 29, No. 4: 449 (2005). https://doi.org/10.1016/j.precisioneng.2004.12.005
  29. Y. Uno, A. Okada, K. Uemura, P. Raharjo, S. Sano, Z. Yu, and S. Mishima, J. Mater. Process. Technol., 187–188: 77 (2007). https://doi.org/10.1016/j.jmatprotec.2006.11.080
  30. A. Okada, Y. Okamoto, Y. Uno, and K. Uemura, J. Mater. Process. Technol., 214, No. 8: 1740 (2014). https://doi.org/10.1016/j.jmatprotec.2014.02.028
  31. J.W. Murray and A.T. Clare, J. Mater. Process. Technol., 212, No. 12: 2642 (2012). https://doi.org/10.1016/j.jmatprotec.2012.07.018
  32. A. Selada, A. Manaia, M.T. Vieira, and A.S. Pouzada, Int. J. Adv. Manuf. Technol., 52, No. 1: 171 (2011). https://doi.org/10.1007/s00170-010-2723-2
  33. A. Okada, R. Kitada, Y. Okamoto, and Y. Uno, CIRP, 60, No. 1: 575 (2011). https://doi.org/10.1016/j.cirp.2011.03.107
  34. T. Shinonaga, A. Okada, H. Liu, and M. Kimura, J. Mater. Process. Technol., 254: 229 (2018). https://doi.org/10.1016/j.jmatprotec.2017.11.024
  35. A. Okada, H. Yonehara, and Y. Okamoto, Procedia CIRP, 5: 19 (2013). https://doi.org/10.1016/j.procir.2013.01.004
  36. I.M. Goncharenko, V.I. Itin, S.V. Isichenko, S.V. Lykov, A.B. Markov, O.I. Nalesnik, G.E. Ozur, D.I. Proskurovsky, and V.P. Rotstein, Protection of Metals, 29, No. 6: 932 (1993).
  37. G.S. Eklund, J. Electrochem. Soc., 121: 467 (1974). https://doi.org/10.1149/1.2401840
  38. T. Suter and H. Böhni, Electrochim. Acta, 42, Nos. 20–22: 3275 (1997). https://doi.org/10.1016/S0013-4686(70)01783-8
  39. P.E. Manning, C.E. Lyman, and D.J. Duquette, Corrosion, 36, No. 5: 246 (1980). https://doi.org/10.5006/0010-9312-36.5.246
  40. A.J. Sedriks, Corrosion, 42: 376 (1986). https://doi.org/10.5006/1.3584918
  41. A.V. Batrakov, A.B. Markov, G.E. Ozur, D.I. Proskurovsky, and V.P. Rotshtein, IEEE Transactions on Dielectrics and Electrical Insulation, 2, No. 2: 237 (1995). https://doi.org/10.1117/12.174677
  42. K. Zhang, J. Zou, T. Grosdidier, C. Dong, and D. Yang, Surf. Coat. Technol., 201: 1393 (2006). https://doi.org/10.1016/j.surfcoat.2006.02.008
  43. V.P. Rotstein, R. Gyuntsel, A.B. Markov, D.I. Proskurovsky, M.T. Fam, E. Rikhter, and V.A. Shulov, Fizika i Khimiya Obrabotki Materialov, 1: 62 (2006) (in Russian).
  44. X. D. Zhang, S.Z. Hao, X.N. Li, C. Dong, and T. Grosdidier, Appl. Surf. Sci., 257, No. 13: 5899 (2011). https://doi.org/10.1016/j.apsusc.2011.01.136
  45. G. Guo, G. Tang, X. Ma, M. Sun, and G.E. Ozur, Surf. Coat. Technol., 229: 140 (2013). https://doi.org/10.1016/j.surfcoat.2012.08.009
  46. A. Balyanov, J. Kutnyakova, N.A. Amirkhanova, V.V. Stolyarov, R.Z. Valiev, X.Z. Liao, Y.H. Zhao, Y.B. Jiang, H.F. Xu, T.C. Lowe, and Y.T. Zhu, Scr. Mater., 51, No. 3: 225 (2004). https://doi.org/10.1016/j.scriptamat.2004.04.011
  47. J.C. Walker, J.W. Murray, M. Nie, R.B. Cook, and A.T. Clare, Appl. Surf. Sci., 311: 534 (2014). https://doi.org/10.1016/j.apsusc.2014.05.105
  48. B.W. Stuart, J.W. Murray, and D.M. Grant, Sci. Rep., 8: 14530 (2018). https://doi.org/10.1038/s41598-018-32612-x
  49. K.M. Zhang, D.Z. Yang, J.X. Zou, T. Grosdidier, and C. Dong, Surf. Coat. Technol., 201, No. 6: 3096 (2006). https://doi.org/10.1016/j.surfcoat.2006.06.030
  50. S. Hao, B. Gao, A. Wu, J. Zou, Y. Qin, C. Dong, J. An, and Q. Guan, Nucl. Instrum. Methods Phys. Res. Sect. B, 240, No. 3: 646 (2005). https://doi.org/10.1016/j.nimb.2005.04.117
  51. B. Gao, S. Hao, J. Zou, W. Wu, G. Tu, and C. Dong, Surf. Coat. Technol., 201, No. 14: 6297 (2007). https://doi.org/10.1016/j.surfcoat.2006.11.036
  52. M.C. Li, S.Z. Hao, H. Wen, and R.F. Huang, Appl. Surf. Sci., 303: 350 (2014). https://doi.org/10.1016/j.apsusc.2014.03.004
  53. S. Hao and M. Li, Nucl. Instrum. Methods Phys. Res. Sect. B, 375: 1 (2016). https://doi.org/10.1016/j.nimb.2016.03.035
  54. Y.R. Liu, K.M. Zhang, J.X. Zou, D.K. Liu, and T.C. Zhang, J. Alloys and Compounds, 741: 65 (2018). https://doi.org/10.1016/j.jallcom.2017.12.227
  55. K. Uemura, 16th Simp. on High Current Electronics & 10th Conf. on Materials Modification (Tomsk: 2010), p. 501.
  56. T. Mori, A. Okawa, T. Tsubouchi, and K. Uemura, Manufacturing Method for Medical Equipment for Reducing Platelet Adhesion on a Surface in Contact with Blood (Patent US 8,997,349 B2. 2015. Prior Publ. Data: US 2013/0230422A1. Sept. 5, 2013).
  57. A.B. Markov, E.V. Yakovlev, and V.I. Petrov, IEEE Trans. Plasma Sci., 41, No. 8: 2177 (2013). https://doi.org/10.1109/TPS.2013.2254501.
  58. A.V. Batrakov, S.A. Onischenko, I.K. Kurkan, V.V. Rostov, E.V. Yakovlev, E.V. Nefedtsev, and R.V. Tsygankov, Proc. 28th Int. Symp. on Discharges & Electrical Insulation in Vacuum (2018), vol. 1, p. 77.
  59. D.I. Proskurovsky, V.P. Rotshtein, and G.E. Ozur, Surf. Coat. Technol., 96, No. 1: 115 (1997). https://doi.org/10.1016/S0257-8972(97)00093-5
  60. D.I. Proskurovsky, V.P. Rotshtein, G.E. Ozur, A.B. Markov, D.S. Nazarov, V.A. Shulov, Yu.F. Ivanov, and R.G. Buchheit, J. Vac. Sci. Technol. A, 16, No. 4: 2480 (1998). https://doi.org/10.1116/1.581369
  61. Yu.D. Yagodkin, K.M. Pastukhov, S.I. Kuznetsov, N.F. Ivanova, and E.Yu. Aristova, Fizika i Khimiya Obrabotki Materialov, 5: 111 (1995) (in Russian).
  62. J. Cai, Q. Guan, X. Xu, J. Lu, Z. Wang, and Z. Han, ACS Appl. Mater. Interfaces, 8, No. 47: 32541 (2016). https://doi.org/10.1021/acsami.6b11129
  63. S. Jayalakshmi, R.A. Singh, S. Konovalov, X. Chen, and T.S. Srivatsan, Manufacturing Techniques for Materials: Engineering and Engineered. Ch. 11. Overview of Pulsed Electron Beam Treatment of Light Metals: Advantages and Applications (Eds. T.S. Srivatsan, T.S. Sudarshan, and K. Manigandan) (Boca Raton, FL: CRC Press, Taylor & Francis Group, LLC: 2018). https://doi.org/10.1201/b22313
  64. J. An, X. X. Shen, Y. Lu, Y.B. Liu, R.G. Li, C.M. Chen, and M.J. Zhang, Surf. Coat. Technol., 200, Nos. 18–19: 5590 (2006). https://doi.org/10.1016/j.surfcoat.2005.07.106
  65. C. Dong, A. Wu, S. Hao, J. Zou, Z. Liu, P. Zhong, A. Zhang, T. Xu, J. Chen, J. Xu, Q. Liu, and Z. Zhou, Surf. Coat. Technol., 163–164: 620 (2003). https://doi.org/10.1016/S0257-8972(02)00657-6
  66. B. Gao, L. Hu, S. W. Li, Y. Hao, Y. D. Zhang, G. F. Tu and T. Grosdidier, Appl. Surf. Sci., 346: 147 (2015). https://doi.org/10.1016/j.apsusc.2015.04.029
  67. B. Gao, S. Hao, J. Zou, T. Grosdidier, L. Jiang, J. Zhou, and C. Dong, J. Vacuum Sci. Technol. A, 23, No. 6: 1548 (2005). https://doi.org/10.1116/1.2049299
  68. Y.F. Ivanov, K.V. Alsaraeva, V.E. Gromov, N.A. Popova, and S.V. Konovalov, J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech., 9 No. 5: 1056 (2015). https://doi.org/10.1134/S1027451015050328
  69. S. Hao, S. Yao, J. Guan, A. Wu, P. Zhong, and C. Dong, Current Applied Physics, 1, Nos. 2–3: 203 (2001). https://doi.org/10.1016/S1567-1739(01)00017-7
  70. S.Z. Hao, Y. Qin, X.X. Mei, B. Gao, J.X. Zuo, Q.F. Guan, C. Dong, and Q.Y. Zhang, Surf. Coat. Technol., 201, Nos. 19–20: 8588 (2007). https://doi.org/10.1016/j.surfcoat.2005.12.054
  71. Y. Hao, B. Gao, G.F. Tu, S.W. Li, C. Dong, and Z.G. Zhang, Nucl. Instrum. Methods Phys. Res. Sect. B, 269, No. 13: 1499 (2011). https://doi.org/10.1016/j.nimb.2011.04.010
  72. Y. Hao, B. Gao, G.F. Tu, S.W. Li, S.Z. Hao, and C. Dong, Appl. Surf. Sci., 257, No. 9: 3913 (2011). https://doi.org/10.1016/j.apsusc.2010.11.118
  73. Yu.F. Ivanov, K.V. Aksenova, V.E. Gromov, S.V. Konovalov, and E.A. Petrikova, Russ. J. Non-Ferrous Metals, 57, No. 3: 236 (2016). https://doi.org/10.3103/S1067821216030081
  74. Information at https://www.ihm.kit.edu/english/300.php.
  75. J.S. Kim, W.J. Lee, and H.W. Park, Int. J. Precision Eng. Manufactur., 17, No. 11: 1575 (2016). https://doi.org/10.1007/s12541-016-0184-8
  76. S.V. Konovalov, K.V. Alsaraeva, V.Е. Gromov, and Yu.F. Ivanov, IOP Conf. Ser.: Mater. Sci. Eng., 91: 012029 (2015). https://doi.org/10.1088/1757-899X/91/1/012029
  77. S.V. Konovalov, K.V. Alsaraeva, V.Е. Gromov, Yu.F. Ivanov, and O.A. Semina, IOP Conf. Ser.: Mater. Sci. Eng., 110: 012012 (2016). https://doi.org/10.1088/1757-899X/110/1/012012
  78. S. V. Konovalov, K. V. Alsaraeva, V. Е. Gromov and Y. F. Ivanov, J. Phys.: Conf. Ser., 652: 012028 (2015). https://doi.org/10.1088/1742-6596/652/1/012028
  79. G. Mueller, V. Engelko, A. Weisenburger, and A. Heinzel, Vacuum, 77, No. 4: 469 (2005). https://doi.org/10.1016/j.vacuum.2004.09.018
  80. Information at http://www.totalmateria.com/Article96.htm.
  81. Yu.F. Ivanov, V.I. Itin, S.V. Lykov, A.B. Markov, V.P. Rotshtein, A.A. Tukhfatullin, and N.P. Wild, Fiz. Met. Metalloved., 75, No. 5: 103 (1993) (in Russian).
  82. Yu.F. Ivanov, V.I. Itin, S.V. Lykov, A.B. Markov, G.A. Mesyats, G.E. Ozur, D.I. Proskurovsky, V.P. Rotshtein, and A.A. Tukhfatullin, Metally, 3: 130 (1993) (in Russian).
  83. A.B. Markov and V.P. Rotshhtein, Nucl. Instrum. Methods Phys. Res. Sect. B, 132, No. 1: 79 (1996). https://doi.org/10.1016/S0168-583X(97)00416-3
  84. A.B. Markov and V.P. Rotshtein, J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech., 14, No. 4: 525 (1998).
  85. A.V. Markov, D.I. Proskurovsky, and V.P. Rotshtein, Formation of Thermal Effect Zone in Iron and Steel 45 under Low-Energy High-Current Electron Beam Effect (Tomsk: TSC SD RAS: 1993) (in Russian).
  86. A.B. Markov and V.P. Rotshtein, Thermal Physics of High Temperatures, 38, No. 1: 19 (2000) (in Russian).
  87. R.Z. Valiev and I.V. Aleksandrov, Nanostructural Materials Obtained by Severe Plastic Deformation (Moscow: Logos: 2000) (in Russian).
  88. N.I. Noskova and R.R. Mulyukov, Submicrocrystalline and Nanocrystalline Metals and Alloys (Ekaterinburg: UrD. RAS: 2003) (in Russian).
  89. R.Z. Valiev and I.V. Aleksandrov, Bulk Nanostructural Metallic Materials: Manufacture, Structure and Properties (Moscow: Akademkniga: 2007) (in Russian).
  90. Structure and Properties of Metals at Different Energy Effects and Treatment Technologies (Eds. V.A. Klimenov and V.A. Starenchenko) (Switzerland: Trans Tech Publications Ltd: 2014).
  91. E.V. Kozlov, A.M. Glezer, N.A. Koneva, N.A. Popova, and I.A. Kurzina, Fundamentals of Plastic Deformation of Nanostructural Materials (Moscow: Fizmatlit: 2016) (in Russian).
  92. R.Z. Valiev, Y. Estrin, Z. Horita, T.G. Langdon, M.J. Zehetbauer, and Y.Zhu, JOM, 68, No. 4: 1216 (2016). https://doi.org/10.1007/s11837-016-1820-6
  93. Science Intensive Technologies in Projects of RSF. Sibiria (Eds. S.G. Psakhie and Yu.P. Sharkeeva) (Tomsk: NTL: 2017) (in Russian).
  94. Yu.F. Ivanov, D.V. Zagulyaev, S.A. Nevskii, V.E. Gromov, V.D. Sarychev, and A.P. Semin, Usp. Fiz. Met., 20, No. 3: 447 (2019). https://doi.org/10.15407/ufm.20.03.447
  95. V. Sarychev, S. Nevskii, S. Konovalov, A. Granovskii, Yu. Ivanov, and V. Gromov, Mater. Res. Express, 6, No. 2: 026540 (2019). https://doi.org/10.1088/2053-1591/aaec1f
  96. Yu. Ivanov, V. Gromov, D. Zaguliaev, A. Gleze, R. Sundeev, Yu. Rubannikova, and A. Semin, Materials Letters, 253: 55 (2019). https://doi.org/10.1016/j.matlet.2019.05.148
  97. L. Stanček, B. Vanko, and A. I. Batyshev, Metal Science and Heat Treatment, 56, Nos. 3–4: 197 (2014). https://doi.org/10.1007/s11041-014-9730-0
  98. R. Zenker, Surf. Eng., 12, No. 4: 9 (1996).
  99. R. Zenker, E. Wagner, and B. Furchheim, 6th Int. Sem. of IFHT, Kyongju: 205 (1997).
  100. R. Zenker, N. Frenkler, and T. Ptaszek, HTM, 54, No. 3: 143 (1999).
  101. R. Zenker and A. Buchwalder, Transactions of Materials and Heat Treatment Proceedings of the 14th Congress, 25, No. 5: 573 (2004).
  102. V.E. Gromov, K.V. Aksyonova, S.V. Konovalov, and Yu.F. Ivanov, Usp. Fiz. Met., 16, No. 4: 265 (2015). https://doi.org/10.15407/ufm.16.04.265
  103. Yu.F. Ivanov, K.V. Alsaraeva, V.E. Gromov, N.A. Popova, and S.V. Konovalov, J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech., 9, No. 15: 1056 (2015). https://doi.org/10.1134/S1027451015050328
  104. V.E. Gromov, Yu.F. Ivanov, A.M. Glezer, S.V. Konovalov, and K.V. Alsaraeva, Bull. Russ. Acad. Sci. Phys., 79, No. 9: 1169 (2015). https://doi.org/10.3103/S1062873815090087
  105. K.V. Alsaraeva, V.E. Gromov, S.V. Konovalov, and A.A. Atroshkina, International Journal of Chemical, Molecular, Nuclear, Materials and Metallurgical Engineering, 9, No. 7: 762 (2015).
  106. Yu.F. Ivanov, K.V. Alsaraeva, E.A. Petrikova, A.D. Teresov, V.E. Gromov, and S.V. Konovalov, IOP Conf. Ser.: Mater. Sci. Eng., 81: 012011 (2015). https://doi.org/10.1088/1757-899X/81/1/012011
  107. S.V. Konovalov, K.V. Alsaraeva, V.E. Gromov, Yu.F. Ivanov, and O.A. Semina, AIP Conf. Proc., 1683, No. 1: 020092 (2015). https://doi.org/10.1063/1.4932782
  108. S.V. Konovalov, K.V. Alsaraeva, V.E. Gromov, Yu.F. Ivanov, and O.A. Semina, Key Eng. Mater., 675–676: 655 (2016). https://doi.org/10.4028/www.scientific.net/KEM.675-676.655
  109. S.V. Konovalov, I.A. Komissarova, D.A. Kosinov, Yu.F. Ivanov, O.V. Ivanova, and V.E. Gromov, IOP Conf. Ser.: Mater. Sci. Eng., 150: 012037 (2016). https://doi.org/10.1088/1757-899X/150/1/012037
  110. S.V. Konovalov, I.A. Komissarova, D.A. Kosinov, Yu.F. Ivanov, V.E. Gromov, and O.A. Semina, Key Eng. Mater., 704: 15 (2016). https://doi.org/10.4028/www.scientific.net/KEM.704.15
  111. Yu.F. Ivanov, V.E. Gromov, V.A. Grishunin, A.D. Teresov, and S.V. Konovalov, Fizicheskaya Mezomekhanika, 16, No. 2: 47 (2013) (in Russian).
  112. Yu.F. Ivanov, V.E. Gromov, V.A. Grishunin, and S.V. Konovalov, Voprosy Materialovedeniya, 73, No. 1: 20 (2013) (in Russian).
  113. V.E. Gromov, Yu.F. Ivanov, V.A. Grishunin, S.V. Raykov, and S.V. Konovalov, Usp. Fiz. Met., 14, No. 1: 67 (2013). https://doi.org/10.15407/ufm.14.01.067