Prospects for the Application of Surface Treatment of Alloys by Electron Beams in State-of-the-Art Technologies

Yu. F. Ivanov$^1$, V. Е. Gromov$^2$, D. V. Zaguliaev$^2$, S. V. Konovalov$^3$, Yu. A. Rubannikova$^2$, and A. P. Semin$^2$

$^1$Institute of High-Current Electronics, SB RAS, 2/3 Akademicheskiy Ave., 634055 Tomsk, Russia
$^2$Siberian State Industrial University, 42 Kirov Str., 654007 Novokuznetsk, Russia
$^3$Academician S.P. Korolyov Samara National Research University, 34 Moskovskoye Shosse, 443086 Samara, Russia

Received 17.04.2020; final version — 03.07.2020 Download PDF logo PDF

Abstract
Recent papers on the application of intense pulsed electron beams for surface treatment of metals, alloys, metalloceramic and ceramic materials are reviewed. The advantages of pulsed electron beam application as compared with laser beams, plasma flows, ion beams are mentioned. Promising trends of the electron-beam processing application are analysed: (1) the surface smoothing, the elimination of surface microcracks with simultaneous change in structural-phase state of the surface layer for creating the high production technologies of finishing treatment of critical metal products of intricate shape from Ti–6Al–4V alloy and titanium, steels of different classes, WC–10 wt.% Co hard alloy, aluminium; (2) the removal of microburrs being formed in manufacturing of precision moulds (SKD11 steel) and biomedical materials (Ti–6Al–4V alloy); (3) the finishing surface treatment of moulds and dies; (4) the improvement of functional properties of metallic biomaterials: stainless steel, titanium and its alloys, the titanium-nickelide-based alloys possessing the shape memory effect, magnesium alloys; (5) the treatment of medical materials and implants; (6) the formation of surface alloys for powerful electrodynamic systems; (7) the improvement of characteristics of aircraft engine and compressor blades; (8) the formation of thermobarrier coatings being applied to combustion-chamber surface; (9) the increase in fatigue service life of steels and alloys; (10) the hardening of rails’ tread surface. As shown, at a correct selection of process parameters, such as (i) accelerating voltage, (ii) energy density of electron beam, (iii) pulse number, and (iv) pulse length, it is possible to control thoroughly and/or to manipulate the characteristics of structural-phase state and properties of surface. As noted, the important factor for improvement of the material properties and service duration of devices manufactured from it, there is the modification of structure in order to form a submicro- and nanosize grain (or subgrain structure).

Keywords: electron-beam processing, surface modification, alloys, prospects for application, nanosize structure.

Citation: Yu. F. Ivanov, V. Е. Gromov, D. V. Zaguliaev, S. V. Konovalov, Yu. A. Rubannikova, and A. P. Semin, Prospects for the Application of Surface Treatment of Alloys by Electron Beams in State-of-the-Art Technologies, Progress in Physics of Metals, 21, No. 3: 345–362 (2020)


References (113)  
  1. G.E. Mesyats and D.I. Proskurovsky, Pulsed Electric Discharge in Vacuum (Novosibirsk: Nauka: 1984) (in Russian).
  2. N.N. Koval’, E.M. Oks, Yu. S. Protasov, and N.N. Semashko, Emission Electronics (Moscow: N.E. Bauman MSTU: 2009) (in Russian).
  3. D.I. Proskurovsky, Emission Electronics (Tomsk: TSU: 2010) (in Russian).
  4. N.N. Koval, S.V. Grigoriev, V.N. Devyatkov, A.D. Teresov, and P.M. Schanin, IEEE Transactions on Plasma Science, 37, No. 10: 1890 (2009). https://doi.org/10.1109/TPS.2009.2023412
  5. A.B. Belov, O.A. Bytsenko, A.V. Krainikov, A.F. L’vov, A.S. Novikov, A.G. Paykin, A.D. Teryaev, D.A. Teryaev, K.I. Tvagenko, V.A. Shulov, and V.I. Engel’ko, High-Current Pulsed Electron Beams for Aircraft Engine Building (Moscow: Dipak: 2012) (in Russian).
  6. G.E. Ozur and D.I. Proskurovsky, Sources of Low-Energy High-Current Electron Beams with Plasma Cathode (Novosibirsk: Nauka: 2018) (in Russian).
  7. Structure Evolution of Steel Surface Layer Subjected to Electron-Ion-Plasma Methods of Processing (Eds. N.N. Koval and Yu.F. Ivanov) (Tomsk: NTL: 2016) (in Russian).
  8. Electron–Ion-Plasma Surface Modification of Non-Ferrous Metals and Alloys (Eds. N.N. Koval and Yu.F. Ivanov) (Tomsk: NTL: 2016) (in Russian).
  9. Structure, Phase Composition and Properties of Surface Layers of Titanium Alloys after Electroexplosive Alloying and Electron-Beam Processing (Eds. V.E. Gromov, Yu.F. Ivanov, and E.A. Budovskikh) (Novokuznetsk: Inter-Kuzbass: 2012) (in Russian).
  10. V.A. Grishunin, V.E. Gromov, Y.F. Ivanov, A.D. Teresov, and S.V. Konovalov, J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech., 7, No. 5: 990 (2013). https://doi.org/10.1134/S1027451013050091
  11. A.P. Laskovnev, Yu.F. Ivanov, and E.A. Petrikova, Structure and Property Modification of Eutectic Silumin by Electron–Ion-Plasma Processing (Minsk: Belarus, Navuka: 2013) (in Russian).
  12. K.V. Sosnin, Y.F. Ivanov, A.M. Glezer, V.E. Gromov, S.V. Raykov, and E.A. Budovskikh. Bulletin of the Russian Academy of Sciences: Physics, 78, No. 11: 1183 (2014). https://doi.org/10.3103/S1062873814110264
  13. Y.F. Ivanov, N.N. Koval, S.V. Gorbunov, S.V. Vorobyov, S.V. Konovalov, and V.E. Gromov, Russ. Phys. J., 54, No. 5: 575 (2011). https://doi.org/10.1007/s11182-011-9654-8
  14. V.E. Gromov, K.V. Sosnin, Yu.F. Ivanov, and O.A. Semina, Usp. Fiz. Met., 16, No. 3: 175 (2015). https://doi.org/10.15407/ufm.16.03.175
  15. Y.F. Ivanov, K.V. Alsaraeva, V.E. Gromov, N.A. Popova, and Konovalov. J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech., 9, No. 5: 1056 (2015). https://doi.org/10.1134/S1027451015050328
  16. S.V. Konovalov, V.E. Kormyshev, V.E. Gromov, Y.F. Ivanov, E.V. Kapralov, and A.P. Semin, J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech., 10, No. 5: 1119 (2016). https://doi.org/10.1134/S1027451016050098
  17. Y. Uno, A. Okada, K. Uemura, and P. Raharjo, Method for Surface Treating a Die by Electron Beam Irradiation and a Die Treated Thereby (US patent No: US 7, 049, 539 B2, 2006).
  18. K. Uemura, S. Uehara, P. Raharjo, D.I. Proskurovsky, G.E. Ozur, and V.P. Rotshtein, Surface Modification Process on Metal Dentures, Products Produced Thereby and the Incorporated System Thereof (US Patent No: US 6, 836, 531, B2, 2005).
  19. J.W. Murray, P.K. Kinnell, A.H. Cannon, B. Bailey, and A. T. Clare, Precision Engineering, 37, No. 2: 443 (2013). https://doi.org/10.1016/j.precisioneng.2012.11.007
  20. V. Goriainov, R.B. Cook, J.W. Murray, J.C. Walker, D.G. Dunlop, A.T. Clare, and R.O.C. Oreffo, Front. Bioeng. Biotechnol., 6: 91 (2018). https://doi.org/10.3389/fbioe.2018.00091
  21. Manufacturing Techniques for Materials. Engineering and Engineered (Eds. T.S. Srivatsan, T.S. Sudarshan, and K. Manigandan) (Taylor & Francis Group, LLC: 2018). https://doi.org/10.1201/b22313
  22. P. Raharjo, H. Wada, Y. Nomura, G.E. Ozur, D.I. Proskurovsky, V.P. Rotshtein, and K. Uemura, Proc. of 6th Intern. Conf. on Modification of Materials with Particle Beams and Plasma Flows.: 679 (2002).
  23. A. Okada, Y. Uno, N. Yabushita, K. Uemura, and P. Raharjo, J. Mater. Process. Technol., 149, Nos. 1–3: 506 (2004). https://doi.org/10.1016/j.jmatprotec.2004.02.017
  24. P. Raharjo, K. Uemura, A. Okada, and Y. Uno, Proc. of 7th Intern. Conf. on Modification of Materials with Particle Beams and Plasma Flows, p. 267 (2004).
  25. A. Okada, Y. Uno, A. Iio, K. Fujiwara, and K. Doi, J. Advanced Mechanical Design, Systems and Manufacturing, 2, No. 4: 695 (2008). https://doi.org/10.1299/jamdsm.2.694
  26. J. Tokunaga, T. Kojima, S. Kinuta, K. Wakabayashi, T. Nakamura, H. Yatani, and T. Sohmura, Dent. Mater. J., 28, No. 5: 571 (2009). https://doi.org/10.4012/dmj.28.571
  27. A. Okada, Y. Uno, J.A. McGeough, K. Fujiwara, K. Doi, K. Uemura, and S. Sano, CIRP Annals, 57, No. 1: 223 (2008). https://doi.org/10.1016/j.cirp.2008.03.062
  28. 28. Y. Uno, A. Okada, K. Uemura, P. Raharjo, T. Furukawa, and K. Karato, Precis. Eng., 29, No. 4: 449 (2005). https://doi.org/10.1016/j.precisioneng.2004.12.005
  29. Y. Uno, A. Okada, K. Uemura, P. Raharjo, S. Sano, Z. Yu, and S. Mishima, J. Mater. Process. Technol., 187–188: 77 (2007). https://doi.org/10.1016/j.jmatprotec.2006.11.080
  30. A. Okada, Y. Okamoto, Y. Uno, and K. Uemura, J. Mater. Process. Technol., 214, No. 8: 1740 (2014). https://doi.org/10.1016/j.jmatprotec.2014.02.028
  31. J.W. Murray and A.T. Clare, J. Mater. Process. Technol., 212, No. 12: 2642 (2012). https://doi.org/10.1016/j.jmatprotec.2012.07.018
  32. A. Selada, A. Manaia, M.T. Vieira, and A.S. Pouzada, Int. J. Adv. Manuf. Technol., 52, No. 1: 171 (2011). https://doi.org/10.1007/s00170-010-2723-2
  33. A. Okada, R. Kitada, Y. Okamoto, and Y. Uno, CIRP, 60, No. 1: 575 (2011). https://doi.org/10.1016/j.cirp.2011.03.107
  34. T. Shinonaga, A. Okada, H. Liu, and M. Kimura, J. Mater. Process. Technol., 254: 229 (2018). https://doi.org/10.1016/j.jmatprotec.2017.11.024
  35. A. Okada, H. Yonehara, and Y. Okamoto, Procedia CIRP, 5: 19 (2013). https://doi.org/10.1016/j.procir.2013.01.004
  36. I.M. Goncharenko, V.I. Itin, S.V. Isichenko, S.V. Lykov, A.B. Markov, O.I. Nalesnik, G.E. Ozur, D.I. Proskurovsky, and V.P. Rotstein, Protection of Metals, 29, No. 6: 932 (1993).
  37. G.S. Eklund, J. Electrochem. Soc., 121: 467 (1974). https://doi.org/10.1149/1.2401840
  38. T. Suter and H. Böhni, Electrochim. Acta, 42, Nos. 20–22: 3275 (1997). https://doi.org/10.1016/S0013-4686(70)01783-8
  39. P.E. Manning, C.E. Lyman, and D.J. Duquette, Corrosion, 36, No. 5: 246 (1980). https://doi.org/10.5006/0010-9312-36.5.246
  40. A.J. Sedriks, Corrosion, 42: 376 (1986). https://doi.org/10.5006/1.3584918
  41. A.V. Batrakov, A.B. Markov, G.E. Ozur, D.I. Proskurovsky, and V.P. Rotshtein, IEEE Transactions on Dielectrics and Electrical Insulation, 2, No. 2: 237 (1995). https://doi.org/10.1117/12.174677
  42. K. Zhang, J. Zou, T. Grosdidier, C. Dong, and D. Yang, Surf. Coat. Technol., 201: 1393 (2006). https://doi.org/10.1016/j.surfcoat.2006.02.008
  43. V.P. Rotstein, R. Gyuntsel, A.B. Markov, D.I. Proskurovsky, M.T. Fam, E. Rikhter, and V.A. Shulov, Fizika i Khimiya Obrabotki Materialov, 1: 62 (2006) (in Russian).
  44. X. D. Zhang, S.Z. Hao, X.N. Li, C. Dong, and T. Grosdidier, Appl. Surf. Sci., 257, No. 13: 5899 (2011). https://doi.org/10.1016/j.apsusc.2011.01.136
  45. G. Guo, G. Tang, X. Ma, M. Sun, and G.E. Ozur, Surf. Coat. Technol., 229: 140 (2013). https://doi.org/10.1016/j.surfcoat.2012.08.009
  46. A. Balyanov, J. Kutnyakova, N.A. Amirkhanova, V.V. Stolyarov, R.Z. Valiev, X.Z. Liao, Y.H. Zhao, Y.B. Jiang, H.F. Xu, T.C. Lowe, and Y.T. Zhu, Scr. Mater., 51, No. 3: 225 (2004). https://doi.org/10.1016/j.scriptamat.2004.04.011
  47. J.C. Walker, J.W. Murray, M. Nie, R.B. Cook, and A.T. Clare, Appl. Surf. Sci., 311: 534 (2014). https://doi.org/10.1016/j.apsusc.2014.05.105
  48. B.W. Stuart, J.W. Murray, and D.M. Grant, Sci. Rep., 8: 14530 (2018). https://doi.org/10.1038/s41598-018-32612-x
  49. K.M. Zhang, D.Z. Yang, J.X. Zou, T. Grosdidier, and C. Dong, Surf. Coat. Technol., 201, No. 6: 3096 (2006). https://doi.org/10.1016/j.surfcoat.2006.06.030
  50. S. Hao, B. Gao, A. Wu, J. Zou, Y. Qin, C. Dong, J. An, and Q. Guan, Nucl. Instrum. Methods Phys. Res. Sect. B, 240, No. 3: 646 (2005). https://doi.org/10.1016/j.nimb.2005.04.117
  51. B. Gao, S. Hao, J. Zou, W. Wu, G. Tu, and C. Dong, Surf. Coat. Technol., 201, No. 14: 6297 (2007). https://doi.org/10.1016/j.surfcoat.2006.11.036
  52. M.C. Li, S.Z. Hao, H. Wen, and R.F. Huang, Appl. Surf. Sci., 303: 350 (2014). https://doi.org/10.1016/j.apsusc.2014.03.004
  53. S. Hao and M. Li, Nucl. Instrum. Methods Phys. Res. Sect. B, 375: 1 (2016). https://doi.org/10.1016/j.nimb.2016.03.035
  54. Y.R. Liu, K.M. Zhang, J.X. Zou, D.K. Liu, and T.C. Zhang, J. Alloys and Compounds, 741: 65 (2018). https://doi.org/10.1016/j.jallcom.2017.12.227
  55. K. Uemura, 16th Simp. on High Current Electronics & 10th Conf. on Materials Modification (Tomsk: 2010), p. 501.
  56. T. Mori, A. Okawa, T. Tsubouchi, and K. Uemura, Manufacturing Method for Medical Equipment for Reducing Platelet Adhesion on a Surface in Contact with Blood (Patent US 8,997,349 B2. 2015. Prior Publ. Data: US 2013/0230422A1. Sept. 5, 2013).
  57. A.B. Markov, E.V. Yakovlev, and V.I. Petrov, IEEE Trans. Plasma Sci., 41, No. 8: 2177 (2013). https://doi.org/10.1109/TPS.2013.2254501.
  58. A.V. Batrakov, S.A. Onischenko, I.K. Kurkan, V.V. Rostov, E.V. Yakovlev, E.V. Nefedtsev, and R.V. Tsygankov, Proc. 28th Int. Symp. on Discharges & Electrical Insulation in Vacuum (2018), vol. 1, p. 77.
  59. D.I. Proskurovsky, V.P. Rotshtein, and G.E. Ozur, Surf. Coat. Technol., 96, No. 1: 115 (1997). https://doi.org/10.1016/S0257-8972(97)00093-5
  60. D.I. Proskurovsky, V.P. Rotshtein, G.E. Ozur, A.B. Markov, D.S. Nazarov, V.A. Shulov, Yu.F. Ivanov, and R.G. Buchheit, J. Vac. Sci. Technol. A, 16, No. 4: 2480 (1998). https://doi.org/10.1116/1.581369
  61. Yu.D. Yagodkin, K.M. Pastukhov, S.I. Kuznetsov, N.F. Ivanova, and E.Yu. Aristova, Fizika i Khimiya Obrabotki Materialov, 5: 111 (1995) (in Russian).
  62. J. Cai, Q. Guan, X. Xu, J. Lu, Z. Wang, and Z. Han, ACS Appl. Mater. Interfaces, 8, No. 47: 32541 (2016). https://doi.org/10.1021/acsami.6b11129
  63. S. Jayalakshmi, R.A. Singh, S. Konovalov, X. Chen, and T.S. Srivatsan, Manufacturing Techniques for Materials: Engineering and Engineered. Ch. 11. Overview of Pulsed Electron Beam Treatment of Light Metals: Advantages and Applications (Eds. T.S. Srivatsan, T.S. Sudarshan, and K. Manigandan) (Boca Raton, FL: CRC Press, Taylor & Francis Group, LLC: 2018). https://doi.org/10.1201/b22313
  64. J. An, X. X. Shen, Y. Lu, Y.B. Liu, R.G. Li, C.M. Chen, and M.J. Zhang, Surf. Coat. Technol., 200, Nos. 18–19: 5590 (2006). https://doi.org/10.1016/j.surfcoat.2005.07.106
  65. C. Dong, A. Wu, S. Hao, J. Zou, Z. Liu, P. Zhong, A. Zhang, T. Xu, J. Chen, J. Xu, Q. Liu, and Z. Zhou, Surf. Coat. Technol., 163–164: 620 (2003). https://doi.org/10.1016/S0257-8972(02)00657-6
  66. B. Gao, L. Hu, S. W. Li, Y. Hao, Y. D. Zhang, G. F. Tu and T. Grosdidier, Appl. Surf. Sci., 346: 147 (2015). https://doi.org/10.1016/j.apsusc.2015.04.029
  67. B. Gao, S. Hao, J. Zou, T. Grosdidier, L. Jiang, J. Zhou, and C. Dong, J. Vacuum Sci. Technol. A, 23, No. 6: 1548 (2005). https://doi.org/10.1116/1.2049299
  68. Y.F. Ivanov, K.V. Alsaraeva, V.E. Gromov, N.A. Popova, and S.V. Konovalov, J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech., 9 No. 5: 1056 (2015). https://doi.org/10.1134/S1027451015050328
  69. S. Hao, S. Yao, J. Guan, A. Wu, P. Zhong, and C. Dong, Current Applied Physics, 1, Nos. 2–3: 203 (2001). https://doi.org/10.1016/S1567-1739(01)00017-7
  70. S.Z. Hao, Y. Qin, X.X. Mei, B. Gao, J.X. Zuo, Q.F. Guan, C. Dong, and Q.Y. Zhang, Surf. Coat. Technol., 201, Nos. 19–20: 8588 (2007). https://doi.org/10.1016/j.surfcoat.2005.12.054
  71. Y. Hao, B. Gao, G.F. Tu, S.W. Li, C. Dong, and Z.G. Zhang, Nucl. Instrum. Methods Phys. Res. Sect. B, 269, No. 13: 1499 (2011). https://doi.org/10.1016/j.nimb.2011.04.010
  72. Y. Hao, B. Gao, G.F. Tu, S.W. Li, S.Z. Hao, and C. Dong, Appl. Surf. Sci., 257, No. 9: 3913 (2011). https://doi.org/10.1016/j.apsusc.2010.11.118
  73. Yu.F. Ivanov, K.V. Aksenova, V.E. Gromov, S.V. Konovalov, and E.A. Petrikova, Russ. J. Non-Ferrous Metals, 57, No. 3: 236 (2016). https://doi.org/10.3103/S1067821216030081
  74. Information at https://www.ihm.kit.edu/english/300.php.
  75. J.S. Kim, W.J. Lee, and H.W. Park, Int. J. Precision Eng. Manufactur., 17, No. 11: 1575 (2016). https://doi.org/10.1007/s12541-016-0184-8
  76. S.V. Konovalov, K.V. Alsaraeva, V.Е. Gromov, and Yu.F. Ivanov, IOP Conf. Ser.: Mater. Sci. Eng., 91: 012029 (2015). https://doi.org/10.1088/1757-899X/91/1/012029
  77. S.V. Konovalov, K.V. Alsaraeva, V.Е. Gromov, Yu.F. Ivanov, and O.A. Semina, IOP Conf. Ser.: Mater. Sci. Eng., 110: 012012 (2016). https://doi.org/10.1088/1757-899X/110/1/012012
  78. S. V. Konovalov, K. V. Alsaraeva, V. Е. Gromov and Y. F. Ivanov, J. Phys.: Conf. Ser., 652: 012028 (2015). https://doi.org/10.1088/1742-6596/652/1/012028
  79. G. Mueller, V. Engelko, A. Weisenburger, and A. Heinzel, Vacuum, 77, No. 4: 469 (2005). https://doi.org/10.1016/j.vacuum.2004.09.018
  80. Information at http://www.totalmateria.com/Article96.htm.
  81. Yu.F. Ivanov, V.I. Itin, S.V. Lykov, A.B. Markov, V.P. Rotshtein, A.A. Tukhfatullin, and N.P. Wild, Fiz. Met. Metalloved., 75, No. 5: 103 (1993) (in Russian).
  82. Yu.F. Ivanov, V.I. Itin, S.V. Lykov, A.B. Markov, G.A. Mesyats, G.E. Ozur, D.I. Proskurovsky, V.P. Rotshtein, and A.A. Tukhfatullin, Metally, 3: 130 (1993) (in Russian).
  83. A.B. Markov and V.P. Rotshhtein, Nucl. Instrum. Methods Phys. Res. Sect. B, 132, No. 1: 79 (1996). https://doi.org/10.1016/S0168-583X(97)00416-3
  84. A.B. Markov and V.P. Rotshtein, J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech., 14, No. 4: 525 (1998).
  85. A.V. Markov, D.I. Proskurovsky, and V.P. Rotshtein, Formation of Thermal Effect Zone in Iron and Steel 45 under Low-Energy High-Current Electron Beam Effect (Tomsk: TSC SD RAS: 1993) (in Russian).
  86. A.B. Markov and V.P. Rotshtein, Thermal Physics of High Temperatures, 38, No. 1: 19 (2000) (in Russian).
  87. R.Z. Valiev and I.V. Aleksandrov, Nanostructural Materials Obtained by Severe Plastic Deformation (Moscow: Logos: 2000) (in Russian).
  88. N.I. Noskova and R.R. Mulyukov, Submicrocrystalline and Nanocrystalline Metals and Alloys (Ekaterinburg: UrD. RAS: 2003) (in Russian).
  89. R.Z. Valiev and I.V. Aleksandrov, Bulk Nanostructural Metallic Materials: Manufacture, Structure and Properties (Moscow: Akademkniga: 2007) (in Russian).
  90. Structure and Properties of Metals at Different Energy Effects and Treatment Technologies (Eds. V.A. Klimenov and V.A. Starenchenko) (Switzerland: Trans Tech Publications Ltd: 2014).
  91. E.V. Kozlov, A.M. Glezer, N.A. Koneva, N.A. Popova, and I.A. Kurzina, Fundamentals of Plastic Deformation of Nanostructural Materials (Moscow: Fizmatlit: 2016) (in Russian).
  92. R.Z. Valiev, Y. Estrin, Z. Horita, T.G. Langdon, M.J. Zehetbauer, and Y.Zhu, JOM, 68, No. 4: 1216 (2016). https://doi.org/10.1007/s11837-016-1820-6
  93. Science Intensive Technologies in Projects of RSF. Sibiria (Eds. S.G. Psakhie and Yu.P. Sharkeeva) (Tomsk: NTL: 2017) (in Russian).
  94. Yu.F. Ivanov, D.V. Zagulyaev, S.A. Nevskii, V.E. Gromov, V.D. Sarychev, and A.P. Semin, Usp. Fiz. Met., 20, No. 3: 447 (2019). https://doi.org/10.15407/ufm.20.03.447
  95. V. Sarychev, S. Nevskii, S. Konovalov, A. Granovskii, Yu. Ivanov, and V. Gromov, Mater. Res. Express, 6, No. 2: 026540 (2019). https://doi.org/10.1088/2053-1591/aaec1f
  96. Yu. Ivanov, V. Gromov, D. Zaguliaev, A. Gleze, R. Sundeev, Yu. Rubannikova, and A. Semin, Materials Letters, 253: 55 (2019). https://doi.org/10.1016/j.matlet.2019.05.148
  97. L. Stanček, B. Vanko, and A. I. Batyshev, Metal Science and Heat Treatment, 56, Nos. 3–4: 197 (2014). https://doi.org/10.1007/s11041-014-9730-0
  98. R. Zenker, Surf. Eng., 12, No. 4: 9 (1996).
  99. R. Zenker, E. Wagner, and B. Furchheim, 6th Int. Sem. of IFHT, Kyongju: 205 (1997).
  100. R. Zenker, N. Frenkler, and T. Ptaszek, HTM, 54, No. 3: 143 (1999).
  101. R. Zenker and A. Buchwalder, Transactions of Materials and Heat Treatment Proceedings of the 14th Congress, 25, No. 5: 573 (2004).
  102. V.E. Gromov, K.V. Aksyonova, S.V. Konovalov, and Yu.F. Ivanov, Usp. Fiz. Met., 16, No. 4: 265 (2015). https://doi.org/10.15407/ufm.16.04.265
  103. Yu.F. Ivanov, K.V. Alsaraeva, V.E. Gromov, N.A. Popova, and S.V. Konovalov, J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech., 9, No. 15: 1056 (2015). https://doi.org/10.1134/S1027451015050328
  104. V.E. Gromov, Yu.F. Ivanov, A.M. Glezer, S.V. Konovalov, and K.V. Alsaraeva, Bull. Russ. Acad. Sci. Phys., 79, No. 9: 1169 (2015). https://doi.org/10.3103/S1062873815090087
  105. K.V. Alsaraeva, V.E. Gromov, S.V. Konovalov, and A.A. Atroshkina, International Journal of Chemical, Molecular, Nuclear, Materials and Metallurgical Engineering, 9, No. 7: 762 (2015).
  106. Yu.F. Ivanov, K.V. Alsaraeva, E.A. Petrikova, A.D. Teresov, V.E. Gromov, and S.V. Konovalov, IOP Conf. Ser.: Mater. Sci. Eng., 81: 012011 (2015). https://doi.org/10.1088/1757-899X/81/1/012011
  107. S.V. Konovalov, K.V. Alsaraeva, V.E. Gromov, Yu.F. Ivanov, and O.A. Semina, AIP Conf. Proc., 1683, No. 1: 020092 (2015). https://doi.org/10.1063/1.4932782
  108. S.V. Konovalov, K.V. Alsaraeva, V.E. Gromov, Yu.F. Ivanov, and O.A. Semina, Key Eng. Mater., 675–676: 655 (2016). https://doi.org/10.4028/www.scientific.net/KEM.675-676.655
  109. S.V. Konovalov, I.A. Komissarova, D.A. Kosinov, Yu.F. Ivanov, O.V. Ivanova, and V.E. Gromov, IOP Conf. Ser.: Mater. Sci. Eng., 150: 012037 (2016). https://doi.org/10.1088/1757-899X/150/1/012037
  110. S.V. Konovalov, I.A. Komissarova, D.A. Kosinov, Yu.F. Ivanov, V.E. Gromov, and O.A. Semina, Key Eng. Mater., 704: 15 (2016). https://doi.org/10.4028/www.scientific.net/KEM.704.15
  111. Yu.F. Ivanov, V.E. Gromov, V.A. Grishunin, A.D. Teresov, and S.V. Konovalov, Fizicheskaya Mezomekhanika, 16, No. 2: 47 (2013) (in Russian).
  112. Yu.F. Ivanov, V.E. Gromov, V.A. Grishunin, and S.V. Konovalov, Voprosy Materialovedeniya, 73, No. 1: 20 (2013) (in Russian).
  113. V.E. Gromov, Yu.F. Ivanov, V.A. Grishunin, S.V. Raykov, and S.V. Konovalov, Usp. Fiz. Met., 14, No. 1: 67 (2013). https://doi.org/10.15407/ufm.14.01.067