Нанокристаллизация аморфных сплавов на основе Fe при интенсивной пластической деформации

М. А. Васильев$^1$, В. К. Носенко$^1$, И. В. Загорулько$^1$, С. М. Волошко$^2$

$^1$Институт металлофизики им. Г. В. Курдюмова НАН Украины, бульв. Академика Вернадского, 36, 03142 Киев, Украина
$^2$Национальный технический университет Украины «Киевский политехнический институт имени Игоря Сикорского», просп. Победы, 37, 03056 Киев, Украина

Получена 02.08.2019; окончательный вариант — 10.07.2020 Скачать PDF logo PDF

Аннотация
Обозреваются литературные данные по проблеме модификации структуры и свойств быстрозакалённых сплавов на основе железа различными методами интенсивной пластической деформации (ИПД). Рассмотрены такие способы ИПД как кручение в камере Бриджмена, обработка в шаровых мельницах и высокочастотная ударная обработка, а также их преимущества и недостатки. На примере большого количества аморфных сплавов на основе Fe проанализировано влияние каждого из рассмотренных способов ИПД на их структуру и свойства. На основе полученных данных предложен механизм деформационной нанокристаллизации аморфных сплавов.

Ключевые слова: аморфные сплавы, интенсивная пластическая деформация, полосы сдвига, нанокристаллизация, механические свойства.

Citation: M. O. Vasylyev, V. K. Nosenko, I. V. Zagorulko, and S. M. Voloshko, Nanocrystallization of Amorphous Fe-Based Alloys under Severe Plastic Deformation, Progress in Physics of Metals, 21, No. 3: 319–344 (2020); doi: 10.15407/ufm.21.03.319


Цитированная литература (78)  
  1. G. Gleiter, Acta Mater., 48, No. 1: 1 (2000). https://doi.org/10.1016/S1359-6454(99)00285-2
  2. R.Z. Valiev and I.V. Aleksandrov, Nanostrukturnyye Materialy, Poluchennyye Intensivnoy Plasticheskoy Deformatsiey [Nanostructural Materials Obtained by the Severe Plastic Deformation] (Moscow: LOGOS: 2000) (in Russian).
  3. S.I. Sydorenko, Yu.M. Makohon, and S.M. Voloshko, Materialoznavstvo Tonkoplivkovykh Nanostruktur. Dyfuziya i Reaktsiyi [Materials Science of Thin Film Nanostructures. Diffusion and Reactions] (Kyiv: Naukova Dumka: 2000) (in Ukrainian).
  4. A.P. Shpak, Yu.A. Kunitskiy, and V.I. Lysov, Klasternyye i Nanostrukturnyye Materialy [Cluster and Nanostructural Materials] (Kyiv: Akademperiodyka: 2002) (in Russian).
  5. K.S. Kumar, H. Van Swygenhoven, and S. Suresh, Acta Mater., 51, No. 19: 5743 (2003). https://doi.org/10.1016/j.actamat.2003.08.032
  6. V.V. Gors’ky, O.M. Grypachevs’ky, V.V. Tykhonovych, and V.M. Uvarov, Usp. Fiz. Met., 4, No. 4: 271 (2003) (in Russian). https://doi.org/10.15407/ufm.04.04.271
  7. A.M. Glezer, Izvestiya RAN. Ser. Fizicheskaya, 71: 1767 (2007) (in Russian).
  8. M.O. Vasiliev, G.I. Prokopenko, and V.S. Filatova, Usp. Fiz. Met., 5, No. 3: 345 (2004) (in Russian). https://doi.org/10.15407/ufm.05.03.345
  9. Y. Yoshizawa, S. Oguma, and K. Yamauch., J. Appl. Phys., 64, No. 10: 6044 (1989). https://doi.org/10.1063/1.342149
  10. V.V. Maslov, V.K. Nosenko, L.Ye. Taranenko, and A.P. Brovko, Fiz. Met. Metalloved., 91: 47 (2001) (in Russian).
  11. U. Köster, U. Schünemann, M. Blank-Bewersdorff, S. Brauer, M. Sutton, and G.B. Stephenson, Mat. Sci. Eng. A, 133: 611 (1991). https://doi.org/10.1016/0921-5093(91)90146-E
  12. N.I. Noskova, N.F. Vil’danov, R.I. Kuznetsov, R.I. Tagirov, and A.A. Glazer, Fiz. Met. Metalloved., 65: 669 (1988) (in Russian).
  13. G.E. Abrosimova, A.S. Aronin, S.V. Dobatkin, I.I. Zver’kova, D.V. Matveev, and O.G. Rybchenko, Phys. Metals Metallogr., 106: 597 (2008). https://doi.org/10.1134/S0031918X08120089
  14. Zs. Kovacs, P. Henits, A. P. Zhilyaev, and A. Revesz, Scr. Mater., 54, No. 10: 1733 (2006). https://doi.org/10.1016/j.scriptamat.2006.02.004
  15. N. Boucharat, R. Hebert, H. Rösner, R. Valiev, and G. Wilde, Scr. Mater., 53, No. 7: 823 (2005). https://doi.org/10.1016/j.scriptamat.2005.06.004
  16. M.L. Trudeau and R. Schulz, Phys. Rev. Lett., 64, No. 1: 99 (1990). https://doi.org/10.1103/PhysRevLett.64.99
  17. F.Q. Guo and K. Lu, Metall. Mater. Trans. A, 28: 1123 (1997). https://doi.org/10.1007/s11661-997-0278-0
  18. G.J. Fan, M.X. Quan, Z.Q. Hu, W. Löser, and J. Eckert, J. Mater. Res., 14, No. 9: 3765 (1999). https://doi.org/10.1557/JMR.1999.0510
  19. B. Yao, S.-E. Liu, L. Liu, L. Si, W.-H. Su, and Y. Li, J. Appl. Phys., 90, No. 3: 1650 (2001). https://doi.org/10.1063/1.1385354
  20. C. Zhang, Z. Zhang, Z. Qi, Y. Qi et al., J. Non-Cryst. Solids, 354, No. 32: 3812 (2008). https://doi.org/10.1016/j.jnoncrysol.2008.05.003
  21. T. Gheiratmand, M.H.R. Hosseini, P. Davami, G. Ababei, and M. Song, Metall. Mater. Trans. A, 46: 2718 (2015). https://doi.org/10.1007/s11661-015-2848-x
  22. A.G. Il’inskij, A.P. Brovko, G.M. Zelinskaya, N.S. Kosenko, T.M. Khristenko, G.F. Kobzenko, and A.A. Shkola, Metallofizika, 10, No. 2: 34 (1988) (in Russian).
  23. G.M. Zelinskaya, L.Ye. Mikhaylova, A.P. Brovko, and A.V. Romanova, Metallofizika, 14: 111 (1992) (in Russian).
  24. Amorfnyye Metallicheskie Splavy [Amorphous Metal Alloys] (Eds. V.V. Nemoshkalenko et al.) (Kiev: Naukova Dumka: 1987) (in Russian).
  25. A.V. Romanova, Metallofiz. Noveishie Tekhnol, 17: 3 (1995) (in Russian).
  26. A.G. Il’inskiy, G.M. Zelinskaya, V.V. Maslov, V.K. Nosenko, and Yu.V. Lepeyeva, Metallofiz. Noveishie Tekhnol., 26: 1501 (2004) (in Russian).
  27. G.M. Zelinskaya, V.V. Maslov, D.Yu. Paderno, A.V. Romanova, and A.V. Melezhik, Metallofizika, 14, No. 6: 45 (1992) (in Russian).
  28. G.M. Zelinskaya, T.M. Khristenko, and A.V. Romanova, Metallofiz. Noveishie Tekhnol., 23: 961 (2001).
  29. A.M. Glezer, M.R. Plotnikova, R.V. Sundeyev, and N.A. Shurygina, Izvestiya RAN. Ser. Fizicheskaya, 77: 1687 (2013) (in Russian).
  30. G.E. Abrosimova, A.S. Aronin, S.V. Dobatkin, S.D. Kaloshkin, D.V. Matveev, O.G. Rybchenko, E.V. Tatyanin, and I.I. Zverkova, J. Metastable Nanocryst. Mater., 24–25: 69 (2005). https://doi.org/10.4028/www.scientific.net/JMNM.24-25.69
  31. W. Li, X. Li, D. Guo, K. Sato, D.V. Gunderov, V.V. Stolyarov, and X. Zhang, Appl. Phys. Lett., 94, No. 23: 231904 (2009). https://doi.org/10.1063/1.3152013
  32. A.M. Glezer, I.Ye. Permyakova, V.V. Gromov, and V.V. Kovalenko, Mekhanicheskoye Povedenie Amorfnykh Splavov [Mechanical Behaviour of Amorphous Alloys] (Novokuznetsk: Izd-vo SibGIU: 2006) (in Russian).
  33. A.M. Glezer, B.V. Molotilov, and O.L. Utevskaya, Dokl. AN SSSR, 283: 106 (1985) (in Russian).
  34. A.A. Rusakov, Rentgenografiya Metallov [Roentgenography of Metals] (Moscow: Atomizdat: 1977) (in Russian).
  35. B. Huang, R.J. Perez, P.J. Crawford, A.A. Sharif, S.R. Nutt, and E.J. Lavernia, Nanostruct. Mater., 5, No. 5: 545 (1995). https://doi.org/10.1016/0965-9773(95)00261-C
  36. T. Gheiratmand, H.R. Madaah Hosseini, P. Davami, M. Gjoka, and M. Song, J. Magnet. Mater., 381: 322 (2015). https://doi.org/10.1016/j.jmmm.2015.01.016
  37. G.J. Fan, M.X. Quan, and Z.Q. Hu, J. Appl. Phys., 80, No. 10: 6055 (1996). https://doi.org/10.1063/1.363563
  38. M.O. Vasiliev, V.O. Tin’kov, Yu.M. Petrov, S. M. Voloshko, G.G. Galstyan, V.T. Cherepin, and A.S. Khodakivskyy, Metallofiz. Noveishie Tekhnol., 35, No. 5: 667 (2013) (in Russian).
  39. B.N. Mordyuk and G.I. Prokopenko, J. Sound Vibration, 308, Nos. 3–5: 855 (2007). https://doi.org/10.1016/j.jsv.2007.03.054
  40. N.A. Shurygina, A.M. Glezer, I.Ye. Permyakova, and Ye.N. Blinova, Izvestiya RAN. Ser. Fizicheskaya, 76: 52 (2012).
  41. H. Chen, Y. He, G.J. Shiflet, and S.J. Poon, Nature, 367: 541 (1994). https://doi.org/10.1038/367541a0
  42. W.H. Jiang and M. Atzmon, Acta Mater., 51, No. 14: 4095 (2003). https://doi.org/10.1016/S1359-6454(03)00229-5
  43. J.-J. Kim, Y. Choi, S. Suresh, and A.S. Argon, Science, 295, No. 555: 654 (2002). https://doi.org/10.1126/science.1067453
  44. A.M. Glezer, M.R. Plotnikova, R.V. Sundeyev, and N.A. Shurygina, Izvestiya RAN. Ser. Fizicheskaya, 77: 1687 (2013) (in Russian).
  45. A.M. Glezer and B.V. Molotilov, Struktura i Mekhanicheskie Svoistva Amorfnykh Splavov [Structure and Mechanical Properties of Amorphous Alloys] (Moscow: Metallurgiya: 1992) (in Russian).
  46. V.P. Alekhin and V.A. Khonik, Struktura i Fizicheskie Zakonomernosti Deformatsii Amorfnykh Splavov [Structure and Physical Regularities of Deformation of Amorphous Alloys] (Moscow: Metallurgiya: 1992) (in Russian).
  47. P.G. Zielinsky and D.G. Ast, Phil. Mag. A, 48, No. 5: 811 (1983). https://doi.org/10.1080/01418618308236546
  48. C.A. Pampillo, J. Mater. Sci., 10: 1194 (1975). https://doi.org/10.1007/BF00541403
  49. T. Masumoto, Sci. Rep. Res. Inst. Tohoku Univ. Ser. A, 26: 246 (1977).
  50. F. Meng, K. Tsuchiya, S. Ii, and Y. Yokoyama, Appl. Phys. Lett., 101, No. 12: 121914 (2012). https://doi.org/10.1063/1.4753998
  51. F. Spaepen, Acta Metall., 25, No. 4: 407 (1977). https://doi.org/10.1016/0001-6160(77)90232-2
  52. A.S. Argon, Acta Metall., 27, No. 1: 47 (1979). https://doi.org/10.1016/0001-6160(79)90055-5
  53. M.L. Trudeau, J.Y. Huot, R. Schulz, D. Dussault, A. Van Neste, and G. L’Espérance, Phys. Rev. В, 45, No. 9: 4626 (1992). https://doi.org/10.1103/PhysRevB.45.4626
  54. C. Bansa, B. Fultz, and W.L. Johnson, Nanostruct. Mater., 4, No. 8: 919 (1994). https://doi.org/10.1016/0965-9773(94)90098-1
  55. Y. He, G.J. Shiflet, and S.J. Poon, Acta Metall. Mater., 43, No. 1: 83 (1995). https://doi.org/10.1016/0956-7151(95)90264-3
  56. J. Xu and M. Atzmon, Appl. Phys. Lett., 73, No. 13: 1805 (1998). https://doi.org/10.1063/1.122288
  57. S.M. Bokoch, M.P. Kulish, T.M. Radchenko, and V.A. Tatarenko, Metallofiz. Noveishie Tekhnol., 26, No. 3: 387 (2004) (in Russian).
  58. S.M. Bokoch, M.P. Kulish, V.A. Tatarenko, and T.M. Radchenko, Metallofiz. Noveishie Tekhnol., 26, No. 4: 541 (2004) (in Russian).
  59. V.A. Tatarenko and T.M. Radchenko, Defect Diffus. Forum, 194–199, part 1: 183–188 (2001). https://doi.org/10.4028/www.scientific.net/DDF.194-199.183
  60. T.M. Radchenko, V.A. Tatarenko, and S.M. Bokoch, Metallofiz. Noveishie Technol., 28, No. 12: 1699 (2006).
  61. V.A. Tatarenko and T.M. Radchenko, Usp. Fiz. Met., 3, No. 2: 111 (2002) (in Ukrainian). https://doi.org/10.15407/ufm.03.02.111
  62. V.V. Maslov, A.G. Il’inskiy, V.K. Nosenko, A.P. Brovko, and I.K. Yevlash, Metallofiz. Noveishie Tekhnol., 22, No. 3: 43 (2000) (in Russian).
  63. O.G. Il’inskyy, V.L. Karbivs’kyy, A.P. Shpak, and Yu.V. Lepeeva, Nanosistemi, Nanomateriali, Nanotehnologii, 8, No. 3: 483 (2010) (in Russian).
  64. A.D. Alexeev, G.M. Zelinskaya, A.G. Il’insky, I.G. Kaban, Yu.V. Lepeyeva, G.S. Mogilny, E.V. Ulyanova, and A.P. Shpak, Fizika i Tekhnika Vysokikh Davleniy, 18, No. 3: 35 (2008) (in Russian).
  65. A.M. Glezer, S.V. Dobatkin, M.R. Plotnikova, and A.V. Shalimova, Mater. Sci. Forum., 584–586: 227 (2008). https://doi.org/10.4028/www.scientific.net/MSF.584-586.227
  66. B. Yang, C.T, Liu, T.G. Nieh, M.L. Morrison, P.K. Liaw, and R.A. Buchanan, J. Mater. Res., 21, No. 4: 915 (2006). https://doi.org/10.1557/jmr.2006.0124
  67. J.J. Lewandowski and A.L. Greer, Nature Mater., 5: 15 (2006). https://doi.org/10.1038/nmat1536
  68. F. Spaepen, Nature Mater., 5: 7 (2006). https://doi.org/10.1038/nmat1552
  69. A.M. Glezer, S.G. Zaychenko, and M.R. Plotnikova, Izvestiya RAN. Ser. Fizicheskaya, 76: 63 (2012).
  70. V.G. Gryaznov, A.Ye. Kaprelov, and A.Ye. Romanov, Pis’ma v ZhETF, 15: 1256 (1989) (in Russian).
  71. A. Mazilkin, B. Straumal, A. Kilmametov, P. Straumal, and B. Baretzky, Mater. Trans., 60, No. 8: (2019). https://doi.org/10.2320/matertrans.MF201938
  72. A.A. Csontos and G.J. Shiflet, Nanostruct. Mater., 9, Nos. 1–8: 281 (1997). https://doi.org/10.1016/S0965-9773(97)90068-4
  73. M.L. Trudeau, L. Dignard-Bailey, R. Schulz, D. Dusdault, and A. Van Neste, Nanostruct. Mater., 2, No. 4: 361 (1993). https://doi.org/10.1016/0965-9773(93)90177-D
  74. Amorphous Metallic Alloys (Ed. F.E. Luborsky) (Oxford: Butterworth–Heinemann, Elsevier: 1983). https://doi.org/10.1016/C2013-0-05075-X
  75. C. Suryanarayana and A. Inoue, Bulk Metallic Glasses (Boca Raton, FL: Taylor & Francis Group, LLC: 2018).
  76. K. Miyoshi and D.H. Buckley, Thin Solid Films, 118, No: 3: 363 (1984). https://doi.org/10.1016/0040-6090(84)90206-2
  77. G. Mazzone, A. Montone, and M.V. Antisari, Phys. Rev. Lett., 65, No. 16: 2019 (1990). https://doi.org/10.1103/PhysRevLett.65.2019
  78. W.H. Jiang, F.E. Pinkerton, and M.J. Atzmon, J. Appl. Phys., 93, No. 11: 9287 (2003). https://doi.org/10.1063/1.1571234