Nanocrystallization of Amorphous Fe-Based Alloys under Severe Plastic Deformation

M. O. Vasylyev$^1$, V. K. Nosenko$^1$, I. V. Zagorulko$^1$, and S. M. Voloshko$^2$

$^1$G. V. Kurdyumov Institute for Metal Physics of the N.A.S. of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine
$^2$2National Technical University of Ukraine ‘Igor Sikorsky Kyiv Polytechnic Institute’, 37 Peremohy Ave., UA-03056 Kyiv, Ukraine

Received 02.08.2019; final version — 10.07.2020 Download PDF logo PDF

Abstract
The literature data on the problem of modification of the structure and properties of the Fe-based rapid-quenched alloys by various methods of severe plastic deformation (SPD) are reviewed. The SPD methods such as Bridgman cell torsion, ball-mill processing and high-frequency shock treatment as well as their advantages and disadvantages are considered. By examples of a large number of amorphous Fe-based alloys, the influence on their structure and properties of each of the considered SPD methods is analysed. Based on the obtained data, the mechanism of deformation nanocrystallization of amorphous alloys is proposed.

Keywords: amorphous alloys, severe plastic deformation, shear bands, nanocrystallization, mechanical properties.

Citation: M. O. Vasylyev, V. K. Nosenko, I. V. Zagorulko, and S. M. Voloshko, Nanocrystallization of Amorphous Fe-Based Alloys under Severe Plastic Deformation, Progress in Physics of Metals, 21, No. 3: 319–344 (2020)


References (78)  
  1. G. Gleiter, Acta Mater., 48, No. 1: 1 (2000). https://doi.org/10.1016/S1359-6454(99)00285-2
  2. R.Z. Valiev and I.V. Aleksandrov, Nanostrukturnyye Materialy, Poluchennyye Intensivnoy Plasticheskoy Deformatsiey [Nanostructural Materials Obtained by the Severe Plastic Deformation] (Moscow: LOGOS: 2000) (in Russian).
  3. S.I. Sydorenko, Yu.M. Makohon, and S.M. Voloshko, Materialoznavstvo Tonkoplivkovykh Nanostruktur. Dyfuziya i Reaktsiyi [Materials Science of Thin Film Nanostructures. Diffusion and Reactions] (Kyiv: Naukova Dumka: 2000) (in Ukrainian).
  4. A.P. Shpak, Yu.A. Kunitskiy, and V.I. Lysov, Klasternyye i Nanostrukturnyye Materialy [Cluster and Nanostructural Materials] (Kyiv: Akademperiodyka: 2002) (in Russian).
  5. K.S. Kumar, H. Van Swygenhoven, and S. Suresh, Acta Mater., 51, No. 19: 5743 (2003). https://doi.org/10.1016/j.actamat.2003.08.032
  6. V.V. Gors’ky, O.M. Grypachevs’ky, V.V. Tykhonovych, and V.M. Uvarov, Usp. Fiz. Met., 4, No. 4: 271 (2003) (in Russian). https://doi.org/10.15407/ufm.04.04.271
  7. A.M. Glezer, Izvestiya RAN. Ser. Fizicheskaya, 71: 1767 (2007) (in Russian).
  8. M.O. Vasiliev, G.I. Prokopenko, and V.S. Filatova, Usp. Fiz. Met., 5, No. 3: 345 (2004) (in Russian). https://doi.org/10.15407/ufm.05.03.345
  9. Y. Yoshizawa, S. Oguma, and K. Yamauch., J. Appl. Phys., 64, No. 10: 6044 (1989). https://doi.org/10.1063/1.342149
  10. V.V. Maslov, V.K. Nosenko, L.Ye. Taranenko, and A.P. Brovko, Fiz. Met. Metalloved., 91: 47 (2001) (in Russian).
  11. U. Köster, U. Schünemann, M. Blank-Bewersdorff, S. Brauer, M. Sutton, and G.B. Stephenson, Mat. Sci. Eng. A, 133: 611 (1991). https://doi.org/10.1016/0921-5093(91)90146-E
  12. N.I. Noskova, N.F. Vil’danov, R.I. Kuznetsov, R.I. Tagirov, and A.A. Glazer, Fiz. Met. Metalloved., 65: 669 (1988) (in Russian).
  13. G.E. Abrosimova, A.S. Aronin, S.V. Dobatkin, I.I. Zver’kova, D.V. Matveev, and O.G. Rybchenko, Phys. Metals Metallogr., 106: 597 (2008). https://doi.org/10.1134/S0031918X08120089
  14. Zs. Kovacs, P. Henits, A. P. Zhilyaev, and A. Revesz, Scr. Mater., 54, No. 10: 1733 (2006). https://doi.org/10.1016/j.scriptamat.2006.02.004
  15. N. Boucharat, R. Hebert, H. Rösner, R. Valiev, and G. Wilde, Scr. Mater., 53, No. 7: 823 (2005). https://doi.org/10.1016/j.scriptamat.2005.06.004
  16. M.L. Trudeau and R. Schulz, Phys. Rev. Lett., 64, No. 1: 99 (1990). https://doi.org/10.1103/PhysRevLett.64.99
  17. F.Q. Guo and K. Lu, Metall. Mater. Trans. A, 28: 1123 (1997). https://doi.org/10.1007/s11661-997-0278-0
  18. G.J. Fan, M.X. Quan, Z.Q. Hu, W. Löser, and J. Eckert, J. Mater. Res., 14, No. 9: 3765 (1999). https://doi.org/10.1557/JMR.1999.0510
  19. B. Yao, S.-E. Liu, L. Liu, L. Si, W.-H. Su, and Y. Li, J. Appl. Phys., 90, No. 3: 1650 (2001). https://doi.org/10.1063/1.1385354
  20. C. Zhang, Z. Zhang, Z. Qi, Y. Qi et al., J. Non-Cryst. Solids, 354, No. 32: 3812 (2008). https://doi.org/10.1016/j.jnoncrysol.2008.05.003
  21. T. Gheiratmand, M.H.R. Hosseini, P. Davami, G. Ababei, and M. Song, Metall. Mater. Trans. A, 46: 2718 (2015). https://doi.org/10.1007/s11661-015-2848-x
  22. A.G. Il’inskij, A.P. Brovko, G.M. Zelinskaya, N.S. Kosenko, T.M. Khristenko, G.F. Kobzenko, and A.A. Shkola, Metallofizika, 10, No. 2: 34 (1988) (in Russian).
  23. G.M. Zelinskaya, L.Ye. Mikhaylova, A.P. Brovko, and A.V. Romanova, Metallofizika, 14: 111 (1992) (in Russian).
  24. Amorfnyye Metallicheskie Splavy [Amorphous Metal Alloys] (Eds. V.V. Nemoshkalenko et al.) (Kiev: Naukova Dumka: 1987) (in Russian).
  25. A.V. Romanova, Metallofiz. Noveishie Tekhnol, 17: 3 (1995) (in Russian).
  26. A.G. Il’inskiy, G.M. Zelinskaya, V.V. Maslov, V.K. Nosenko, and Yu.V. Lepeyeva, Metallofiz. Noveishie Tekhnol., 26: 1501 (2004) (in Russian).
  27. G.M. Zelinskaya, V.V. Maslov, D.Yu. Paderno, A.V. Romanova, and A.V. Melezhik, Metallofizika, 14, No. 6: 45 (1992) (in Russian).
  28. G.M. Zelinskaya, T.M. Khristenko, and A.V. Romanova, Metallofiz. Noveishie Tekhnol., 23: 961 (2001).
  29. A.M. Glezer, M.R. Plotnikova, R.V. Sundeyev, and N.A. Shurygina, Izvestiya RAN. Ser. Fizicheskaya, 77: 1687 (2013) (in Russian).
  30. G.E. Abrosimova, A.S. Aronin, S.V. Dobatkin, S.D. Kaloshkin, D.V. Matveev, O.G. Rybchenko, E.V. Tatyanin, and I.I. Zverkova, J. Metastable Nanocryst. Mater., 24–25: 69 (2005). https://doi.org/10.4028/www.scientific.net/JMNM.24-25.69
  31. W. Li, X. Li, D. Guo, K. Sato, D.V. Gunderov, V.V. Stolyarov, and X. Zhang, Appl. Phys. Lett., 94, No. 23: 231904 (2009). https://doi.org/10.1063/1.3152013
  32. A.M. Glezer, I.Ye. Permyakova, V.V. Gromov, and V.V. Kovalenko, Mekhanicheskoye Povedenie Amorfnykh Splavov [Mechanical Behaviour of Amorphous Alloys] (Novokuznetsk: Izd-vo SibGIU: 2006) (in Russian).
  33. A.M. Glezer, B.V. Molotilov, and O.L. Utevskaya, Dokl. AN SSSR, 283: 106 (1985) (in Russian).
  34. A.A. Rusakov, Rentgenografiya Metallov [Roentgenography of Metals] (Moscow: Atomizdat: 1977) (in Russian).
  35. B. Huang, R.J. Perez, P.J. Crawford, A.A. Sharif, S.R. Nutt, and E.J. Lavernia, Nanostruct. Mater., 5, No. 5: 545 (1995). https://doi.org/10.1016/0965-9773(95)00261-C
  36. T. Gheiratmand, H.R. Madaah Hosseini, P. Davami, M. Gjoka, and M. Song, J. Magnet. Mater., 381: 322 (2015). https://doi.org/10.1016/j.jmmm.2015.01.016
  37. G.J. Fan, M.X. Quan, and Z.Q. Hu, J. Appl. Phys., 80, No. 10: 6055 (1996). https://doi.org/10.1063/1.363563
  38. M.O. Vasiliev, V.O. Tin’kov, Yu.M. Petrov, S. M. Voloshko, G.G. Galstyan, V.T. Cherepin, and A.S. Khodakivskyy, Metallofiz. Noveishie Tekhnol., 35, No. 5: 667 (2013) (in Russian).
  39. B.N. Mordyuk and G.I. Prokopenko, J. Sound Vibration, 308, Nos. 3–5: 855 (2007). https://doi.org/10.1016/j.jsv.2007.03.054
  40. N.A. Shurygina, A.M. Glezer, I.Ye. Permyakova, and Ye.N. Blinova, Izvestiya RAN. Ser. Fizicheskaya, 76: 52 (2012).
  41. H. Chen, Y. He, G.J. Shiflet, and S.J. Poon, Nature, 367: 541 (1994). https://doi.org/10.1038/367541a0
  42. W.H. Jiang and M. Atzmon, Acta Mater., 51, No. 14: 4095 (2003). https://doi.org/10.1016/S1359-6454(03)00229-5
  43. J.-J. Kim, Y. Choi, S. Suresh, and A.S. Argon, Science, 295, No. 555: 654 (2002). https://doi.org/10.1126/science.1067453
  44. A.M. Glezer, M.R. Plotnikova, R.V. Sundeyev, and N.A. Shurygina, Izvestiya RAN. Ser. Fizicheskaya, 77: 1687 (2013) (in Russian).
  45. A.M. Glezer and B.V. Molotilov, Struktura i Mekhanicheskie Svoistva Amorfnykh Splavov [Structure and Mechanical Properties of Amorphous Alloys] (Moscow: Metallurgiya: 1992) (in Russian).
  46. V.P. Alekhin and V.A. Khonik, Struktura i Fizicheskie Zakonomernosti Deformatsii Amorfnykh Splavov [Structure and Physical Regularities of Deformation of Amorphous Alloys] (Moscow: Metallurgiya: 1992) (in Russian).
  47. P.G. Zielinsky and D.G. Ast, Phil. Mag. A, 48, No. 5: 811 (1983). https://doi.org/10.1080/01418618308236546
  48. C.A. Pampillo, J. Mater. Sci., 10: 1194 (1975). https://doi.org/10.1007/BF00541403
  49. T. Masumoto, Sci. Rep. Res. Inst. Tohoku Univ. Ser. A, 26: 246 (1977).
  50. F. Meng, K. Tsuchiya, S. Ii, and Y. Yokoyama, Appl. Phys. Lett., 101, No. 12: 121914 (2012). https://doi.org/10.1063/1.4753998
  51. F. Spaepen, Acta Metall., 25, No. 4: 407 (1977). https://doi.org/10.1016/0001-6160(77)90232-2
  52. A.S. Argon, Acta Metall., 27, No. 1: 47 (1979). https://doi.org/10.1016/0001-6160(79)90055-5
  53. M.L. Trudeau, J.Y. Huot, R. Schulz, D. Dussault, A. Van Neste, and G. L’Espérance, Phys. Rev. В, 45, No. 9: 4626 (1992). https://doi.org/10.1103/PhysRevB.45.4626
  54. C. Bansa, B. Fultz, and W.L. Johnson, Nanostruct. Mater., 4, No. 8: 919 (1994). https://doi.org/10.1016/0965-9773(94)90098-1
  55. Y. He, G.J. Shiflet, and S.J. Poon, Acta Metall. Mater., 43, No. 1: 83 (1995). https://doi.org/10.1016/0956-7151(95)90264-3
  56. J. Xu and M. Atzmon, Appl. Phys. Lett., 73, No. 13: 1805 (1998). https://doi.org/10.1063/1.122288
  57. S.M. Bokoch, M.P. Kulish, T.M. Radchenko, and V.A. Tatarenko, Metallofiz. Noveishie Tekhnol., 26, No. 3: 387 (2004) (in Russian).
  58. S.M. Bokoch, M.P. Kulish, V.A. Tatarenko, and T.M. Radchenko, Metallofiz. Noveishie Tekhnol., 26, No. 4: 541 (2004) (in Russian).
  59. V.A. Tatarenko and T.M. Radchenko, Defect Diffus. Forum, 194–199, part 1: 183–188 (2001). https://doi.org/10.4028/www.scientific.net/DDF.194-199.183
  60. T.M. Radchenko, V.A. Tatarenko, and S.M. Bokoch, Metallofiz. Noveishie Technol., 28, No. 12: 1699 (2006).
  61. V.A. Tatarenko and T.M. Radchenko, Usp. Fiz. Met., 3, No. 2: 111 (2002) (in Ukrainian). https://doi.org/10.15407/ufm.03.02.111
  62. V.V. Maslov, A.G. Il’inskiy, V.K. Nosenko, A.P. Brovko, and I.K. Yevlash, Metallofiz. Noveishie Tekhnol., 22, No. 3: 43 (2000) (in Russian).
  63. O.G. Il’inskyy, V.L. Karbivs’kyy, A.P. Shpak, and Yu.V. Lepeeva, Nanosistemi, Nanomateriali, Nanotehnologii, 8, No. 3: 483 (2010) (in Russian).
  64. A.D. Alexeev, G.M. Zelinskaya, A.G. Il’insky, I.G. Kaban, Yu.V. Lepeyeva, G.S. Mogilny, E.V. Ulyanova, and A.P. Shpak, Fizika i Tekhnika Vysokikh Davleniy, 18, No. 3: 35 (2008) (in Russian).
  65. A.M. Glezer, S.V. Dobatkin, M.R. Plotnikova, and A.V. Shalimova, Mater. Sci. Forum., 584–586: 227 (2008). https://doi.org/10.4028/www.scientific.net/MSF.584-586.227
  66. B. Yang, C.T, Liu, T.G. Nieh, M.L. Morrison, P.K. Liaw, and R.A. Buchanan, J. Mater. Res., 21, No. 4: 915 (2006). https://doi.org/10.1557/jmr.2006.0124
  67. J.J. Lewandowski and A.L. Greer, Nature Mater., 5: 15 (2006). https://doi.org/10.1038/nmat1536
  68. F. Spaepen, Nature Mater., 5: 7 (2006). https://doi.org/10.1038/nmat1552
  69. A.M. Glezer, S.G. Zaychenko, and M.R. Plotnikova, Izvestiya RAN. Ser. Fizicheskaya, 76: 63 (2012).
  70. V.G. Gryaznov, A.Ye. Kaprelov, and A.Ye. Romanov, Pis’ma v ZhETF, 15: 1256 (1989) (in Russian).
  71. A. Mazilkin, B. Straumal, A. Kilmametov, P. Straumal, and B. Baretzky, Mater. Trans., 60, No. 8: (2019). https://doi.org/10.2320/matertrans.MF201938
  72. A.A. Csontos and G.J. Shiflet, Nanostruct. Mater., 9, Nos. 1–8: 281 (1997). https://doi.org/10.1016/S0965-9773(97)90068-4
  73. M.L. Trudeau, L. Dignard-Bailey, R. Schulz, D. Dusdault, and A. Van Neste, Nanostruct. Mater., 2, No. 4: 361 (1993). https://doi.org/10.1016/0965-9773(93)90177-D
  74. Amorphous Metallic Alloys (Ed. F.E. Luborsky) (Oxford: Butterworth–Heinemann, Elsevier: 1983). https://doi.org/10.1016/C2013-0-05075-X
  75. C. Suryanarayana and A. Inoue, Bulk Metallic Glasses (Boca Raton, FL: Taylor & Francis Group, LLC: 2018).
  76. K. Miyoshi and D.H. Buckley, Thin Solid Films, 118, No: 3: 363 (1984). https://doi.org/10.1016/0040-6090(84)90206-2
  77. G. Mazzone, A. Montone, and M.V. Antisari, Phys. Rev. Lett., 65, No. 16: 2019 (1990). https://doi.org/10.1103/PhysRevLett.65.2019
  78. W.H. Jiang, F.E. Pinkerton, and M.J. Atzmon, J. Appl. Phys., 93, No. 11: 9287 (2003). https://doi.org/10.1063/1.1571234