Heat-Resistant Powder Alloys in Additive Manufacturing: Materials, Application, and Perspectives

DURIAGINA Z.A.$^{1}$, LEMISHKA I.A.$^{1}$, ROMANOVA T.Ye.$^{2,3}$, TROSTIANCHYN A.M.$^{1}$, KULYK V.V.$^{1}$, EFANOV V.S.$^{4}$, PRIAKHIN V.Ye.$^{1}$, and PAVLYSH V.A.$^{1}$

$^1$Lviv Polytechnic National University, 12 Bandera Str., UA-79000 Lviv, Ukraine
$^2$Anatolii Pidhornyi Institute of Mechanical Engineering Problems of the N.A.S. of Ukraine, 2/10 Komunalnykiv Str., UA-61046 Kharkiv, Ukraine
$^3$Leeds University Business School, University of Leeds, LS2 9JT Leeds, United Kingdom
$^4$National University ‘Zaporizhzhia Polytechnic’, 64 Zhukovskoho Str., UA-69063 Zaporizhzhia, Ukraine

Received / Final version: 07.10.2025 / 17.11.2025 Download PDF logo PDF

Abstract
Stainless steels and heat-resistant alloys of the Fe–Cr, Fe–Mn, Fe–Mn–N, Fe–Ni, and Fe–Cr–Ni systems are leading materials for critical components, particularly, in the aviation and energy sectors. Their use in the form of powder alloys expands the possibilities of additive technologies and enhances the functional properties of products made of them. Well known that, simultaneously, technological problems must be solved and computer-modelling methods implemented to optimise the microstructure design of future products. The article systematises current understanding of the features of phase-state formation during laser-powder bed fusion (LPBF) and direct energy deposition (DED) processes, the influence of 3D-printing parameters on the morphology of γ- and γ′-phases, as well as on the formation of secondary phases such as topologically close-packed (TCP) ones and carbides. The main mechanisms of defect formation, residual stresses and porosity, which determine the operational properties of products, are considered. Effective approaches to enhancing structural stability are presented, including the use of thermomechanical post-treatment hot isostatic pressing (HIP), optimisation of granulometric and chemical compositions, application of computer modelling methods (CALPHAD, machine learning (ML), neural networks, etc.) and the implementation of in-situ alloying technologies. Special attention is given to the latest trends in the development of additive technologies for nickel superalloys, particularly, the creation of next-generation additive-manufacturing (AM) oriented materials, digital process monitoring, and the transition to a sustainable (‘green’) manufacturing concept. The review conducted allows for the identification of key scientific and technological directions to ensure the stability of the microstructure, crack resistance, and durability of nickel-superalloy components produced by additive-manufacturing methods.

Keywords: additive manufacturing, nickel superalloys, microstructure stability, strengthening phases, porosity, in-situ alloying.

DOI: https://doi.org/10.15407/ufm.26.04.***

Citation: Z.A. Duriagina, I.A. Lemishka, T.E. Romanova, A.M. Trostianchyn, I.S. Litvinchev, V.V. Kulyk, V.S. Efanov, V.E. Priakhin, and V.A. Pavlysh, Heat-Resistant Powder Alloys in Additive Manufacturing: Materials, Application, and Perspectives, Progress in Physics of Metals, 26, No. 4: ***–*** (2025)


References  
  1. M.P. Haines, V.V. Rielli, S. Primig, and N. Haghdadi, J. Mater. Sci., 57: 14135 (2022); https://doi.org/10.1007/s10853-022-07501-4
  2. R R. Darolia, Int. Mater. Rev., 64, No. 6: 355 (2019); https://doi.org/10.1080/09506608.2018.1516713
  3. G. Gudivada and A.K. Pandey, J. Alloys Compd., 963: 171128 (2023); https://doi.org/10.1016/j.jallcom.2023.171128
  4. A. Mostafaei, R. Ghiaasiaan, I.-T. Ho, S. Strayer, K.-C. Chang, N. Shamsaei, S. Shao, S. Paul, A.-C. Yeh, S. Tin, and A.C. To, Prog. Mater. Sci., 136: 101108 (2023); https://doi.org/10.1016/j.pmatsci.2023.101108
  5. M. Zhang, B. Zhang, Y. Wen, and X. Qu, Int. J. Miner. Metall. Mater., 29, No. 3: 369 (2022); https://doi.org/10.1007/s12613-021-2331-1
  6. E. Hosseini and V.A. Popovich, Addit. Manuf., 30: 100877 (2019); https://doi.org/10.1016/j.addma.2019.100877
  7. G.P. Dinda, A.K. Dasgupta, and J. Mazumder, Mater. Sci. Eng. A, 509, Iss. 1–2: 98 (2009); https://doi.org/10.1016/j.msea.2009.01.009
  8. Y. Tian, D. Tomus, P. Rometsch, and X. Wu, Addit. Manuf., 13: 103 (2017); https://doi.org/10.1016/j.addma.2016.10.010
  9. E.B. Raeker, K.M. Pusch, K.M. Mullin, J.D. Lamb, N. Zhou, S.A.J. Forsik, A.D. Dicus, M.M. Kirka, and T.M. Pollock, Superalloys 2024 (Eds. J. Cormier, I. Edmonds, S.A.J. Forsik, P. Kontis, C. O’Connell, T. Smith, A. Suzuki, S. Tin, and J. Zhang), The Minerals, Metals & Materials Series (Cham: Springer Nature Switzerland: 2024), p. 948; https://doi.org/10.1007/978-3-031-63937-1_88
  10. T.D. Ngo, A. Kashani, G. Imbalzano, K.T.Q. Nguyen, and D. Hui, Compos. Part B Eng., 143: 172 (2018); https://doi.org/10.1016/j.compositesb.2018.02.012
  11. C.W. Hull, U.S. Patent 4,575,330 (United States Patent and Trademark Office: 1986).
  12. I. Gibson, D.W. Rosen, and B. Stucker, Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing (New York: Springer: 2010); https://doi.org/10.1007/978-1-4419-1120-9
  13. EOS GmbH, Company History and Milestones, 2023; https://www.eos.info/about-us/who-we-are/history (accessed: 27.08.2025).
  14. J.-P. Kruth, M.C. Leu, and T. Nakagawa, CIRP Ann., 47, No. 2: 525 (1998); https://doi.org/10.1016/S0007-8506(07)63240-5
  15. S. Singh, V.S. Sharma, and A. Sachdev, Mater. Sci. Technol., 32, No. 8: 760 (2016); https://doi.org/10.1179/1743284715Y.0000000136
  16. D.D. Gu, W. Meiners, K. Wissenbach, and R. Poprawe, Int. Mater. Rev., 57, No. 3: 133 (2012); https://doi.org/10.1179/1743280411Y.0000000014
  17. H.A. Hegab, Manuf. Rev., 3: 11 (2016); https://doi.org/10.1051/mfreview/2016010
  18. B.A. Alshammari, M.S. Alsuhybani, A.M. Almushaikeh, B.M. Alotaibi, A.M. Alenad, N.B. Alqahtani, and A.G. Alharbi, Polymers, 13, No. 15: 2474 (2021); https://doi.org/10.3390/polym13152474
  19. M.R. Khan, J.M. Amin, Z.H. Mahamud, and M.S. Islam, SSRN (2024); https://doi.org/10.2139/ssrn.5106851
  20. Y. Banadaki, N. Razaviarab, H. Fekrmandi, and S. Sharifi, arXiv preprint (2020); https://doi.org/10.48550/arXiv.2003.08749
  21. W. Grzesik, J. Mach. Eng., 18, No. 4: 5 (2018); https://doi.org/10.5604/01.3001.0012.7629
  22. M. Salmi, Materials, 14, No. 1: 191 (2021); https://doi.org/10.3390/ma14010191
  23. B.O. Omiyale, T.O. Olugbade, T.E. Abioye, and P.K. Farayibi, Mater. Sci. Technol., 38, No. 7: 391 (2022); https://doi.org/10.1080/02670836.2022.2045549
  24. V. Mohanavel, K.S. Ashraff Ali, K. Ranganathan, J.A. Jeffrey, M.M. Ravikumar, and S. Rajkumar, Mater. Today: Proc., 47: 405 (2021); https://doi.org/10.1016/j.matpr.2021.04.596
  25. T.A. Yeshiwas, A.B. Tiruneh, and M.A. Sisay, J. Mater. Sci.: Mater. Eng., 20: 85 (2025); https://doi.org/10.1186/s40712-025-00306-8
  26. L. Zhou, J. Miller, J. Vezza, M. Mayster, M. Raffay, Q. Justice, Z. Al Tamimi, G. Hansotte, L.D. Sunkara, and J. Bernat, Sensors, 24, No. 9: 2668 (2024); https://doi.org/10.3390/s24092668
  27. C.C. Okpala and U.C. Emeka, Int. J. Latest Technol. Eng. Manag. Appl. Sci., 14, No. 3: 164 (2025); https://doi.org/10.51583/IJLTEMAS.2025.140300021
  28. I. Gibson, D. Rosen, and B. Stucker, Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing (New York: Springer: 2015); https://doi.org/10.1007/978-1-4939-2113-3
  29. Y. Zhai, D.A. Lados, and J.L. LaGoy, JOM, 66, No. 5: 808 (2014); https://doi.org/10.1007/s11837-014-0886-2
  30. L.K. Prasad and H. Smyth, Drug Dev. Ind. Pharm., 42, No. 7: 1019 (2016); https://doi.org/10.3109/03639045.2015.1120743
  31. J.F. Rodríguez, J.P. Thomas, and J.E. Renaud, Rapid Prototyp. J., 9, No. 4: 219 (2003); https://doi.org/10.1108/13552540310489604
  32. M. Jamshidian, E.A. Tehrany, M. Imran, M. Jacquot, and S. Desobry, Compr. Rev. Food Sci. Food Saf., 9: 552 (2010); https://doi.org/10.1111/j.1541-4337.2010.00126.x
  33. C.C. DeMerlis and D.R. Schoneker, Food Chem. Toxicol., 41, No. 3: 319 (2003); https://doi.org/10.1016/S0278-6915(02)00258-2
  34. S. Kalpakjian, S.R. Schmid, and K.S.V. Sekar, Manufacturing Engineering and Technology (Singapore: Pearson: 2014).
  35. J. Deckers, J. Vleugels, and J.-P. Kruth, J. Ceram. Sci. Technol., 5, No. 4: 245 (2014); https://doi.org/10.4416/JCST2014-00032
  36. T.P. Herbell and A.J. Eckel, J. Eng. Gas Turbines Power, 115, No. 1: 64 (1993); https://doi.org/10.1115/1.2906687
  37. C. Esposito Corcione, A. Greco, A. Licciulli, M. Martena, and A. Maffezzoli, AMST’02 Advanced Manufacturing Systems and Technology (Ed. E. Kuljanic) (Vienna: Springer: 2002); https://doi.org/10.1007/978-3-7091-2555-7_85
  38. J. Klein, M. Stern, G. Franchin, M. Kayser, C. Inamura, S. Dave, J.C. Weaver, P. Houk, P. Colombo, M. Yang, and N. Oxman, 3D Print. Addit. Manuf., 2, No. 3: 92 (2015); https://doi.org/10.1089/3dp.2015.0021
  39. G. Marchelli, R. Prabhakar, D. Storti, and M. Ganter, Rapid Prototyp. J., 17, No. 3: 187 (2011); https://doi.org/10.1108/13552541111124761
  40. W.E. Frazier, J. Mater. Eng. Perform., 23, No. 6: 1917 (2014); https://doi.org/10.1007/s11665-014-0958-z
  41. A. Ambrosi and M. Pumera, Chem. Soc. Rev., 45, No. 10: 2740 (2016); https://doi.org/10.1039/C5CS00714C
  42. L.E. Murr, S.M. Gaytan, D.A. Ramirez, E. Martinez, J. Hernandez, K.N. Amato, P.W. Shindo, F.R. Medina, and R.B. Wicker, J. Mater. Sci. Technol., 28, No. 1: 1 (2012); https://doi.org/10.1016/S1005-0302(12)60016-4
  43. W.E. Luecke and J.A. Slotwinski, J. Res. Natl. Inst. Stand. Technol., 119: 398 (2014); https://doi.org/10.6028/jres.119.015
  44. M. Islam, T. Purtonen, H. Piili, A. Salminen, and O. Nyrhilä, Phys. Procedia, 41: 835 (2013); https://doi.org/10.1016/j.phpro.2013.03.156
  45. J.-P. Järvinen, V. Matilainen, X. Li, H. Piili, A. Salminen, I. Mäkelä, and O. Nyrhilä, Phys. Procedia, 56: 72 (2014); https://doi.org/10.1016/j.phpro.2014.08.099
  46. I. Tolosa, F. Garciandía, F. Zubiri, F. Zapirain, and A. Esnaola, Int. J. Adv. Manuf. Technol., 51, Nos. 5–8: 639 (2010); https://doi.org/10.1007/s00170-010-2631-5
  47. A. Hinojos, J. Mireles, A. Reichardt, P. Frigola, P. Hosemann, L.E. Murr, and R.B. Wicker, Mater. Des., 94: 17 (2016); https://doi.org/10.1016/j.matdes.2016.01.041
  48. A.S. Wu, D.W. Brown, M. Kumar, G.F. Gallegos, and W.E. King, Metall. Mater. Trans. A, 45, No. 13: 6260 (2014); https://doi.org/10.1007/s11661-014-2549-x
  49. V. Shankar, K. Bhanu Sankara Rao, and S.L. Mannan, J. Nucl. Mater., 288, Nos. 2–3: 222 (2001); https://doi.org/10.1016/S0022-3115(00)00723-6
  50. F. Liu, X. Lin, C. Huang, M. Song, G. Yang, J. Chen, and W. Huang, J. Alloys Compd., 509, No. 13: 4505 (2011); https://doi.org/10.1016/j.jallcom.2010.11.176
  51. I. Tabernero, A. Lamikiz, S. Martínez, E. Ukar, and J. Figueras, Int. J. Mach. Tools Manuf., 51, No. 6: 465 (2011); https://doi.org/10.1016/j.ijmachtools.2011.02.003
  52. B. Słodki, Manag. Prod. Eng. Rev., 4, No. 2: 93 (2013); https://doi.org/10.2478/mper-2013-0020
  53. J.T. Ahn, K.C. Lee, K.H. Lee, and S.H. Han, J. Mech. Sci. Technol., 25, No. 9: 2393 (2011); https://doi.org/10.1007/s12206-011-0534-5
  54. D. Welling, Procedia CIRP, 13: 339 (2014); https://doi.org/10.1016/j.procir.2014.04.057
  55. F. Calignano, D. Manfredi, E.P. Ambrosio, L. Iuliano, and P. Fino, Int. J. Adv. Manuf. Technol., 67, Nos. 9–12: 2743 (2013); https://doi.org/10.1007/s00170-012-4688-9
  56. D. Buchbinder, H. Schleifenbaum, S. Heidrich, W. Meiners, and J. Bültmann, Phys. Procedia, 12, Pt. A: 271 (2011); https://doi.org/10.1016/j.phpro.2011.03.035
  57. Y. Li and D.D. Gu, Mater. Des., 63: 856 (2014); https://doi.org/10.1016/j.matdes.2014.07.006
  58. K. Kempen, L. Thijs, J. Van Humbeeck, and J.-P. Kruth, Phys. Procedia, 39: 439 (2012); https://doi.org/10.1016/j.phpro.2012.10.059
  59. B. Baufeld, O. Van der Biest, and R. Gault, Mater. Des., 31, Spec. Iss. (S106–S111): S106 (2010); https://doi.org/10.1016/j.matdes.2009.11.032
  60. W. Xu, M. Brandt, S. Sun, J. Elambasseril, Q. Liu, K. Latham, K. Xia, and M. Qian, Acta Mater., 85: 74 (2015); https://doi.org/10.1016/j.actamat.2014.11.028
  61. S. Tamilselvi, V. Raman, and N. Rajendran, Electrochim. Acta, 52, No. 3: 839 (2006); https://doi.org/10.1016/j.electacta.2006.06.018
  62. Y.L. Zhou, M. Niinomi, T. Akahori, H. Fukui, and H. Toda, Mater. Sci. Eng. A, 398, Nos. 1–2: 28 (2005); https://doi.org/10.1016/j.msea.2005.03.032
  63. H. Safari, S. Sharif, S. Izman, H. Jafari, and D. Kurniawan, Mater. Manuf. Process., 29, No. 3: 350 (2014); https://doi.org/10.1080/10426914.2013.872257
  64. I.M. Sarivan, O. Madsen, and B.V. Wæhrens, Int. J. Adv. Manuf. Technol., 132: 1931 (2024); https://doi.org/10.1007/s00170-024-13409-x
  65. A A. Sinha, B. Swain, A. Behera, P. Mallick, S.K. Samal, H.M. Vishwanatha, and A. Behera, J. Manuf. Mater. Process., 6, No. 1: 16 (2022); https://doi.org/10.3390/jmmp6010016
  66. Y. Stoyan, O. Pankratov, I. Lemishka, T. Romanova, and P. Stetsyuk, Cybern. Syst. Anal., 60, No. 3: 422 (2024); https://doi.org/10.1007/s10559-024-00683-6
  67. Z.A. Duriagina, I.A. Lemishka, A.M. Trostianchyn, E.I. Pleshakov, and T.M. Kovbasyuk, Powder Met. Met. Ceram., 57, Nos. 11–12: 697 (2019); https://doi.org/10.1007/s11106-019-00033-8
  68. Z Z.A. Duriagina, O.S. Filimonov, V.V. Kulyk, I.A. Lemishka, and R. Kuziola, J. Achiev. Mater. Manuf. Eng., 95, No. 2: 49 (2019); https://doi.org/10.5604/01.3001.0013.7914
  69. T.M. Pollock and S. Tin, J. Propuls. Power, 22, No. 2: 361 (2006); https://doi.org/10.2514/1.18239
  70. A. Kracke, Superalloy 718 and Derivatives 2012 (Eds. E.A. Ott, J.R. Groh, A. Banik, I. Dempster, T.P. Gabb, R. Helmink, X. Liu, A. Mitchell, G.P. Sjöberg, and A. Wusatowska-Sarnek) (Hoboken, N.J.: John Wiley & Sons: 2012), Ch. 2; https://doi.org/10.1002/9781118495223.ch2
  71. P.E.J. Stevens and R.A. Flewitt, Mater. Sci. Eng., 37, No. 1: 237 (1979); https://doi.org/10.1016/0025-5416(79)90157-5
  72. T.E. Strangman, G.S. Hoppin, C.M. Phipps, K. Harris, and R.E. Schwer, Proc. 12th Int. Symp. Superalloys, p. 215 (1980).
  73. J.-U. Lee, Y.-K. Kim, S.-M. Seo, and K.-A. Lee, Mater. Sci. Eng. A, 841: 143083 (2022); https://doi.org/10.1016/j.msea.2022.143083
  74. J. Xu, High-performance nickel-based superalloys for additive manufacturing (Dissertation) (Linköping, Linköping University Electronic Press: 2022); https://doi.org/10.3384/9789179292584
  75. J. Xu, H. Gruber, R.L. Peng, and J. Moverare, Materials, 13, No. 21: 4930 (2020); https://doi.org/10.3390/ma13214930
  76. M. de Jong, J.P. Tiarks, I.E. Anderson, C.M. Parish, J.S. Forrester, S.H. Lapidus, T.J. Horn, and D. Kaoumi, Powder Technol., 455: 120734 (2025); https://doi.org/10.1016/j.powtec.2025.120734
  77. X. Wang, J.T. Darsell, X. Ma, J. Liu, T. Liu, R. Prabhakaran, I.E. Anderson, and D. Zhang, JOM, 76, No. 6: 2899 (2024); https://doi.org/10.1007/s11837-024-06584-5
  78. S. Zhang, K. Guo, Y. Qing, and C. Liu, Materials, 18, No. 14: 3385 (2025); https://doi.org/10.3390/ma18143385
  79. J.R. Rieken, Gas Atomized Precursor Alloy Powder for ODS Ferritic Stainless Steel (Ames, IA: Ames Laboratory: 2011); https://doi.org/10.2172/1048516
  80. S. Vock, B. Klöden, A. Kirchner, T. Weißgärber, and B. Kieback, Prog. Addit. Manuf., 4: 383 (2019); https://doi.org/10.1007/s40964-019-00078-6
  81. P. Moghimian, T. Poirié, M. Habibnejad-Korayem, J. Arreguin Zavala, J. Kroeger, F. Marion, and F. Larouche, Addit. Manuf., 43: 102017 (2021); https://doi.org/10.1016/j.addma.2021.102017
  82. S. Pöyhtäri, J. Ruokoja, E.-P. Heikkinen, A. Heikkilä, T. Kokkonen, and P. Tynjälä, Metall. Mater. Trans. B, 55, No. 1: 251 (2024); https://doi.org/10.1007/s11663-023-02955-6
  83. K. Kamalasekaran, K. Mellin, and K. Hulme, J. Sustain. Metall., 10, No. 3: 1156 (2024); https://doi.org/10.1007/s40831-024-00886-3
  84. ASM Handbook. Vol. 7: Powder Metal Technologies and Applications (Materials Park, OH: ASM International: 1998), p. 1146–1147.
  85. C. Suryanarayana, Prog. Mater. Sci., 46, Nos. 1–2: 1 (2001); https://doi.org/10.1016/S0079-6425(99)00010-9
  86. A. Chiba, Y. Daino, K. Aoyagi, and K. Yamanaka, Materials, 14, No. 16: 4662 (2021); https://doi.org/10.3390/ma14164662
  87. R.R. Pillai, Q. Ren, Y.-F. Su, R.A. Kurfess, T.A. Feldhausen, and S. Nag, J. Eng. Gas Turbines Power, 146, No. 6: 061018 (2024); https://doi.org/10.1115/1.4063784
  88. M. Ziaee and N.B. Crane, Addit. Manuf., 28: 781 (2019); https://doi.org/10.1016/j.addma.2019.05.031
  89. F. Dini, S.A. Ghaffari, J. Jafar, H. Rezaie, and M. Shiri, Met. Powder Rep., 75, No. 2: 95 (2020); https://doi.org/10.1016/j.mprp.2019.05.001
  90. S.L. Lu, G.K. Meenashisundaram, P. Wang, S.M.L. Nai, and J. Wei, Addit. Manuf., 34: 101266 (2020); https://doi.org/10.1016/j.addma.2020.101266
  91. D. Oropeza and A.J. Hart, Int. J. Adv. Manuf. Technol., 114, Nos. 11–12: 3459 (2021); https://doi.org/10.1007/s00170-021-07123-1
  92. W. Du, X. Ren, Z. Pei, and C. Ma, J. Manuf. Sci. Eng., 142, No. 4: 040801 (2020); https://doi.org/10.1115/1.4046248
  93. L. Yuan, S. Ding, and C. Wen, Bioact. Mater., 4, No. 1: 56 (2019); https://doi.org/10.1016/j.bioactmat.2018.12.003
  94. T. DebRoy, T. Mukherjee, J.O. Milewski, J.W. Elmer, B. Ribic, J.J. Blecher, and W. Zhang, Nat. Mater., 18: 1026 (2019); https://doi.org/10.1038/s41563-019-0408-2
  95. D. Svetlizky, M. Das, B. Zheng, A.L. Vyatskikh, S. Bose, A. Bandyopadhyay, J.M. Schoenung, E.J. Lavernia, and N. Eliaz, Mater. Today, 49: 271 (2021); https://doi.org/10.1016/j.mattod.2021.03.020
  96. J.E. Ruiz, M. Cortina, J.I. Arrizubieta, and A. Lamikiz, Materials, 11, No. 8: 1388 (2018); https://doi.org/10.3390/ma11081388
  97. T. DebRoy, H.L. Wei, J.S. Zuback, T. Mukherjee, J.W. Elmer, J.O. Milewski, A.M. Beese, A. Wilson-Heid, A. De, and W. Zhang, Prog. Mater. Sci., 92: 112 (2018); https://doi.org/10.1016/j.pmatsci.2017.10.001
  98. N. Shamsaei, A. Yadollahi, L. Bian, and S.M. Thompson, Addit. Manuf., 8: 12 (2015); https://doi.org/10.1016/j.addma.2015.07.002
  99. F. Kaji, A.N. Jinoop, M. Zimny, G. Frikel, K. Tam, and E. Toyserkani, Addit. Manuf. Lett., 2: 100035 (2022); https://doi.org/10.1016/j.addlet.2022.100035
  100. A. Diniță, A. Neacșa, A.I. Portoacă, M. Tănase, C.N. Ilinca, and I.N. Ramadan, Materials, 16, No. 13: 4610 (2023); https://doi.org/10.3390/ma16134610
  101. Y. Liu, J. Shi, and Y. Wang, Adv. Eng. Mater., 25, No. 22: 2300489 (2023); https://doi.org/10.1002/adem.202300489
  102. J.J. Beaman, J.W. Barlow, D.L. Bourell, R.H. Crawford, H.L. Marcus, and K.P. McAlea, Solid Freeform Fabrication: A New Direction in Manufacturing (New York: Springer: 1997), pp. 1–21.
  103. M. Shellabear and O. Nyrhilä, Laser Assisted Net Shape Engineering 4 (LANE 2004) (Eds. M. Geiger and A. Otto) (Bamberg: Meisenbach: 2004), CD-ROM, pp. 393–404.
  104. G. Lütjering and J.C. Williams, Titanium, Engineering Materials and Processes (Berlin–Heidelberg: Springer: 2007).
  105. M. Baumers, Economic Aspects of Additive Manufacturing: Benefits, Costs and Energy Consumption (Ph.D. Thesis) (Loughborough University: 2012), 266 p.
  106. J.O. Milewski, Additive Manufacturing of Metals: From Fundamental Technology to Rocket Nozzles, Medical Implants, and Custom Jewelry (Cham: Springer International Publishing: 2017); https://doi.org/10.1007/978-3-319-58205-4
  107. W.E. King, A.T. Anderson, R.M. Ferencz, N.E. Hodge, C. Kamath, S.A. Khairallah, and A.M. Rubenchik, Appl. Phys. Rev., 2, No. 4: 041304 (2015); https://doi.org/10.1063/1.4937809
  108. D. Herzog, V. Seyda, E. Wycisk, and C. Emmelmann, Acta Mater., 117: 371 (2016); https://doi.org/10.1016/j.actamat.2016.07.019
  109. S. Chowdhury, N. Yadaiah, C. Prakash, S. Ramakrishna, S. Dixit, L.R. Gupta, and D. Buddhi, J. Mater. Res. Technol., 20: 2109 (2022); https://doi.org/10.1016/j.jmrt.2022.07.121
  110. P P. Gradl, D.C. Tinker, A. Park, O.R. Mireles, M. Garcia, R. Wilkerson, and C. Mckinney, J. Mater. Eng. Perform., 31: 6013 (2022); https://doi.org/10.1007/s11665-022-06850-0
  111. R.C. Reed, The Superalloys: Fundamentals and Applications (Cambridge: Cambridge Univ. Press: 2006); https://doi.org/10.1017/CBO9780511541285
  112. M.J. Donachie and S.J. Donachie, Superalloys: A Technical Guide (Materials Park, OH: ASM International: 2002); https://doi.org/10.31399/asm.tb.stg2.9781627082679
  113. C.T. Sims, N.S. Stoloff, and W.C. Hagel, Superalloys II: High-Temperature Materials for Aerospace and Industrial Power (New York: Wiley-Interscience: 1987).
  114. H.K.D.H. Bhadeshia, Nickel Based Superalloys (16.08.2025); http://www.msm.cam.ac.uk/phase-trans/2003/Superalloys/superalloys.html
  115. H.J. Frost and M.F. Ashby, Deformation-Mechanism Maps: The Plasticity and Creep of Metals and Ceramics (Oxford–New York: Pergamon Press: 1982), p. 166.
  116. Z. Wei, J. Yu, Y. Lu, J. Han, C. Wang, and X. Liu, Mater. Des., 198: 109287 (2021); https://doi.org/10.1016/j.matdes.2020.109287
  117. X. Wu, S.K. Makineni, C.H. Liebscher, G. Dehm, J. Rezaei Mianroodi, P. Shanthraj, B. Svendsen, D. Bürger, G. Eggeler, D. Raabe, and B. Gault, Nat. Commun., 11: 389 (2020); https://doi.org/10.1038/s41467-019-14062-9
  118. C.Z. Hargather and J.M. O’Connell, J. Phase Equilibria Diffus., 43, No. 6: 764 (2022); https://doi.org/10.1007/s11669-022-00991-4
  119. H. Okamoto, J. Phase Equilibria Diffus., 25, No. 4: 394 (2004); https://doi.org/10.1361/15477030420232
  120. A.P. Ofori, C.J. Humphreys, S. Tin, and C.N. Jones, Superalloys 2004 (Warrendale, PA: TMS: 2004), pp. 787–794; https://doi.org/10.7449/2004/SUPERALLOYS_2004_787_794
  121. S. Gao, Y. Zhou, C.-F. Li, Z.-Q. Liu, and T. Jin, J. Alloys Compd., 671: 458 (2016); https://doi.org/10.1016/j.jallcom.2016.02.122
  122. A. Harte, M. Atkinson, A. Smith, C. Drouven, S. Zaefferer, J. Quinta da Fonseca, and M. Preuss, Acta Mater., 194: 257 (2020); https://doi.org/10.1016/j.actamat.2020.04.004
  123. M. Sundararaman, P. Mukhopadhyay, and S. Banerjee, Metall. Mater. Trans. A, 23, No. 7: 2015 (1992); https://doi.org/10.1007/BF02647549
  124. R. Cozar and A. Pineau, Metall. Trans., 4, No. 1: 47 (1973); https://doi.org/10.1007/BF02649604
  125. K.-M. Chang and A.H. Nahm, Superalloy 718—Metallurgy and Applications (Ed. E.A. Loria) (Warrendale, PA: TMS: 1989), pp. 631–646.
  126. J.M. Oblak, D.F. Paulonis, and D.S. Duvall, Metall. Trans., 5, No. 1: 143 (1974); https://doi.org/10.1007/BF02642938
  127. M. Sundararaman and P. Mukhopadhyay, Mater. Charact., 31, No. 4: 191 (1993); https://doi.org/10.1016/1044-5803(93)90062-Z
  128. S.L. West, W.A. Baeslack III, and T.J. Kelly, Metallography, 23, No. 3: 219 (1989); https://doi.org/10.1016/0026-0800(89)90033-5
  129. R.C. Reed, M.P. Jackson, and Y.S. Na, Metall. Mater. Trans. A, 30, No. 3: 521 (1999); https://doi.org/10.1007/s11661-999-0044-6
  130. J. Johnson, J. Inst. Met., 95: 379 (1967).
  131. O.A. Ojo and M.C. Chaturvedi, Mater. Sci. Eng. A, 403, Nos. 1–2: 77 (2005); https://doi.org/10.1016/j.msea.2005.04.034
  132. S.K. Everton, M. Hirsch, P.I. Stavroulakis, R.K. Leach, and A.T. Clare, Mater. Des., 95: 431 (2016); https://doi.org/10.1016/j.matdes.2016.01.099
  133. R. Krakow, D.N. Johnstone, A.S. Eggeman, D. Hünert, M.C. Hardy, C.M.F. Rae, and P.A. Midgley, Acta Mater., 130: 271 (2017); https://doi.org/10.1016/j.actamat.2017.03.038
  134. M.S. Rahman, P.J. Schilling, P.D. Herrington, and U.K. Chakravarty, J. Eng. Mater. Technol., 143, No. 2: 021003 (2021); https://doi.org/10.1115/1.4048371
  135. N.C. Eurich and P.D. Bristowe, Scr. Mater., 77: 37 (2014); https://doi.org/10.1016/j.scriptamat.2014.01.012
  136. D.D. Gu, W. Meiners, K. Wissenbach, and R. Poprawe, Int. Mater. Rev., 57: 133 (2012); https://doi.org/10.1179/1743280411Y.0000000014
  137. R.C. Reed, The Superalloys: Fundamentals and Applications (Cambridge: Cambridge Univ. Press: 2006); https://doi.org/10.1017/CBO9780511541285
  138. M. Galati, Additive Manufacturing (Eds. J. Pou, A. Riveiro, and J.P. Davim), Handbooks in Advanced Manufacturing (Amsterdam: Elsevier: 2021), pp. 277–301; https://doi.org/10.1016/B978-0-12-818411-0.00014-8
  139. M.J. Donachie and S.J. Donachie, Superalloys: A Technical Guide. 2nd ed. (Materials Park, OH: ASM International: 2002); https://doi.org/10.31399/asm.tb.stg2.9781627082679
  140. T. DebRoy, H.L. Wei, J.S. Zuback, T. Mukherjee, J.W. Elmer, J.O. Milewski, A.M. Beese, A. Wilson-Heid, A. De, and W. Zhang, Prog. Mater. Sci., 92: 112 (2018); https://doi.org/10.1016/j.pmatsci.2017.10.001
  141. V.N. Bugayev, V.G. Gavrilyuk, V.M. Nadutov, and V.A. Tatarenko, Fizika Metallov i Metallovedenie, 68, No. 5: 931 (1989).
  142. O. Adegoke, J. Andersson, H. Brodin, and R. Pederson, Metals, 10, No. 8: 996 (2020); https://doi.org/10.3390/met10080996
  143. ASTM International, ISO/ASTM 52900:2015—Additive Manufacturing–General Principles–Terminology (2015).
  144. M.M. Attallah, R. Jennings, X. Wang, and L.N. Carter, MRS Bull., 41, No. 10: 758 (2016); https://doi.org/10.1557/mrs.2016.211
  145. J.W. Brooks and P.J. Bridges, Superalloys 1988 (Eds. S. Reichman, D.N. Duhl, G. Maurer, S. Antolovich, and C. Lund) (Warrendale, PA: TMS: 1988), pp. 33–42; https://doi.org/10.7449/1988/Superalloys_1988_33_4
  146. Z.A. Duriagina, M.R. Romanyshyn, V.V. Kulyk, T.M. Kovbasiuk, A.M. Trostianchyn, and I.A. Lemishka, J. Achiev. Mater. Manuf. Eng., 100, No. 2: 49 (2020); https://doi.org/10.5604/01.3001.0014.3344
  147. I. Izonin, T. Tepla, D. Danylyuk, R. Tkachenko, Z. Duriagina, and I. Lemishka, Proc. 2020 Int. Conf. Decision Aid Sciences and Application (DASA 2020) (Virtual, Sakheer, Nov. 7–9, 2020), pp. 1–5; https://doi.org/10.1109/DASA51403.2020.9316866
  148. Z. Duriagina, A. Pankratov, T. Romanova, I. Litvinchev, J. Bennell, I. Lemishka, and S. Maximov, Computation, 11, No. 2: 22 (2023); https://doi.org/10.3390/computation11020022
  149. Y. Stoyan, O. Pankratov, I. Lemishka, Z. Duriagina, J. Bennell, T. Romanova, and P. Stetsyuk, Cybern. Syst. Anal., 60, No. 3: 422 (2024); https://doi.org/10.1007/s10559-024-00683-
  150. D. Kuts, V. Yefanov, O. Halienkova, O. Ovchynnykov, T. Tepla, I. Lemishka, and D. Mierzwiński, Arch. Mater. Sci. Eng., 131, No. 1: 5 (2025); https://doi.org/10.5604/01.3001.0055.0368
  151. J.J. Lewandowski and M. Seifi, Annu. Rev. Mater. Res., 46: 151 (2016); https://doi.org/10.1146/annurev-matsci-070115-032024
  152. C. Körner, Int. Mater. Rev., 61, No. 5: 361 (2016); https://doi.org/10.1080/09506608.2016.1176289
  153. J.O. Milewski, Lasers, electron beams, plasma arcs, Additive Manufacturing of Metals: From Fundamental Technology to Rocket Nozzles, Medical Implants, and Custom Jewelry (Cham: Springer: 2017), pp. 85–97; https://doi.org/10.1007/978-3-319-58205-4_5
  154. S. Biamino, A. Penna, U. Ackelid, S. Sabbadini, O. Tassa, P. Fino, M. Pavese, P. Gennaro, and C.F. Badini, Intermetallics, 19: 776 (2011); https://doi.org/10.1016/j.intermet.2010.11.017
  155. P. Brož, J. Buršík, M. Svoboda, and A. Kroupa, Mater. Sci. Eng. A, 324, Nos. 1–2: 28 (2002); https://doi.org/10.1016/S0921-5093(01)01278-3
  156. E. Martin, A. Natarajan, S. Kottilingam, and R. Batmaz, Addit. Manuf., 39: 101894 (2021); https://doi.org/10.1016/j.addma.2021.10189
  157. H. Sugimura, Y. Kaneno, and T. Takasugi, Mater. Trans., 52: 663 (2011); https://doi.org/10.2320/matertrans.M2010386
  158. Y. Zhang, L. Wu, X. Guo, S. Kane, Y. Deng, Y.-G. Jung, J.-H. Lee, and J. Zhang, J. Mater. Eng. Perform., 27, No. 1: 1 (2018); https://doi.org/10.1007/s11665-017-2747-y
  159. M.P. Haines, V.V. Rielli, S. Primig, and N. Haghdadi, J. Mater. Sci., 57: 14135 (2022); https://doi.org/10.1007/s10853-022-07501-4
  160. N. Haghdadi, M. Laleh, M. Moyle, and S. Primig, J. Mater. Sci., 56: 64 (2021); https://doi.org/10.1007/s10853-020-05109-0
  161. Y. Li, X. Liang, Y. Yu, D. Wang, and F. Lin, Chin. J. Mech. Eng. Addit. Manuf. Front., 1: 100019 (2022); https://doi.org/10.1016/j.cjmeam.2022.100019
  162. Y. Zhai, D.A. Lados, and J.L. LaGoy, JOM, 66, No. 5: 808 (2014); https://doi.org/10.1007/s11837-014-0886-2
  163. W.E. King, A.T. Anderson, R.M. Ferencz, N.E. Hodge, C. Kamath, S.A. Khairallah, and A.M. Rubenchik, Appl. Phys. Rev., 2, No. 4: 041304 (2015); https://doi.org/10.1063/1.4937809
  164. N. Tepylo, X. Huang, and P.C. Patnaik, Adv. Eng. Mater., 21: 1900617 (2019); https://doi.org/10.1002/adem.201900617