The Influence of Physical Phenomena and Material Properties on the Quality of Parts during Selective Laser Melting

PODOLSKYI R.V.$^{1,2,3}$, ADZHAMSKYY S.V.$^{2,4}$, KONONENKO G.A.$^{2,5}$, and BADYUK S.I.$^{2,3}$

$^1$Iron and Steel Institute of Z.I. Nekrasov, N.A.S. of Ukraine, 1 Academician Starodubov Sq., UA-49107 Dnipro, Ukraine
$^2$LLC ‘Additive Laser Technologies of Ukraine’, 105 Nebesnoi Sotni Ave., UA-65104 Odesa, Ukraine
$^3$Institute of Applied Control Systems, N.A.S. of Ukraine, 40 Academician Glushkov Ave., UA-03187 Kyiv, Ukraine
$^4$Institute of Transport Systems and Technologies, N.A.S. of Ukraine, 5 Pisarzhevskoho St., UA-49000 Dnipro, Ukraine
$^5$National Technical University of Ukraine ‘Dniprovska Polytechnica’, 19 Dmytro Yavornytskyi Ave., UA-49005 Dnipro, Ukraine

Received / Final version: 27.03.2025 / 03.11.2025 Download PDF logo PDF

Abstract
The study is concerned with the analysis of key factors influencing the formation of defects, in particular porosity, in parts manufactured by selective laser melting (SLM). As SLM is increasingly used in relevant industries, achieving the high quality in the manufacturing process is of fundamental importance that can be ensured with a deep understanding of the processes occurring in it. The analysis of the interplay of laser radiation with metal powders (316L stainless steel, Ti6Al4V titanium alloy, AlSi10Mg aluminium alloy, Inconel 718 nickel superalloy) and physical processes in the melt pool, such as thermocapillary convection, heat transfer dynamics, metal-vapour pressure, and the spattering phenomenon, is performed. The dependence between the laser parameters (power, scanning speed, source and wavelength of radiation, backscattering coefficient, change in the angle of incident electrons), thermophysical properties of materials (thermal conductivity, surface tension, and coefficient of thermal expansion) and stability of track formation is established. As proven experimentally, the instability of the melt pool caused by temperature gradients and hydrodynamic effects is the main source of porosity. The dependence of the heat capacity on the temperature of steels and alloys used in SLM technology is obtained, and the influence of phase transformations on these patterns is shown. The features of mass transfer in the melt pool under the influence of the surface tension gradient and temperature gradient are considered. The analysis of the influence of molten-metal evaporation on powder erosion, melt splashing, creation of recoil pressure over the melt pool, and obstruction to the penetration of the laser beam is performed. A diagram of the transverse and longitudinal sections of the melt pool with the phenomena occurring in it is developed. Approaches to optimising the SLM process are proposed, namely, balancing energy parameters and using protective gases to minimise the number of defects and increase process stability. The results of the study emphasise the need for a comprehensive approach to managing the SLM process, taking into account both technological parameters and the specifics of materials. This opens up prospects for creating parts with minimal defects.

Keywords: selective laser melting, alloy, melt pool, single track, microstructure.

DOI: https://doi.org/10.15407/ufm.26.04.***

Citation: R.V. Podolskyi, S.V. Adzhamskyy, G.A. Kononenko, and S.I. Badyuk, The Influence of Physical Phenomena and Material Properties on the Quality of Parts during Selective Laser Melting, Progress in Physics of Metals, 26, No. 4: ***–*** (2025)


References  
  1. S. Adjamskiy, G. Kononenko, R. Podolskyi, and S. Badyuk, Implementation of Selective Laser Melting Technology in Ukraine (Kyiv: Naukova Dumka: 2022) (in Ukrainian).
  2. P. Zhang, X. Zhou, X. Cheng, H. Sun, H. Ma , and Y. Li, Elucidation of bubble evolution and defect form action in directed energy deposition based on direct observation, Addit. Manuf., 32: 101026 (2020); https://doi.org/10.1016/j.addma. 2019.101026
  3. Y. Chen, S.J. Clar k, L. Sinclair, C. L.A. Leung, S. Marussi, T. Connolley, O.V. Magdysyuk, R.C. Atwood, G.J. Baxter, M.A. Jones, D.G. McCartney, I. Todd, and P.D. Lee, In situ and operando X-ray imaging of directed energy deposition additive manufacturing, arXiv (2020); https://doi.org/10.48550/arXiv.2006.09087
  4. Y. Chen, S. Clark, A.C.L. Leung, L. Sinclair, S. Marussi, R. Atwood, T. Connoley, M. Jones, G. Baxter, and P.D. Lee, Melt pool morphology in directed energy deposition additive manufacturing process, IOP Conf. Ser. Mater. Sci. Eng., 861: 012012 (2020); https://doi.org/10.1088/1757-899X/861/1/012012
  5. Y. Chen, S.J. Clark, D.M. Collins, S. Marussi, S.A. Hunt, D.M. Fenech, T. Connolley, R.C. Atwood, O.V. Magdysyuk, G.J. Baxter, M.A. Jones, C.L.A. Leung, and Peter D. Lee, Correlative synchrotron X-ray imaging and diffraction of directed energy deposition additive manufacturing, Acta Mater., 209: 116777 (2021); https://doi.org/10.1016/j.actamat.2021.116777
  6. S.J. Wolff, S. Webster, N.D. Para b, B. Aronson, B. Gould, A. Greco, T. Sun, In situ observations of directed energy deposition additive manufacturing using high-speed X-ra y imaging, JOM, 73: 189–200 (2021); https://doi.org/10.1007/s11837-020-04469-x
  7. S.V. Adzhamskyi, A.A. Kononenko, and R.V. Podolskyi, Two-dimensional modelling of the non-stationary temperature field of a single track made of heat-resistant alloy INCONEL 718, Materials of the All-Ukrainian Scientific and Methodological Conference ‘Problems of Mathematical Modelling’ (2020), No. 1, p. 42–45 (in Russian).
  8. W. Shifeng, L. Shuai, W. Qingsong, C. Yan, Z. Sheng, and S. Yusheng, Effect of molten pool boundaries on the mechanical properties of selective laser melting parts, J. Mater. Process. Technol., 214, No. 11: 2660–2667 (2014); https://doi.org/10.1016/j.jmatprotec.2014.06.002
  9. L.-E. Loh, C.-K. Chua, W.-Y. Yeong, J. Song, M. Mapar, S.-L. Sing, Z.-H. Liu, and D.-Q. Zhang, Numerical investigation and an effective modelling on the selective laser melting (SLM) process with aluminium alloy 6061, Int. J. Heat Mass Transf., 80: 288–300 (2015); https://doi.org/10.1016/j.ijheatmasstransfer.2014.09.014
  10. S.M. Thompson, L. Bian, N. Shamsaei, and A. Yadollahi, An overview of Direct Laser Deposition for additive manufacturing; Part I: Transport phenomena, modeling and diagnostics, Additive Manufacturing, 8: 36–62 (2015); https://doi.org/10.1016/j.addma.2015.07.001
  11. M. Liu, A. Kumar, S. Bukkapatnam, and M. Kuttolamadom, A Review of the anomalies in directed energy deposition (DED) processes & potential solutions — part quality & defects, Procedia Manufacturing, 53: 507–518 (2021); https://doi.org/10.1016/j.promfg.2021.06.093
  12. L. Schmidt, K. Schricker, C. Diegel , F. Sachs, J. P. Bergmann, A. Knauer, H. Romanus, H. Requardt, Y.Chen and A. Rack, Effect of partial and global shielding on surface-driven phenomena in keyhole mode laser beam welding, Weld World, 68: 1353–1374 (2024); https://doi.org/10.1007/s40194-023-01627-y
  13. R. Cunningham , A. Nicolas, J.Madsen, E. Fodran, E. Anagnostou, M.D. Sangid, and A.D. Rollett, Analyzing the effects of powder and post-processing on porosity and properties of electron beam melted Ti-6Al-4V, Mater. Res. Lett., 5, No. 7: 516–525 (2017); https://doi.org/10.1080/21663831.2017.1340911
  14. C.L.A. Leung, S. Marussi, R.C. Atwood, M. Towrie, P.J. Withers, and P.D. Lee, In situ X-ray imaging of defect and molten pool dynamics in laser additive manufacturing, Nat. Commun., 9: 1–9 (2018); https://doi.org/10.1038/s41467-018-03734-7
  15. A. Bobel, L.G. Hector Jr., I. Chelladurai, A.K. Sachdev, T. Brown, W.A. Poling, R. Kubic, B. Gould, C. Zhao, N. Parab, A. Greco, and Tao Sun, In situ synchrotron X-ray imaging of 4140 steel laser powder bed fusion, Materialia, 6: 100306 (2019); https://doi.org/10.1016/j.mtla.2019.100306
  16. Y. Chen, S.J. Clark, L. Sinclair, C.L.A. Leung, S. Marussi, T. Connolley, R.C. Atwood, G.J. Baxter, M.A. Jones, I. Todd, and P.D. Lee, Synchrotron X-ray imaging of directed energy deposition additive manufacturing of titanium alloy Ti-6242, Additive Manufacturing, 41: 101969 (2021); https://doi.org/10.1016/j.addma.2021.101969
  17. S.M.H. Hojjatzadeh, N.D. Parab, Q. Guo, M. Qu, L. Xiong, C. Zhao, L.I. Escano, K. Fezzaa, W. Everhart, T. Sun, and L. Chen, Direct observation of pore formation mechanisms during LPBF additive manufacturing process and high energy density laser welding, Int. J. Mach. Tool Manufact., 153: 103555 (2020); https://doi.org/10.1016/j.ijma chtools.2020.103555
  18. A.A. Martin, N.P. Calta, S.A. Khairallah, J. Wang, P.J. Depond, A.Y. Fong, V. Thampy, G.M. Guss, A.M. Kiss, K.H. Stone, C.J. Tassone, J.N. Weker, M.F. Toney, T. van Buuren, and M.J. Matthews, Dynamics of pore formation during laser powder bed fusion additive manufacturing, Nat. Commun., No. 10: 1–10 (2019); https://doi.org/10.1038/s41467-019-10009-2
  19. B. Gould, S. Wolff, N. Parab, C. Zhao, M.C. Lorenzo-Martin, K. Fezzaa, A. Greco, and T. Sun, In situ analysis of laser powder bed fusion using simultaneous high-speed infrared and X-ray imaging, JOM, 73: 201–211 (2021); https://doi.org/10.1007/s11837-020-04291-5
  20. N.D. Parab, C. Zhao, R. Cunningham, L.I. Escano, K. Fezzaa, W. Everhart, A.D. Rollett, L. Chenc, and T. Sun, Ultrafast X-ray imaging of laser–metal additive manufacturing processes, J. Synchrotron Radiat., 25: 1467–1477 (2018); https://doi.org/10.1107/S1600577518009554
  21. M. Bayat, A. Thanki, S. Mohanty, A. Witvrouw, S. Yang, J. Thorborg, N.S. Tiedje, and J.H. Hattel, Keyhole-induced porosities in laser-based powder bed fusion (LPBF) of Ti6Al4V: high-fidelity modelling and experimental validation, Addit. Manuf., 30: 100835 (2019); https://doi.org/10.1016/j.addma.2019.100835
  22. H. Zhao, W. Niu, B. Zhang, Y. Lei, M. Kodama, and T. Ishide, Modelling of keyhole dynamics and porosity formation considering the adaptive keyhole shape and three-phase coupling during deep-penetration laser welding, J. Phys. Appl. Phys., 44: 485302 (2011); https://doi.org/10.1088/0022-3727/44/48/485302
  23. W.E. King, H.D. Barth, V.M. Castillo, G.F. Gallegos, J.W. Gibbs, D.E. Hahn, C. Kamath, and A.M. Rubenchik, Observation of keyhole-mode laser melting in laser powder-bed fusion additive manufacturing, J. Mater. Process. Technol., 214: 2915–2925 (2014); https://doi.org/10.1016/j.jmatprotec.2014.06.005
  24. D. Wu, X. Hua, L. Huang, F. Li, and Y. Cai, Elucidation of keyhole induced bubble formation mechanism in fiber laser welding of low carbon steel, Int. J. Heat Mass Tran., 127: 1077–1086 (2018); https://doi.org/10.1016/j.ijheatma ss transfer.2018.07.107
  25. L.L. Parimi, R.G.A., D. Clark, and M.M. Attallah, Microstructural and texture development in direct laser fabricated IN718, Mater. Charact., 89: 102–111 (2014); https://doi.org/10.1016/j.matchar.2013.12.012
  26. X. Wang, X. Gong, and K. Chou, Review on powder-bed laser additive manufacturing of Inconel 718 parts, Proc. Inst. Mech. Eng. B. J. Eng. Manuf., 231: 1890–1903 (2017); https://doi.org/10.1177/095440541561988
  27. K. Kempen, L. Thijs, E. Yasa, M. Badrossamay, W. Verheecke, and J.-P. Kruth, Process optimization and microstructural analysis for selective laser melting of AlSi10Mg, Solid Freeform Fabrication Symposium, 22: 484–495 (2011); https://doi.org/10.26153/tsw/15310
  28. C. Kamath, B. El-dasher, G.F. Gallegos, W.E. King, and A. Sisto, Density of additively-manufactured, 316L SS parts using laser powder-bed fusion at powers up to 400 W, Int. J. Adv. Manuf. Technol., 74: 65–78 (2014); https://doi.org/10.1007/s00170-014-5954-9
  29. Q. Jia and D. Gu, Selective laser melting additive manufacturing of Inconel 718 superalloy parts: densification, microstructure and properties, J. Alloys Compd., 585: 713–721 (2014); https://doi.org/10.1016/j.jallcom.2013.09.171
  30. H.-Z. Jiang, Z.-Y. Li, T. Feng, P.-Y. Wu, Q.-S. Chen, Y.-L. Feng, S.-W. Li, H. Gao, and H.-J. Xu, Factor analysis of selective laser melting process parameters with normalised quantities and Taguchi method, Optics & Laser Technology, 119: 105592 (2019); https://doi.org/10.1016/j.optlastec.2019.105592
  31. P. Bidare, I. Bitharas, R.M. Ward, M.M. Attallah, and A.J. Moore, Laser powder bed fusion in high-pressure atmospheres. The International Journal of Advanced Manufacturing Technology, 99: 543–555 (2018); https://doi.org/10.1007/s00170-018-2495-7
  32. P.I. Bitharasa, R.M. Wardb, M.M. Attallahb, and A.J. Moorea, Laser powder bed fusion at sub-atmospheric pressures, Int. J. Machine Tools and Manufacture, 130–131: 65–72 ( 2018); https://doi.org/10.1016/j.ijmachtools.2018.03.007
  33. W.J. Sames, F. List, S. Pannala, R.R. Dehoff, and S.S. Babu, The metallurgy and processing science of metal additive manufacturing, Int Mater Rev., 61: 315–360 (2016); https://doi.org/10.1080/09506608.2015.1116649
  34. K.N. Amato, S.M. Gaytan, L.E. Murr, E. Martinez, P.W. Shindo, J. Hernandez, S. Collins, and F. Medina, Microstructures and mechanical behavior of Inconel 718 fabricated by selective laser melting, Acta Mater., 60: 2229–2239 (2012); https://doi.org/10.1016/j.actamat.2011.12.032
  35. M. Pröbstle, S. Neumeier, J. Hopfenmüller, L.P. Freund, T. Niendorf, D. Schwarze, and M. Göken, Superior creep strength of a nickel-based superalloy produced by selective laser melting. Mater. Sci. Eng. A, 674: 299–307 (2016); https://doi.org/10.1016/j.msea.2016.07.061
  36. G.E. Bean, D.B. Witkin, T.D. McLouth, and R.J. Zaldivar, The effect of laser focus and process parameters on microstructure and mechanical properties of SLM Inconel 718, International Society for Optics and Photonics, 10523: 105230Y (2018); https://doi.org/10.1117/12.2299615
  37. S. Sun, M. Brandt, and M. Easton, Powder Bed Fusion Processes: an Overview, Laser Additive Manufacturing: Materials, Design, Technologies, and Applications, Centre for Additive Manufacturing, p. 55–77 (2017); https://doi.org/10.1016/B978-0-08-100433-3.00002-6
  38. S.A. Khairallah and A.T. Anderson, Mesoscopic simulation model of selective laser melting of stainless steel powder, J. Mater. Process. Technol., 214: 2627–2636 (2014); https://doi.org/10.1016/j.jmatprotec.2014.06.001
  39. T. Nesm, I. Aboulkhaira, C. Maskery, I. Tuck, and N. Ashcroft, On the formation of AlSi10Mg single tracks and layers in selective laser melting: Microstructure and nano-mechanical properties, J. Mater. Proc. Technol., 230: 88–98 (2016); https://doi.org/10.1016/j.jmatprotec.2015.11.016
  40. E.D. Hondros, M. McLean, and K.C. Mills, Marangoni effects in welding, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 356: 33–44 (1998); https://doi.org/10.1098/rsta.1998.0196
  41. X. Mujian, G. Dongdong, Y. Guanqun, D. Donghua, C. Hongyu, and S. Qimin, Influence of hatch spacing on heat and mass transfer, thermodynamics and laser processability during additive manufacturing of Inconel 718 alloy, Int. J. Machine Tools and Manufacture, 109: 147–157 (2016); https://doi.org/10.1016/j.ijmachtools.2016.07.010
  42. X. Zhou, X. Liu, D. Zhang, Z. Shen, and W. Liu, Balling phenomena in selective laser melted tungsten, J. Mater. Proc. Technol., 222: 33–42 (2015); https://doi.org/10.1016/j.jmatprotec.2015.02.032
  43. M. Rombouts, J.P. Kruth, L. Froyen, and P. Mercelis, Fundamentals of selective laser melting of alloyed steel powders, CIRP Annalse Manufacturing Technology, 55: 187–192 (2006).
  44. D. Gu and Y. Shen, Balling phenomena in direct laser sintering of stainless steel powder: metallurgical mechanisms and control methods, Materials & Design, 30: 2903–2910 (2009); https://doi.org/10.1016/j.matdes.2009.01.013
  45. C. Qiu, C. Panwisawas, M. Ward, H.C. Basoalto, J.W. Brooks, and M.M. Attallah, On the role of melt flow into the surface structure and porosity development during selective laser melting, Acta Mater., 96: 72–79 (2015); https://doi.org/10.1016/j.actamat.2015.06.004
  46. I. Yadroitsev, A. Gusarov, I. Yadroitsava, and I. Smurov Single track formation in selective laser melting of metal powders, J. Mater. Proc. Technol., 210: 1624–1631 (2010); https://doi.org/10.1016/j.jmatprotec.2010.05.010
  47. 47. V.S. Kovalenko, L.F. Golovko, G.V. Merkulov, and A.I. Stryzhak, Hardening of Parts with a Laser Beam (Kiev: Tekhnika: 1981) (in Russian).
  48. M.J. Weber, Handbook of Laser Wavelength (Boca Raton: CRC Press LLC: 1999).
  49. J.I. Goldstein, D.E. Newbury, P. Echlin, D.C. Joy, C.E. Lyman, E. Lifshin, L. Sawyer, and J.R. Michael, Scanning Electron Microscopy and X-Ray Microanalysis (New York: Springer Science+Business Media LLC: 2003); https://doi.org/10.1007/978-1-4615-0215-9
  50. M. Galati and L. Iuliano, A literature review of powder-based electron beam melting focusing on numerical simulations, Additive Manufacturing, 19: 1–20 (2018); https://doi.org/10.1016/j.addma.2017.11.001
  51. E.W. Spisz, A.J. Weigand, R.L. Ebwman, and J.R Jack, Solar absorptances and spectral reflectances of 12 metals for temperatures ranging from 300 to 500 K, National Aeronautics and Space Administration, 2: 1–25 (1969).
  52. H.S. Prasad, F. Brueckner, J. Volpp, and A.F.H. Kaplan, Laser metal deposition of copper on diverse metals using green laser sources, Int. J. Advanced Manufactur. Technol., 107: 1559–1568 (2020); https://doi.org/10.1007/s00170-020-05117-z
  53. Bass M., Handbook of Optics. Volume II: Devices, Measurements, and Properties (McGraw-Hill, INC.: 1995).
  54. R.K. Yadav and R. Shanker, Energy and angular distributions of backscattered electrons from collisions of 5 keV electrons with thick Al, Ti, Ag, W and Pt targets, Pramana – J. Phys., 68, No. 3: 517–528 (2007); https://doi.org/10.1007/s12043-007-0055-z
  55. R.K. Yadav, A. Srivastava, S. Mondal, and R. Shanker, Backscattering of 8–28 keV electrons from a thick tungsten target, J. Phys. D: Appl. Phys., 36, No. 20: 2538–2542 (2003); https://doi.org/10.1088/0022-3727/36/20/017
  56. A. Hussain, L. Yang, S. Mao, B. Da, K. Tokesi, and Z.J. Ding, Determination of electron backscattering coefficient of beryllium by a high-precision Monte Carlo simulation, Nuclear Mater. Energy, 26: 100862 (2021); https://doi.org/10.1016/j.nme.2020.100862
  57. A.M.D. Assa’d and M.M. El Gomati, Backscattering coefficients for low energy electrons, Scanning Microscopy, 12, No. 1: 185–192 (1998); https://doi.org/10.1007/s00339-009-5231-1
  58. K. Kanaya and S. Okayama, Penetration and energy-loss theory of electrons in solid targets, J. Phys. D. Appl. Phys., 5, No. 1: 308 (1972); https://doi.org/10.1088/0022-3727/5/1/308
  59. A.J. Cohen and K.F. Korul, Backscattering and Secondary-Electron Emission from Metal Targets of Various Thicknesses (Washington, D.C.: National Aeronautics and Space Administration–Springfield, VA: the Clearinghouse for Federal Scientific and Technical Information: 1965).
  60. F. Salvat, A. Jablonski, and C.J. Powell, ELSEPA Dirac partial-wave calculation of elastic scattering of electrons and positrons by atoms, positive ions and molecules, Comput. Phys. Commun, 261: 107704 (2021); https://doi.org/10.1016/j.cpc.2020.107704
  61. M. Dapor, Transport of Energetic Electrons in Solids: Computer Simulation with Applications to Materials Analysis and Characterization (Switzerland: Springer Nature: 2020).
  62. B. Lane, I. Zhirnov, S. Mekhontsev, S. Grantham, R. Ricker, S. Rauniyar, and K. Chou, Transient laser energy absorption, co-axial melt pool monitoring, and relationship to melt pool morphology, Addit. Manuf., 36: 101504 (2020); https://doi.org/10.1016/j.addma.2020.101504
  63. S. Fetni, T.M. Enrici, T. Niccolini, S.H. Tran, O. Dedry, R. Jardin, L. Duchêne, A. Mertens, and A.M. Habraken, 2D thermal finite element analysis of laser cladding of 316L+WC, Procedia Manufacturing, 50: 86–92 (2020); https://doi.org/10.1016/j.promfg.2020.08.016
  64. T. Zhang, H. Li, H. Gong, Y. Wu, X. Chen, and X. Zhang, Study on location-related thermal cycles and microstructure variation of additively manufactured Inconel 718, J. Mater. Res. Technol., 18: 3056–3072 (2022); https://doi.org/10.1016/j.jmrt.2022.03.178
  65. S.V. Adzhamskyy, H.A. Kononenko, and R.V. Podolskyi, Analysis of structure after heat treatment of Inconel 718 heat-resistant alloys made by SLM-Technology, Metallofiz. Noveishie Tekhnol., 43, No. 7: 909–924 (2021) (in Ukrainian); https://doi.org/10.15407/mfint.43.07.0909
  66. H. Baker, ASM Handbook. Vol. 3: Alloy Phase Diagrams (Ohio: ASM International: 1982).
  67. P. Yang, L. A. Deibler, D. R. Bradley, D. K. Stefan, and J. D. Carroll, Microstructure evolution and thermal properties of an additively manufactured, solution treatable AlSi10Mg part, J. Mater. Res., 33, No. 23: 4040–4052 (2018); https://doi.org/10.1557/jmr.2018.405
  68. M.-S. Kim, Effects of Processing Parameters of Selective Laser Melting Process on Thermal Conductivity of AlSi10Mg Alloy, Materials, 14: 2410 (2021); https://doi.org/10.3390/ma14092410
  69. H. S. Park and M. J., Ansari, Numerical investigation and an effective predicting system on the selective laser melting (SLM) process with Ti6Al4V alloy, IOP Conf. Series: Materials Science and Engineering, 400: 042046 (2018); https://doi.org/10.1088/1757-899X/400/4/042046
  70. C. H. Fu and Y.B. Guo, 3-Dimensional finite element modeling of selective laser melting Ti–6Al–4V alloy, Proc. 25th Annual Int. Solid Freeform Fabrication Symposium, p. 1129–1144 (2014).
  71. Adjamskiy S.V., Kononenko G.A., and Podolskyi V.R., Influence of heat treatment of specimens from Ti6Al4V manufactured by the technology of selective laser melting on structure and mechanical properties, The Paton Welding J., No. 9: 21–26 (2022); https://doi.org/10.37434/tpwj2022.09.04
  72. M. Boivineau, C. Cagran, D. Doytier, V. Eyraud, M. Nadal, B. Wilthan, and G. Pottlacher, Thermophysical Properties of Solid and Liquid Ti-6Al-4V (TA6V) Alloy, Int. J. Thermophys., 27, No. 2: 507–529 (2006); https://doi.org/10.1007/PL00021868
  73. F. Verhaeghe, T. Craeghs, J. Heulens, and L. Pandelaers, A pragmatic model for selective laser melting with evaporation, Acta Mater., 57, No. 20: 6006–6012 (2009); https://doi.org/10.1016/j.actamat.2009.08.027
  74. J. Díaz-Álvarez, A. Tapetado, C. Vázquez, and H. Miguélez, Temperature measurement and numerical prediction in machining Inconel 718, Sensors, 17: 1531 (2017); https://doi.org/10.3390/s17071531
  75. C.S. Kim, Thermophysical Properties of Stainless Steels (Argonne, IL, United States: 1975).
  76. B. Zhang, L. Dembinski, and C. Coddet, The study of the laser parameters and environment variables effect on mechanical properties of high compact parts elaborated by selective laser melting 316L powder, Mater. Sci. Eng. A, 584, No. 1: 21–31 (2013); https://doi.org/10.1016/j.msea.2013.06.055
  77. S.B. Moore, J. Gatlin, S. Belikovetsky, M. Yampolskiy, W.E. King, and Y. Elovici, Power consumption-based detection of sabotage attacks in additive manufacturing, Cryptography and Security (2017); https://doi.org/10.48550/arXiv.1709.01822
  78. A.M. Rubenchik, W.E. King, and S.S. Wu, Scaling laws for the additive manufacturing, journal of materials processing technology, 257, No. 1: 234–243 (2018); https://doi.org/10.1016/j.jmatprotec.2018.02.034
  79. M. Tang, P.C. Pistorius, and J.L. Benth, Prediction of a lack-of-fusion porosity for powder bed fusion, Add. Manuf., 14: 39–48 (2017); https://doi.org/10.1016/j.addma.2016.12.001
  80. M. Bayat, A. Thanki, S. Mohanty, A. Witvrouw, S. Yang, J. Thorborg, J.N. Tiedje, and J.H. Hattel, Keyhole-induced porosities in laser-powder bed fusion (L-PBF) of Ti6Al4V: High-Fidelity Modeling and Experimental Validation, Add. Manuf., 30: 100835 (2019); https://doi.org/10.1016/j.addma.2019.100835
  81. S. Kou and Y.H. Wang, Weld pool convection and its effect demonstrated for the first time are 3-D convection in moving arc weld pools and its effect on penetration, segregation and porosity, Welding Research Supplement, p. 63–70 (1986).
  82. Y. Wang, Q. Shi, and H.L. Tsai, Modeling of the effects of surface-active elements on flow patterns and weld penetration, Metall. Mater. Trans. B, 32: 145–161 (2001); https://doi.org/10.1007/s11663-001-0017-7
  83. Y. Lee, M. Nordin, S. Babu, and D. Farson, Effect of fluid convection on dendrite arm spacing in laser deposition, Metall. Mater. Trans. B, 45: 1520–1529 (2014); https://doi.org/10.1007/s11663-014-0054-7
  84. J.-M. Drezet, S. Pellerin, C. Bezençon, S. Mokadem, Modelling Marangoni convection in laser heat treatment, J. de Physique IV (Proceedings), 120: 299–306 (2004); https://doi.org/10.1051/jp4:2004120034
  85. C.R. Heiple and J.R. Roper, Mechanism for minor element effect on gta fusion zone geometry, Welding Research Supplement, 268: 97–102 (1982).
  86. C. Limmaneevichitr and S. Kou, Visualization of Marangoni convection in simulated weld pools, Welding J., 79, No. 5: 126–135 (2000).
  87. H. Zhang, D. Gu, C. Ma, and M. Xia, Surface wettability and superhydrophobic characteristics of Ni-based nanocomposites fabricated by selective laser melting, Appl. Surf. Sci., 475: 151–160 (2019); https://doi.org/10.1016/j.apsusc.2019.01.060
  88. X. Zhou, Y. Zhong, Z. Shen, and W. Liu, The surface-tension-driven Benard conventions and unique sub-grain cellular microstructures in 316L steel selective laser melting, arXiv (2018); https://doi.org/10.48550/arXiv.1801.01408
  89. M. Strantza, B. Vrancken, M.B. Prime, C.E. Truman, M. Rombouts, D.W. Brown, P. Guillaume, and D. Van Hemelrijck, Directional and oscillating residual stress on the mesoscale in additively manufactured Ti–6Al–4V, Acta Mater., 168: 299–308 (2019); https://doi.org/10.1016/j.actamat.2019.01.050
  90. H. Liu, D. Gu, K. Shi, H. Zhang, L. Li, Y. Zhang, J. Li, and J. Qi, High-strength aluminum alloy processed by micro laser powder bed fusion (μ-LPBF): Coordination of laser formability, microstructure evolution, and mechanical properties, J. Mater. Proc. Technol., 332: 118580 (2024); https://doi.org/10.1016/j.jmatprotec.2024.118580
  91. I.A. Tombakti, A.Y. Adesina, A. Alharith, M.M. Attallah, and B. AlMangour, Effect of laser mode and power on the tribological behavior of additively manufactured Inconel 718 alloy, J. Tribology, 145: 101703 (2023); https://doi.org/10.1115/1.4062361
  92. I. Egry, E. Ricci, R. Novakovic, and S. Ozawa, Surface tension of liquid metals and alloys-Recent developments, Adv. Coll. Interface Sci., 159, No. 2: 198–212 (2010); https://doi.org/10.1016/j.cis.2010.06.009
  93. A.S. Agazhanov, D.A. Samoshkin, and Y.M. Kozlovskii, Thermophysical properties of Inconel 718 alloy, XXXV Sib. Thermophys. Semin. J. Phys. Conf. Ser., 1382: 12175 (2019); https://doi.org/10.1088/1742-6596/1382/1/012175
  94. L. Wang, X. Jiang, Y. Zhu, X. Zhu, J. Sun, and B. Yan, An approach to predict the residual stress and distortion during the selective laser melting of AlSi10Mg parts, Int. J. Adv. Manuf. Technol., 97, No. 9: 3535–3546 (2018); https://doi.org/10.1007/s00170-018-2207-3
  95. P. Lin, M. Wang, A.V. Trofimov, Y. Yang, and C. Song, Research on warping and dross formation of overhang structure manufactured by laser powder bed Fusion (2022); https://doi.org/10.21203/rs.3.rs-2123296/v1
  96. S. Adjamskiy, G. Kononenko, R. Podolskyi, and S. Baduk, Studying the influence of orientation and layer thickness on the physico-mechanical properties of Co–Cr–Mo alloy manufactured by the SLM method, Sci. Innov., 18, No. 5: 85–94 (2022); https://doi.org/10.15407/scine18.05.085
  97. S.V. Adzhamskyi, G.A. Kononenko, and R.V. Podolskyi, Influence of SLM process parameters on the formation of the boundary region of parts made of heat-resistant nickel alloy Inconel 718, Space Sci. Technol., 27, No. 6: 105–114 (2021) (in Ukrainian); https://doi.org/10.15407/knit2021.06.105
  98. D. Daiab and D. Guab, Effect of metal vaporization behavior on keyhole-mode surface morphology of selective laser melted composites using different protective atmospheres, Appl. Surf. Sci., 355: 310–319 (2015); https://doi.org/10.1016/j.apsusc.2015.07.044
  99. A. Klassen, T. Scharowsky, and C. Körner, Evaporation model for beam based additive manufacturing using free surface lattice Boltzmann methods, IOP science, 47, Nо. 27: 5303 (2014); https://doi.org/10.1088/0022-3727/47/27/275303
  100. P. Bidare, I. Bitharas, M. Ward, M.M. Attallah, and A.J. Moore, Fluid and particle dynamics in laser powder bed fusion, Acta Mater, 142: 107–120 (2018); https://doi.org/10.1016/j.actamat.2017.09.051
  101. S. Ly, A.M. Rubenchik, S.A. Khairallah, G. Guss, and M.J. Matthews, Metal vapor micro-jet controls material redistribution in laser powder bed fusion additive manufacturing, Scientific Reports, 7: 4085 (2017); https://doi.org/10.1038/s41598-017-04237-z
  102. M.J. Matthews, G. Guss, S.A. Khairallah, A.M. Rubenchik, P.J. Depond, and W.E. King, Denudation of metal powder layers in laser powder bed fusion processes, Acta Materialia, 114: 33–42 (2016); https://doi.org/10.1016/j.actamat.2016.05.017
  103. V. Semak, and A. Matsunawa, The role of recoil pressure in energy balance during laser materials processing, J. Physics D: Appl. Phys., 30, Nо. 18: 2541 (1997); https://doi.org/10.1088/0022-3727/30/18/008
  104. Y.A. Mayi, M. Dal, P. Peyre, M. Bellet, C. Metton, C. Moriconi, and R. Fabbro, Two-phase flow modelling of metal vaporisation under static laser shot using a double domain ALE method, Proc. 2018 COMSOL Conference in Lausanne, p. 1–7 (2018).
  105. H. Zheng, H. Li, L. Lang, S. Gong, and Y. Ge, Effects of scan speed on vapor plume behavior and spatter generation in laser powder bed fusion additive manufacturing, J. Manuf. Proc., 36: 60–67 (2018); https://doi.org/10.1016/j.jmapro.2018.09.011
  106. Y. Huang, M.C. Leu, and M.J. Donmez, Additive manufacturing: current state, future potential, gaps and needs, and recommendations, J. Manuf. Sci. Eng. Trans ASME, 137, No. 1: 014001 (2015); https://doi.org/10.1115/1.4028725
  107. H. Nakamura, Y. Kawahito, K. Nishimoto, and S. Katayama, Elucidation of melt flows and spatter formation mechanisms during high power laser welding of pure titanium, J. Laser Appl., 27, No. 3: 032012 (2015); https://doi.org/10.2351/1.4922383
  108. S.A. Khairallah, A.T. Anderson, A. Rubenchik, and W.E. King, Laser powder-bed fusion additive manufacturing: physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones, Acta Mater., 108: 36–45 (2016); https://doi.org/10.1016/j.actamat.2016.02.014
  109. C. Zhao, Q. Guo, X. Li, N. Parab, K. Fezzaa, W. Tan, L. Chen, and T. Sun, Bulk-explosion-induced metal spattering during laser processing, Phys. Rev. X, 9: 021052 (2019); https://doi.org/10.1103/PhysRevX.9.021052
  110. A.B. Anwara, I.H. Ibrahim, and Q-C. Pham, Spatter transport by inert gas flow in selective laser melting: a simulation study, Powder Technol., 352: 103–116 (2019); https://doi.org/10.1016/j.powtec.2019.04.044
  111. C. Pauzon, The process atmosphere as a parameter in the laser-powder bed fusion process (Thesis for the Degree of Licentiate of Engineering) (Sweden: Chalmers University of Technology: 2019).
  112. I. Bitharas, N.A. McPherson, W. McGhie, D. Roy, and A.J. Moore, Visualisation and optimisation of shielding gas coverage during gas metal arc welding, J. Mater. Proc. Technol., 255: 451–462 (2018); https://doi.org/10.1016/j.jmatprotec.2017.11.048
  113. W.E. King, A.T. Anderson, R.M. Ferencz, N.E. Hodge, C. Kamath, S.A. Khairallah, and A.M. Rubenchik, Laser powder bed fusion additive manufacturing of metals; physics, computational, and materials challenges, Appl. Phys. Rev., 2, No. 4: 041304 (2015); https://doi.org/10.1063/1.4937809
  114. H. Kyogoku and T.-T. Ikeshoji, A review of metal additive manufacturing technologies: Mechanism of defects formation and simulation of melting and solidification phenomena in laser powder bed fusion process, Mech. Eng. Rev., 7, No. 1: 19-00182 (2020); https://doi.org/10.1299/mer.19-00182
  115. C. Lun and A. Leung, X-ray imaging of powder consolidation during laser additive manufacturing (Thesis for the Degree of Doctor of Philosophy in the Faculty of Science and Engineering) (United Kingdom: The University of Manchester: 2017).
  116. B. Fotovvati, S.F. Wayne, G. Lewis, and E. Asadi, A Review on melt-pool characteristics in laser welding of metals, Adv. Mater. Sci. Eng., 11: 1–18 (2018); https://doi.org/10.1155/2018/4920718
  117. P. Austin, Numerical modeling of laser-induced plumes and jets (Thesis for Master’s Degree) (USA: The University of Alabama: 2019).
  118. A. Ladewig, G. Schlick, M. Fisser, V. Schulze, and U. Glatzel, Influence of the shielding gas flow on the removal of process by-products in the selective laser melting process, Additive Manufacturing, 10: 1–9 (2016); https://doi.org/10.1016/j.addma.2016.01.004
  119. V. Gunenthiram, P. Peyre, M. Schneider, M. Dal, F. Coste, and R. Fabbro, Analysis of laser–melt pool–powder bed interaction during the selective laser melting of a stainless steel, J. Laser Applications, 29, No 2: 29 (2017); https://doi.org/10.2351/1.4983259
  120. S. Pang, W. Chen, and W. Wang, A quantitative model of keyhole instability induced porosity in laser welding of titanium alloy, Metall. Mater. Trans. A, 45: 2808–2818 (2014); https://doi.org/10.1007/s11661-014-2231-3
  121. M. Simonelli, C. Tuck, N.T. Aboulkhair, I. Maskery, I. Ashcroft, R.D. Wildman, and R.A Hague, Study on the laser spatter and the oxidation reactions during selective laser melting of 316L stainless steel, Al–Si10–Mg, and Ti–6Al–4V, Metall. Mater. Trans. A, 46: 3842–3851 (2015); https://doi.org/10.1007/s11661-015-2882-8
  122. Z. Chaghazardi and R. Wüthrich, Review — Electropolishing of additive manufactured metal parts, J. Electrochem. Soc., 169: 043510 (2022); https://doi.org/10.1149/1945-7111/ac6450