Tantalum Coatings: Applications, Techniques, and Properties

SERDIUK I.V.$^{1}$, KRYVOSHAPKA R.V.$^{1}$, STOLBOVYI V.O.$^{1,2}$, and SERDIUK N.O.$^{3}$

$^1$National Science Centre ‘Kharkiv Institute of Physics and Technology’ of the N.A.S. of Ukraine, 1 Akademichna Str., UA-61108 Kharkiv, Ukraine
$^2$Kharkiv National Automobile and Highway University, 25 Yaroslava Mudrogo Str., UA-61002 Kharkiv, Ukraine
$^3$Kharkiv National Medical University, 4 Nauky Ave., UA-61022 Kharkiv, Ukraine

Received / Final version: 10.03.2025 / 24.07.2025 Download PDF logo PDF

Abstract
The present study considers the methods of fabrication and investigation, properties and areas of application of tantalum coatings. These coatings attract attention due to their properties: high wear resistance and corrosion resistance, thermal stability, chemical inertness and biocompatibility. The presented structural, mechanical, tribological, electrical, corrosion, and biological properties make it possible to establish the relationship not only between the technological parameters of obtaining tantalum coatings (argon pressure in the vacuum chamber, substrate temperature, distance between the substrate and the target, etc.) and specific properties, but also to investigate the influence of the structural and phase state on various properties. Currently, tantalum coatings are widely used in microelectronics, medicine, and for corrosion protection. The wide range of information presented in this article enables the prediction of the properties and modelling of the processes of obtaining tantalum coatings with the required characteristics. This, in turn, will make it possible to expand the field of applications of tantalum coatings and deepen knowledge on the relationship between properties.

Keywords: tantalum, nitrides, coatings, magnetron sputtering, cathodic vacuum arc deposition, investigation techniques.

DOI: https://doi.org/10.15407/ufm.26.03.***

Citation: I.V. Serdiuk, R.V. Kryvoshapka, V.O. Stolbovyi, and N.O. Serdiuk, Tantalum Coatings: Applications, Techniques, and Properties, Progress in Physics of Metals, 26, No. 3: ***–*** (2025)


References  
  1. K.-H. Min, K.-C. Chun, and K.-B. Kim, Comparative study of tantalum and tantalum nitrides (Ta2N and TaN) as a diffusion barrier for Cu metallization J. Vac. Sci. Technol. B, 14: 3263–3269 (1996); https://doi.org/10.1116/1.588818
  2. R. Latif, M.F. Jaafar, M.F. Aziz, A.R.M. Zain, J. Yunas, and B.Y. Majlis. Influence of tantalum’s crystal phase growth on the microstructural, electrical and mechanical properties of sputter-deposited tantalum thin film layer, Int. J. Refract. Met. H., 92: 105314 (2020); https://doi.org/10.1016/j.ijrmhm.2020.105314
  3. A. Jara, B. Fraisse, V. Flaud, N. Fréty, and G. Gonzalez, Thin film deposition of Ta, TaN and Ta/TaN bi-layer on Ti and SS316-LVM substrates by RF sputtering, Surf. Coat. Tech., 309: 887–896 (2017); https://doi.org/10.1016/j.surfcoat.2016.10.067
  4. D. Bernoulli, U. Müller, M. Schwarzenberger, R. Hauert, and R. Spolenak, Magnetron sputter deposited tantalum and tantalum nitride thin films: An analysis of phase, hardness and composition, Thin Solid Films, 548: 157–161 (2013); https://doi.org/10.1016/j.tsf.2013.09.055
  5. Y. Su, W. Huang, T. Zhang, C. Shi, R. Hu, Z. Wang, and L. Cai, Tribological properties and microstructure of monolayer and multilayer Ta coatings prepared by magnetron sputtering, Vacuum, 189: 110250 (2021); https://doi.org/10.1016/j.vacuum.2021.110250
  6. H. Yu, L. Yang, L. Zhu, X. Jian, Z. Wang, and L. Jiang, Anticorrosion properties of Ta-coated 316L stainless steel as bipolar plate material in proton exchange membrane fuel cells, Journal of Power Sources, 191, No. 2: 495–500 (2009); https://doi.org/10.1016/j.jpowsour.2009.02.020
  7. L. Gladczuk, C. Joshi, A. Patel, J. Guiheen, Z. Iqbal, and M. Sosnowski, Corrosion-Resistant Tantalum Coatings for PEM Fuel Cell Bipolar Plates, MRS Proceedings, 756: FF7.2 (2002); https://doi.org/10.1557/PROC-756-FF7.2
  8. J. Lin, J.J. Moore, W.D. Sproul, S.L. Lee, and J. Wang, Effect of Negative Substrate Bias on the Structure and Properties of Ta Coatings Deposited Using Modulated Pulse Power Magnetron Sputtering, IEEE T. Plasma Sci., 38, No. 11: 3071–3078 (2010); https://doi.org/10.1109/TPS.2010.2068316
  9. M. Nikravesh, G.H. Akbari, and A. Poladi, A comprehensive study on the surface tribology of Ta thin film using molecular dynamics simulation: The effect of TaN interlayer, power and temperature, Tribol. Int., 105: 185–192 (2017); https://doi.org/10.1016/j.triboint.2016.10.010
  10. A. Schauer and M. Roschy, R.F. sputtered β-tantalum and b.c.c. tantalum films, Thin Solid Films, 12, No. 2: 313–317 (1972); https://doi.org/10.1016/0040-6090(72)90095-8
  11. M. Stavrev, D. Fischer, C. Wenzel, K. Drescher, and N. Mattern, Crystallographic and morphological characterization of reactively sputtered Ta, Ta–N and Ta–N–O thin films, Thin Solid Films, 307, Nos. 1–2: 79–88 (1997); https://doi.org/10.1016/S0040-6090(97)00319-2
  12. E.A.I. Ellis, M. Chmielus, S. Han, and S.P. Baker, Effect of sputter pressure on microstructure and properties of β-Ta thin films, Acta Mater., 183: 504–513 (2020); https://doi.org/10.1016/j.actamat.2019.10.056
  13. X. Guo, Y. Niu, M. Chen, W. Sun, S. Zhu, and F. Wang, Stoichiometry and tribological behavior of thick Ta(N) coatings produced by direct current magnetron sputtering (DCMS), Appl. Surf. Sci., 427, Pt. B: 1071–1079 (2018); https://doi.org/10.1016/j.apsusc.2017.09.095
  14. L. Gladczuk, A. Patel, C. Paur, and M. Sosnowski, Tantalum films for protective coatings of steel, Thin Solid Films, 467: 150–157 (2004); https://doi.org/10.1016/j.tsf.2004.04.041
  15. S.L. Lee, M. Doxbeck, J. Mueller, M. Cipollo, P. Cote, Texture, structure and phase transformation in sputter beta tantalum coating, Surf. Coat. Tech., 177–178: 44–51 (2004); https://doi.org/10.1016/j.surfcoat.2003.06.008
  16. R. Saha and J.A. Barnard. Effect of structure on the mechanical properties of Ta and Ta(N) thin films prepared by reactive DC magnetron sputtering, J. Cryst. Growth, 174, Nos. 1–4: 495–500 (1997); https://doi.org/10.1016/S0022-0248(96)01148-7
  17. A.C. Hee, S.S. Jamali, A. Bendavid, P.J. Martin, C. Kong, and Y. Zhao, Corrosion behaviour and adhesion properties of sputtered tantalum coating on Ti6Al4V substrate, Surf. Coat. Tech., 307, Part A: 666–675 (2016); https://doi.org/10.1016/j.surfcoat.2016.09.061
  18. A. Fattah-alhosseini, H. Elmkhah, G. Ansari, F. Attarzadeh, and O. Imantalab, A comparison of electrochemical behavior of coated nanostructured Ta on Ti substrate with pure uncoated Ta in Ringer's physiological solution, J. Alloy Compd., 739: 918–925 (2018); https://doi.org/10.1016/j.jallcom.2017.12.339
  19. S. Shiri, C. Zhang, A. Odeshi, and Q. Yang, Growth and characterization of tantalum multilayer thin films on CoCrMo alloy for orthopedic implant applications, Thin Solid Films, 645: 405–408 (2018); https://doi.org/10.1016/j.tsf.2017.11.017
  20. W.-C. Chen, Z.-Y. Wang, C.-Y. Yu, B.-H. Liao, and M.-T. Lin, A study of the phase transformation of low temperature deposited tantalum thin films using high power impulse magnetron sputtering and pulsed DC magnetron sputtering, Surf. Coat. Tech., 436: 128288 (2022); https://doi.org/10.1016/j.surfcoat.2022.128288
  21. A.C. Hee, Y. Zhao, S.S. Jamali, A. Bendavid, P.J. Martin, and H. Guo, Characterization of tantalum and tantalum nitride films on Ti6Al4V substrate prepared by filtered cathodic vacuum arc deposition for biomedical applications, Surf. Coat. Tech., 365: 24–32 (2019); https://doi.org/10.1016/j.surfcoat.2018.05.007
  22. A.C. Hee, P.J. Martin, A. Bendavid, S.S. Jamali, and Y. Zhao, Tribo-corrosion performance of filtered-arc-deposited tantalum coatings on Ti–13Nb-13Zr alloy for bio-implants applications, Wear, 400–401: 31–42 (2018); https://doi.org/10.1016/j.wear.2017.12.017
  23. A.C. Hee, Y. Zhao, S.S. Jamali, P.J. Martin, A. Bendavid, H. Peng, and X. Cheng, Corrosion behaviour and microstructure of tantalum film on Ti6Al4V substrate by filtered cathodic vacuum arc deposition, Thin Solid Films, 636, 54–62 (2017); https://doi.org/10.1016/j.tsf.2017.05.030
  24. A.C. Hee, H. Cao, Y. Zhao, S.S. Jamali, A. Bendavid, and P.J. Martin, Cytocompatible tantalum films on Ti6Al4V substrate by filtered cathodic vacuum arc deposition, Bioelectrochemistry, 122: 32–39 (2018); https://doi.org/10.1016/j.bioelechem.2018.02.006
  25. G.Q. Yu, B.K. Tay, S.P. Lau, K. Prasad, and J.X. Gao, Low temperature deposition of tantalum diffusion barrier by filtered cathodic vacuum arc, J. Phys. D: Appl. Phys., 36: 1355 (2003); https://doi.org/10.1088/0022-3727/36/11/317
  26. T.-Y. Kuo, W.-H. Chin, C.-S. Chien, and Y.-H. Hsieh, Mechanical and biological properties of graded porous tantalum coatings deposited on titanium alloy implants by vacuum plasma spraying, Surf. Coat. Tech., 372: 399–409 (2019); https://doi.org/10.1016/j.surfcoat.2019.05.003
  27. Y. Duan, L. Shi, M. Li, D. Yin, Q. Zhu, L. Liu, L. Wang, F. Guo, H. Li, and C. Jiang, Preliminary study of the biomechanical behavior and physical characteristics of tantalum (Ta)-coated prostheses, J. Orthop. Sci., 17, No. 2: 173–185 (2012); https://doi.org/10.1007/s00776-011-0191-7
  28. L. Li, H. Hei, Y. Wang, K. Zheng, Y. Ma, J. Gao, B. Zhou, Z. He, J. Zong, S. Yu, and B. Tang, Microstructure and properties of Ta coatings on the 3Y-TZP ceramic fabricated by plasma alloying technique, J. Alloys Compd., 805, 1135–1143 (2019); https://doi.org/10.1016/j.jallcom.2019.07.155
  29. Y.X. Leng, J.Y. Chen, P. Yang, H. Sun, J. Wang, and N. Huang, The biocompatibility of the tantalum and tantalum oxide films synthesized by pulse metal vacuum arc source deposition, Nucl. Instrum. Meth. B, 242, Nos. 1–2: 30–32 (2006); https://doi.org/10.1016/j.nimb.2005.08.002
  30. Z. Ma, H. Xie, B. Wang, X. Wei, and D. Zhao, A novel Tantalum coating on porous SiC used for bone filling material, Mater. Lett., 179: 166–169 (2016); https://doi.org/10.1016/j.matlet.2016.05.065
  31. A.H. Jensen, E. Christensen, and J.H. von Barner, Contact resistance of tantalum coatings in fuel cells and electrolyzers using acidic electrolytes at elevated temperatures, ECS Electrochem. Lett., 3, No.7; https://doi.org/10.1149/2.0051407eel
  32. A. Bartkowiak, Y. Zabila, E. Menaszek, A. Zarzycki, M. Perzanowski, and M. Marszalek, Effect of tantalum interlayer on hydroxyapatite biointerface for orthopedic applications, Surf. Coat. Tech., 447: 128882 (2022); https://doi.org/10.1016/j.surfcoat.2022.128882
  33. X. Wang, B. Ning, and X. Pei, Tantalum and its derivatives in orthopedic and dental implants: Osteogenesis and antibacterial properties, Colloid Surface B, 208: 112055 (2021); https://doi.org/10.1016/j.colsurfb.2021.112055
  34. R. Saha, R.B. Inturi, and J.A. Barnard, Effect of Thickness and Substrates on the Mechanical Properties of Tantalum and Tantalum Nitride Thin Films, MRS Online Proceedings Library, 403: 259–264 (1995); https://doi.org/10.1557/PROC-403-259
  35. G. Abadias, J.J. Colin, D. Tingaud, Ph. Djemia, L. Belliard, and C. Tromas, Elastic properties of α- and β-tantalum thin films, Thin Solid Films, 688: 137403 (2019); https://doi.org/10.1016/j.tsf.2019.06.053
  36. H. Ren and M. Sosnowski, Tantalum thin films deposited by ion assisted magnetron sputtering, Thin Solid Films, 516: 1898 (2008); https://doi.org/10.1016/j.tsf.2007.10.127
  37. M. Leoni, P. Scardi, S. Rossi, L. Fedrizzi, and Y. Massiani, (Ti, Cr)N and Ti/TiN PVD coatings on 304 stainless steel substrates: texture and residual stress, Thin Solid Films, 345: 263 (1999).
  38. X.G.Y. Su, D. Xie, S.Y. Li, H. Sun, Y. Leng, and N. Huang, The effect of a TiN interlayer on the tribological properties of diamond-like carbon films deposited on 7A04 aluminum alloy, IEEE Trans. Plasma Sci., 39, No 11: 3144 (2011); https://doi.org/10.1109/TPS.2011.2169091
  39. J. Stallard, S. Poulat, and D.G. Teer, The study of the adhesion of a TiN coating on steel and titanium alloy substrates using a multi-mode scratch tester, Tribol. Int., 39, No 2: 159 (2006); https://doi.org/10.1016/j.triboint.2005.04.011
  40. M.S. Kabir, P. Munroe, Z.F. Zhou, and Z.H. Xie, Scratch adhesion and tribological behaviour of graded Cr/CrN/CrTiN coatings synthesized by closed-field unbalanced magnetron sputtering, Wear, 380–381: 163 (2017); https://doi.org/10.1016/j.surfcoat.2016.10.087
  41. I.I. Singer, How third-body processes affect friction and wear, MRS Bull., 23: 37 (2013); https://doi.org/10.1557/S088376940003061X
  42. S.I. Lee, D. Windover, M. Audino, D.W. Matson, E.D. McClanahan, High-rate sputter deposited tantalum coatings on steel for wear and erosion mitigation, Surf. Coat. Technol., 149: 62 (2002); https://doi.org/10.1016/S0257-8972(01)01383-4
  43. R. Latif, Characterisation of sheet resistivity and contact resistivity for source/drain of n-MOSFET device, J. Telecomm. Electronic Comp. Eng., 6: 29 (2014).
  44. M. Grosser and U. Schmid, The impact of sputter conditions on the microstructure and on the resistivity of tantalum thin films, Thin Solid Films, 517: 4493 (2009); https://doi.org/10.1016/j.tsf.2008.12.009
  45. L.A. Clevenger, A. Mutscheller, J.M.E. Harper, C. Cabral, and K. Barmak, The relationship between deposition conditions, the beta to alpha phase transformation, and stress relaxation in tantalum thin films, J. Appl. Phys., 72: 4918 (1992); https://doi.org/10.1063/1.352059
  46. E. Solati and D. Dorranian, Investigation of the structure and properties of nanoscale grain-size β-Tantalum thin films, Mol. Cryst. Liq. Cryst., 571: 67 (2013); https://doi.org/10.1080/15421406.2012.741347
  47. W.A. Badawy, S.S. Elegamy, and K.M. Ismail, Comparative study of tantalum and titanium passive films by electrochemical impedance spectroscopy, Br. Corros. J., 28:133 (1993); https://doi.org/10.1179/bcj.1993.28.2.133
  48. Y. Sugizaki, T. Yasunaga, and H. Tomari, Improvement of corrosion resistance of titanium by co-implantation, Surf. Coat. Technol., 83: 167 (1996); https://doi.org/10.1016/0257-8972(95)02834-X
  49. U. Rammelt and G. Reinhard, On the applicability of a constant phase element (CPE) to the estimation of roughness of solid metal electrodes, Electrochim. Acta, 35: 1045 (1990); https://doi.org/10.1016/0013-4686(90)90040-7
  50. T. Miyazaki, H.-M. Kim, T. Kokubo, C. Ohtsuki, H. Kato, and T. Nakamura, Mechanism of bonelike apatite formation on bioactive tantalum metal in a simulated body fluid, Biomaterials, 23: 827 (2002); https://doi.org/10.1016/S0142-9612(01)00188-0
  51. T. Kokubo, Apatite formation on surfaces of ceramics, metals and polymers in body environment, Acta Mater., 46: 2519 (1998); https://doi.org/10.1016/S1359-6454(98)80036-0
  52. J.M. Schakenraad, H.J. Busscher, C.R.H. Wildevuur, and J. Arends, The influence of substratum surface free energy on growth and spreading of human fibroblasts in the presence and absence of serum proteins, J. Biomed. Mater. Res., 20: 773 (1986); https://doi.org/10.1002/jbm.820200609
  53. J.D. Andrade and V. Hlady, Protein adsorption and materials biocompatibility: a tutorial review and suggested hypotheses, Biopolymers/Non-Exclusion HPLC (Berlin–Heidelberg: Springer: 1986), p. 1–63.
  54. A. Sethuraman, M. Han, R.S. Kane, and G. Belfort, Effect of surface wettability on the adhesion of proteins, Langmuir, 20: 7779 (2004); https://doi.org/10.1021/la049454q