Sulphurizing of Metal Surfaces by Electrospark-Discharge Alloying. Pt. 1: Structural–Phase State of Sulphur-Containing Coatings on Constructional Steels

TARELNYK V.B.$^{1}$, HAPONOVA O.P.$^{1}$, TARELNYK N.V.$^{2,3}$, and KONOPLIANCHENKO Ye.V.$^{1}$

$^1$Sumy National Agrarian University, 160 Herasyma Kondratieva Str., 40021 Sumy, Ukraine
$^2$Sumy State University, 116 Kharkivska Str., 40007 Sumy, Ukraine
$^3$Institute of Fundamental Technological Research, Polish Academy of Sciences, 5В Pawińskiego Str., 02-016 Warsaw, Poland

Received 14.08.2024, final version 03.02.2025 Download PDF logo PDF

Abstract
The methods of surface sulphur saturation of metal surfaces to provide them with special tribotechnical properties are reviewed and analysed. The main attention is focused on technologies based on the method of electrospark alloying (ESA). As shown, the process of sulphur saturation can be realised by using a special sulphur-containing saturating technical substance (STS). The methods of forming sulphided, sulphocarburized, sulphoaluminized, Al–C–S, and sulphomolybdenum coatings on steels using STS by ESA are considered. The results of sulphur distribution in the surface layer during ESA sulphurizing with a metal electrode using STS are presented. As shown, the sulphur concentration on the surface is of about 0.53–0.60% that gradually decreases deeper into the substrate. The topography of the treated surface and its structure after sulphocarburized of steel surfaces with a graphite electrode using STS containing sulphur are investigated. As found, the coating consists of several layers: a ‘soft’ layer saturated with sulphur, a hardened layer saturated with carbon, and the substrate metal. The thickness, microhardness, and continuity of the coating increase with the discharge energy. The qualitative parameters of sulphoaluminized coatings obtained by the ESA method with an aluminium electrode using STS are analysed. The microstructures reveal three zones: a near-surface, non-continuous loose layer with sulphur enrichment, 10–100-µm thick, and microhardness of 1368–2073 MPa; a ‘white’ hardened layer containing aluminium, 20–40 µm-thick, and microhardness of 4094–5157 MPa; a diffusion zone; and a substrate material. The sulphoaluminized-coatings’ phase composition depends on the ESA energy parameters. Intermetallics FeAl and FeAl2 are formed in the surface layer. The structural–phase state and properties of sulphomolybdenum coatings obtained by the ESA method with a molybdenum electrode using STS are discussed. The near-surface loose layer saturated with sulphur contains up to 8% of molybdenum disulphide formed due to ESA. Beneath this layer is a hardened layer saturated with molybdenum and having a microhardness of 10596–10731 MPa. It is proposed to use sulphurizing methods based on ESA using STS as cheap and effective methods of surface modification of friction surfaces to reduce seizure and friction coefficient.

Keywords: sulphurizing, electrospark alloying, coating, microstructure, tribotechnical properties.

DOI: https://doi.org/10.15407/ufm.26.01.***

Citation: V.B. Tarelnyk, O.P. Haponova, N.V. Tarelnyk, and Ye.V. Konoplianchenko, Sulphurizing of Metal Surfaces by Electrospark-Discharge Alloying. Pt. 1: Structural–Phase State of Sulphur-Containing Coatings on Constructional Steels, Progress in Physics of Metals, 26, No. 1: ***–*** (2025)


References  
  1. A. Korczak, V. Martsynkovskyy, G. Peczkis, and A. Zahorulko, Procedia Engineering, 39: 286 (2012); https://doi.org/10.1016/j.proeng.2012.07.035
  2. V. Martsynkovskyy, V. Tarelnyk, V. Martsynkovskyy, Ie. Konoplianchenko, A. Zhukov, P. Kurp, P. Furmańczyk, and N. Tarelnyk, AIP Conf. Proc., 2017: 020017 (2018); https://doi.org/10.1063/1.5056280
  3. V. Tarelnyk, I. Konoplianchenko, V. Martsynkovskyy, A. Zhukov, and P. Kurp, Simulation and Manufacturing. DSMIE-2018. Lecture Notes in Mechanical Engineering (Eds. V. Ivanov, Y. Rong, J. Trojanowska, J. Venus, O. Liaposhchenko, J. Zajac, I. Pavlenko, M. Edl, and D. Perakovic) (Cham: Springer: 2019), р. 382; https://doi.org/10.1007/978-3-319-93587-4_40
  4. V.B. Tarel’nik, V.S. Martsinkovskii, and A.N. Zhukov, Chemical and Petroleum Engineering, 53, Nos. 1–2: 114 (2017); https://doi.org/10.1007/s10556-017-0305-y
  5. V.B. Tarel’nik, V.S. Martsinkovskii, and A.N. Zhukov, Chemical Petroleum Engineering, 53, Nos. 3–4: 266 (2017); https://doi.org/10.1007/s10556-017-0333-7
  6. V.B. Tarel’nik, V.S. Martsinkovskii, and A.N. Zhukov, Chemical Petroleum Engineering, 53, Nos. 5–6: 385 (2017); https://doi.org/10.1007/s10556-017-0351-5
  7. V.B. Tarelnyk, O.P. Gaponova, Ye.V. Konoplianchenko, V.S. Martsynkovskyy, N.V. Tarelnyk, and O.O. Vasylenko, Metallofiz. Noveishie Tekhnol., 41, No. 2: 173 (2019) (in Russian); https://doi.org/10.15407/mfint.41.02.0173
  8. T.V. Mosina, Novyye Ogneupory, 9: 61 (2013); https://doi.org/10.17073/1683-4518-2013-9-61-64
  9. P. Rohatgi, M. Bellah, and V. Srivastava, J. Mater. Res., 39: 1597 (2024); https://doi.org/10.1557/s43578-024-01355-z
  10. A. Zahorulko, C. Kundera, and S. Hudkov, IOP Conf. Ser. Mater. Sci. Eng., 233: 012039 (2017); https://doi.org/10.1088/1757-899X/233/1/012039
  11. I.P. Shatskyi, V.V. Perepichka, and L.Ya. Ropyak, Metallofiz. Noveishie Tekhnol., 42, No. 1: 69 (2020) (in Ukrainian); https://doi.org/10.15407/mfint.42.01.0069
  12. O.P. Umanskyi, M.S. Storozhenko, V.B. Tarelnyk, N.V. Tarelnyk, and T.V. Kurinna, Powder Metall. Met. Ceram., 59, Nos. 1–2: 57 (2020). https://doi.org/10.1007/s11106-020-00138-5
  13. O. Umanskyi, M. Storozhenko, G. Baglyuk, O. Melnyk, V. Brazhevsky, O. Chernyshov, O. Terentiev, Yu. Gubin, O. Kostenko, and I. Martsenyuk, Powder Metall. Met. Ceram., 59, Nos. 7–8: 434 (2020); https://doi.org/10.1007/s11106-020-00177-y
  14. M. Bembenek, P. Prysyazhnyuk, T. Shihab, R. Machnik, O. Ivanov, and L. Ropyak, Materials, 15, No. 14: 5074 (2022); https://doi.org/10.3390/ma15145074
  15. B.O. Trembach, M.G. Sukov, V.A. Vynar, I.O. Trembach, V.V. Subbotina, O.Yu. Rebrov, O.M. Rebrova, and V.I. Zakiev, Metallofiz. Noveishie Tekhnol., 44, No. 4: 493 (2022); https://doi.org/10.15407/mfint.44.04.0493
  16. H. Ichou, N. Arrousse, E. Berdimurodov, and N. Aliev, J. Bio Tribo Corros., 10: 3 (2024); https://doi.org/10.1007/s40735-023-00806-0
  17. E. Locks, Q. He, J.M. DePaiva, M. Guimaraes, A.F. Arif, S.C. Veldhuis, and J.R. Kish, Coatings, 14, No. 3: 290 (2024); https://doi.org/10.3390/coatings14030290
  18. D.S. Rickerby and A. Matthews, Advanced Surface Coatings: a Handbook of Surface Engineering (Glasgow–Blackie–New York: Chapman and Hal: 1991).
  19. D. Zhang, D. Du, Z. Pu, S. Xue, J. Qi, and B. Chang, Materials Letters, 363: 136275 (2024); https://doi.org/10.1016/j.matlet.2024.136275
  20. B. Xu, P. Jiang, S. Geng, Y. Wang, J. Zhao, and G. Mi, Materials & Design, 203: 109538 (2021); https://doi.org/10.1016/j.matdes.2021.109538
  21. P. Augustyn, P. Rytlewski, K. Moraczewski, and Adam Mazurkiewicz, J. Mater. Sci., 56: 14881 (2021); https://doi.org/10.1007/s10853-021-06246-w
  22. L. Sun, G. Yuan, L. Gao, J. Yang, M. Chhowalla, M.H. Gharahcheshmeh, K.K. Gleason, Y.S. Choi, B.H. Hong, and Z. Liu, Nat. Rev. Methods Primers, 1: 5 (2021); https://doi.org/10.1038/s43586-020-00005-y
  23. L. Ropyak, I. Schuliar, and O. Bohachenko, East.-Eur. J. Ent. Technol., 1, No. 5: 53 (2016) (in Ukrainian); https://doi.org/10.15587/1729-4061.2016.59850
  24. I. Ivasenko, V. Posuvailo, H. Veselivska, and V. Vynar, Int. Sci. Tech. Conf. on Computer Sciences and Information Technologies, 2: 9321900 (2020); https://doi.org/10.1109/CSIT49958.2020.9321900
  25. M. Bembenek, M. Makoviichuk, I. Shatskyi, L. Ropyak, I. Pritula, L. Gryn, and V. Belyakovskyi, Sensors, 22, No. 21: 8105 (2022); https://doi.org/10.3390/s22218105
  26. М.М. Student, V.M. Dovhunyk, V.M., Posuvailo, I.V. Koval’chuk, and V.M. Hvozdets’kyi, Mater. Sci., 53, No. 3: 359 (2017); https://doi.org/10.1007/s11003-017-0083-x
  27. O. Bazaluk, O. Dubei, L. Ropyak, M. Shovkoplias, T. Pryhorovska, and V. Lozynskyi, Energies, 15, No. 1: 83, (2022); https://doi.org/10.3390/en15010083
  28. T. Loskutova, M.Scheffler, V. Ivanov, I. Pohrebova, Y. Kononenko, M. Bobina, N. Kharchenko, M. Bartoszuk, and I. Pavlenko, Metals, 14, No. 3: 302 (2024); https://doi.org/10.3390/met14030302
  29. S. Yeh, L. Chiu, and H. Chang, Eng. Sci. Res. Publ., 9, No. 3: 942 (2011); https://doi.org/10.4236/eng.2011.39116
  30. S. Ben Slima, Mater. Sci. Appl. Sci. Res. Publ., 9, No. 3: 640 (2012); https://doi.org/10.4236/msa.2012.39093
  31. M. Stoicescu, E. Ene, A. Zara, I. Giacomelli, and A.C. Berbecaru, U.P.B. Sci. Bull. Ser. B., 80, No. 4: 157 (2018);
  32. L.A. Harlamov and O.S. Kroli, Volodymyr Dal National University of Eastern Ukraine (Donetsk: 2015), p. 223.
  33. M. Nikolova, N. Nikolov, E. Yankov, B. Derin, and S. Topalski, Indian J. Eng. Mater. Sci., 27, No. 14: 5 (2020); https://doi.org/10.56042/ijems.v27i1.45867
  34. W. Hai-dou, Z. Da-ming, W. Kun-lin, and L. Jia-jun, Mater. Sci. Eng., 357, Nos. 1–2: 321 (2003) ; https://doi.org/10.1016/S0921-5093(03)00209-0
  35. J.J. Kang, C.B. Wang, H.D. Wang, B.S. Xu, J.J. Liu, and G.L. Li, Adv. Mater. Res., 217–218: 1117 (2011). https://doi.org/10.4028/www.scientific.net/AMR.217-218.1117
  36. J.J. Kang, C.B. Wang, H.D. Wang, B.S. Xu, J.J. Liu, and G.L. Li, Adv. Mater. Res., 217–218: 1113 (2011). https://doi.org/10.4028/www.scientific.net/AMR.217-218.1113
  37. J.J. Kang, C.B. Wang, H.D. Wang, B.S. Xu, J.J. Liu, and G.L. Li, Mater. Chem. Phys., 129, Nos. 1–2: 625 (2011); https://doi.org/10.1016/j.matchemphys.2011.05.002
  38. J.J. Kang, C.B. Wang, H.D. Wang, B.S. Xu, J.J. Liu, and G.L. Li, Surf. Coat. Technol., 203, No. 14: 1927 (2009); https://doi.org/10.1016/j.surfcoat.2009.01.017
  39. N. Zhang, D.M. Zhuang, and J.J. Liu, Surf. Coat. Technol., 203, No. 20: 3173 (2009); https://doi.org/10.1016/j.surfcoat.2009.03.046
  40. H.D. Wang, B.S. Xu, J.J. Liu, D.M. Zhuang, S.C. Wei, and G. Jin, Surf. Coat. Technol., 201, Nos. 9–11: 5286 (2007); https://doi.org/10.1016/j.surfcoat.2006.07.229
  41. H.D. Wang, B.S. Xu, J.J. Liu, and D.M. Zhuang, Surf. Coat. Technol., 201, Nos. 9–11: 5236 (2007); https://doi.org/10.1016/j.surfcoat.2006.07.226
  42. V.I. Kuzmin, A.A. Mikhal’chenko, O.B. Kovalev, and N.A. Rudenskaya, J. Thermal Spray Technology, 21, No. 1: 159 (2012); https://doi.org/10.1007/s11666-011-9701-6
  43. A.D. Pogrebnjak, V.I. Ivashchenko, P.L Skrynskyy, O.V. Bondar, P. Konarski, K. Zaleski, S. Jurga, and E. Coy, Composites. Part B: Eng., 142: 85 (2018); https://doi.org/10.1016/j.compositesb.2018.01.004
  44. A.D. Pogrebnjak, A.A. Bagdasaryan, P. Horodek, V. Tarelnyk, V.V. Buranich, H. Amekura, N. Okubo, N. Ishikawa, and V.M. Beresnev, Materials Letters, 303, 130548 (2021); https://doi.org/10.1016/j.matlet.2021.130548
  45. G. Morand, P. Chevallier, L. Bonilla-Gameros, S. Turgeon, M. Cloutier, M. Da Silva Pires, A. Sarkissian, M. Tatoulian, L. Houssiau, and D. Mantovani, Surf. Interface Analysis, 53, No. 7: 658 (2021); https://doi.org/10.1002/sia.6953
  46. G. Maistro, S. Kante, L. Nyborg, and Y. Cao, Surf. Interf., 24: 101093 (2021); https://doi.org/10.1016/j.surfin.2021.101093
  47. B. Antoszewski, S. Tofil, M. Scendo, and W. Tarelnik, IOP Conf. Ser.: Mater. Sci. Eng., 233: 012036 (2017); https://doi.org/10.1088/1757-899X/233/1/012036
  48. B. Antoszewski, N. Radek, W. Tarelnik, and E. Wajs, IX Int. Conf. HERVICON (2005, Sumy), р. 15.
  49. N. Radek, Mechanik, 83, No. 11: 822 (2010).
  50. J. Padgurskas, R. Kreivaitis, R. Rukuiža, V. Mihailov, V. Agafii, R. Kriūkienė, and A. Baltušnikas, Surf. Coat. Technol., 311: 90 (2017); https://doi.org/10.1016/j.surfcoat.2016.12.098
  51. M. Salmaliyan, F. Malek Ghaeni, and M. Ebrahimnia, Surf. Coat. Technol., 321: 81 (2017); https://doi.org/10.1016/j.surfcoat.2017.04.040
  52. H. Aghajani, E. Hadavand, N.S. Peighambardoust, and S. Khameneh-asl, Surf. Interf., 18, No. 4: 100392 (2020); https://doi.org/10.1016/j.surfin.2019.100392
  53. B. Antoszewski and V. Tarelnіk, Appl. Mech. Mater., 630: 301 (2014); https://doi.org/10.4028/www.scientific.net/AMM.630.301
  54. A. Gadek-Moszczak, N. Radek, S. Wroński, and J. Tarasiuk, Adv. Mater. Res., 874: 133 (2014); http://dx.doi.org/10.4028/www.scientific.net/AMR.874.133
  55. N. Radek, J. Konstanty, and M. Scendo, Arch. Metall. Mater., 60, No. 4: 2579 (2015). https://doi.org/10.1515/amm-2015-0417
  56. V. Tarelnyk, I. Konoplianchenko, O. Gaponova, N. Tarelnyk, V. Martsynkovskyy, B. Sarzhanov, O. Sarzhanov, and B. Antoszewski, Powder Metall. Met. Ceram., 58: 703 (2020); https://doi.org/10.1007/s11106-020-00127-8
  57. B. Antoszewski, S. Tofil1, M. Scendo, and W. Tarelnik, IOP Conf. Ser.: Mater. Sci. Eng., 233: 012036 (2017); https://doi.org/10.1088/1757-899X/233/1/012036
  58. O.M. Myslyvchenko, O.P. Gaponova, V.B. Tarelnyk, and M.O. Krapivka, Powder Metall. Metal. Ceram., 59, Nos. 3–4: 201 (2020); https://doi.org/10.1007/s11106-020-00152-7
  59. V.B. Tarelnyk, O.P. Gaponova, Ye.V. Konoplyanchenko, N. S. Yevtushenko, and V.O. Herasymenko, Metallofiz. Noveishie Tekhnol., 40, No. 6: 795 (2018) (in Russian); https://doi.org/10.15407/mfint.40.06.0795
  60. C. Barile, C. Casavola, G. Pappalettera, and G. Renna, Coatings, 12, No. 10: 1536 (2022); https://doi.org/10.3390/coatings12101536
  61. J. Wang, M. Zhang, S. Dai, and L. Zhu, Coatings, 13, No. 8: 1473 (2023); https://doi.org/10.3390/coatings13081473
  62. V.B. Tarelnyk, O.P. Gaponova, V.B. Loboda, E.V. Konoplyanchenko, V.S. Martsinkovskii, Yu.I. Semirnenko, N.V. Tarelnyk, M.A. Mikulina, and B.A. Sarzhanov, Engin. Appl. Electrochem., 57: 173 (2021); https://doi.org/10.3103/S1068375521020113
  63. V.B. Tarelnyk, A.V. Paustovskii, Y.G. Tkachenko, E.V. Konoplianchenko, V.S. Martsynkovskyi, and B. Antoszewski, Powder Metall. Met.. Ceram., 55: 585 (2017); https://doi.org/10.1007/s11106-017-9843-2
  64. V. Martsynkovskyy, V. Tarelnyk, I. Konoplianchenko, O. Gaponova, and M. Dumanchuk, Advances in Design, Simulation and Manufacturing II. DSMIE 2019. Lecture Notes in Mechanical Engineering (Eds. V. Ivanov, Y. Rong, J. Trojanowska, J. Venus, O. Liaposhchenko, J. Zajac, I. Pavlenko, M. Edl, D. Perakovic (Cham: Springer: 2020); https://doi.org/10.1007/978-3-030-22365-6_22
  65. V.B. Tarel’nik, A.V. Paustovskii, Y.G. Tkachenko, V.S. Martsinkovskii, E.V. Konoplyanchenko, and K. Antoshevskii, Surf. Eng. Appl. Electrochem., 53, No. 3: 285 (2017); https://doi.org/10.3103/S1068375517030140
  66. A.A. Ishchenko, Tekhnolohichni Osnovy Vidnovlennya Promyslovoho Obladnannya Suchasnymy Polimernymy Materialamy [Technological Foundations of Restoration of Industrial Equipment with Modern Polymeric Materials] (Mariupol: PDTU: 2007), р. 250 (in Ukrainian).
  67. V.B. Tarel’nik, E.V. Konoplyanchenko, P.V. Kosenko, and V.S. Martsinkovskii, Chem. Petrol. Eng., 53, Nos. 7–8: 540 (2017); https://doi.org/10.1007/s10556-017-0378-7
  68. V. Martsinkovsky, V. Yurko, V. Tarelnik, and Yu. Filonenko, Procedia Engineering, 39: 148 (2012) https://doi.org/10.1016/j.proeng.2012.07.019
  69. V. Martsinkovsky, V. Yurko, V. Tarelnik, and Yu. Filonenko, Procedia Eng., 39: 157 (2012); https://doi.org/10.1016/j.proeng.2012.07.020
  70. C.A. da Silva, J.A. Moreto, D.V. de Castro, and H.de Araújo Ponte, J. ASTM Int., 9, No. 1: 1 (2011); https://doi.org/10.1520/JAI103398
  71. G. Zhang, J. Ouyang, X. Meng, L. Ma, Q. Shangkui, and F. Zhang, Wear, 162–164, Pt. A: 450 (1993); https://doi.org/10.1016/0043-1648(93)90529-U
  72. N.I. Lazarenko, Ehlektroiskrovoye Legirovanie Metallicheskikh Poverkhnostei [Electric Spark Alloying of Metal Surfaces] (Moskva: Mashinostroenie: 1976), р. 46 (in Russian).
  73. A.G. Shcherbinskii, Sposob Nasyshcheniya Poverkhnostei Metalla Seroi [Method of Saturating Metal Surfaces with Sulphur]: Patent 139336 RU. (1961) (in Russian).
  74. V. Tarelnyk, V. Martsynkovskyy, O. Gaponova, N. Tarelnyk, and S. Gorovoy, IOP Conf. Ser.: Mater. Sci. Eng., 233, No. 1: 012049 (2017); https://doi.org/10.1088/1757-899X/233/1/012049
  75. V.B. Tarelnik, V.S. Martsinkovskii, and B. Antoshevskii, Kompressornoe i Energeticheskoe Mashinostroenie, 4, No. 6: 66 (2006) (in Russian).
  76. V. Tarelnyk, I. Konoplianchenko, O. Gaponova, N. Tarelnyk, V. Martsynkovskyy, B. Sarzhanov, O. Sarzhanov, and B. Antoszewski, Powder Metall. Met. Ceram., 58: 703 (2020); https://doi.org/10.1007/s11106-020-00127-8
  77. F. Georgee, Vander Applied Metallography (New York: Springer Science & Business Media: 2012).
  78. GOST 9450-76. Izmerenie Mikrotverdosti Metodom Vdavlivaniya Almaznykh Nakonechnikov [Microhardness Measurement by Diamond Tip Indentation Method] (Moskva: Izd-vo Standartov: 1978), р. 56 (in Russian).
  79. DSTU ISO 6507-1:2007. Materialy Metalevi. Vyznachennya Tverdosti za Vikersom. Ch. 1. Metod Vyprobuvannya (ISO 6507-1:2005, IDT) [Metal Materials. The Hardness Value Determined by Vickers. Pt. 1. Testing Method] (Kyiv: Derzhspozhyvstandart Ukrainy: 2010), р. 20 (in Ukrainian).
  80. GOST 1778-70. Stal. Metallograficheskie Metodi Opredeleniya Nemetallicheskikh Vklyuchenii [Steel. Metallographic Methods for Determining Non-Metallic Inclusions] (Standartinform: 2011), р. 32 (in Russian).
  81. V.B. Tarelnyk, O.P. Gaponova, Ye.V. Konoplianchenko, V.S. Martsynkovskyy, N.V. Tarelnyk, and O.O. Vasylenko, Metallofiz. Noveishie Tekhnol., 41, No. 2: 173 (2019) (in Russian); https://doi.org/10.15407/mfint.41.02.0173
  82. V.B. Tarelnyk, V.S. Martsynkovskyi, A.V. Bilous, O.M. Zhukov, P.V. Kosenko, and O.P. Haponova, Sposib Sulfiduvannia Poverkhni Stalevykh i Chavunnykh Detalei Metodom Elektroeroziinogo Leguvannia [The Method of Sulphiding the Surface of Steel and Cast Iron Parts by Electroerosion Alloying]: Patent 115059 RU, IPC (2017.01), В23Н 1/00, С23С 8/60 (2006.01), С22С 37/00, С22С 37/06, С22С 37/08 (Bul. 6) (2017) (in Ukrainian).
  83. V.B. Tarelnyk, V.S. Martsynkovskyi, A.V. Bilous, O.P. Haponova, Ye.V. Konoplianchenko, B. Antoshevskyi, Ch. Kundera, and O.M. Zhukov, Sposib Nasychennya Poverkhni Stalevykh i Chavunnykh Detalei Sirkoyu Metodom Elektroeroziinogo Leguvannya [The Method of Saturating the Surface of Steel and Cast Iron Parts with Sulphur by Electroerosion Alloying]: Patent 119317 UA, IPC (2017.01), B23H 1/00, С23С 8/60 (2006.01) (Bul. 18) (2017) (in Ukrainian).
  84. V.B. Tarelnyk, V.S. Martsynkovskyi, A.V. Bilous, O.M. Zhukov, O.P. Haponova, and Ye.V. Konoplianchenko, Sposib Sulfotsementatsii Poverkhni Stalevoi Detali [The Method of Sulfocementation of the Surface of a Steel Part]: Patent 117867 UA, IPC B23H 1/00 В23Н 9/02, С23С 8/66 (2006.01) (Bul.19) (2018) (in Ukrainian).
  85. O.P. Gaponova, V.B. Tarelnyk, N.V. Tarelnyk, and P. Kurp, Solid State Phenomena, 355: 85 (2024); https://doi.org/10.4028/p-5KfyZQ
  86. V.B. Tarelnyk, V.S. Martsynkovskyi, A.V. Bilous, O.P.Haponova, Ye.V. Konoplianchenko, B. Antoshevskyi, Ch. Kundera, and O.M. Zhukov, Sposib Sulfotsementatsii Stalevykh Detalei [The Method of Sulfocementation of Steel Parts]: Patent 119318 UA, IPC (2017.01), B23H 1/00, B23H 9/00, С23С 8/60 (2006.01) (Bul. 22) (2017) (in Ukrainian).
  87. B. Antoszewski, O.P. Gaponova, V.B. Tarelnyk, O.M. Myslyvchenko, P. Kurp, T.I. Zhylenko, and I. Konoplianchenko, Materials, 14: 739 (2021); https://doi.org/10.3390/ma14040739
  88. O.P. Haponova, Visnyk Kharkivskoho Natsionalnogo Tekhnichnogo Universytetu Silskogo Gospodarstva imeni Petra Vasylenka. Problemy Nadiinosti Mashyn, 205: 339 (2019) (in Ukrainian).
  89. L.D. Plyatsuk, V.B. Tarelnyk, Cz. Kundera, O.V. Radionov, and O.P. Gaponova, J. Eng. Sci., 5, No. 1: 16 (2018); https://doi.org/10.21272/jes.2018.5(1).c4
  90. V.B. Tarelnyk, V.S. Martsynkovskyi, A.V. Belous, A.N. Zhukov, O.P. Haponova, and E.V. Konoplianchenko, Sposob Sulfotsementatsii Stalnykh Detalei [The Method of Sulfocementation of Steel Parts]: Patent 2663799 RU, IPC B23H 1/00 (2006.01), B2Н 9/00 (2006.01) (Bul. 22) (2018) (in Russian).
  91. S.N. Himuhin, H. Ri, and E.X. Ri, Struktura i Svoystva Metallov i Splavov pri Elektroiskrovom Vozdeystvii [Structure and Properties of Metals and Alloys under Electric Spark Action] (Khabarovsk: Tikhookeanskiy Gos. Univer.: 2015) (in Russian).
  92. G.V. Kirik, O.P. Gaponova, V.B. Tarelnyk O.M. Myslyvchenko, and B. Antoszewski, Powder Metallurgy and Metal Ceramics., 56, Nos. 11–12: 688 (2018). https://doi.org/10.1007/s11106-018-9944-6
  93. O. Gaponova, C. Kundera, G. Kirik V. Tarelnyk, V. Martsynkovskyy, Ie. Konoplianchenko, M. Dovzhyk, A. Belous, and O. Vasilenko, Advances in Thin Films, Nanostructured Materials, and Coatings. NAP 2018. Lecture Notes in Mechanical Engineering (Singapore: Springer: 2019), p. 249. https://doi.org/10.1007/978-981-13-6133-3_25
  94. V. Tarelnyk, V. Martsynkovskyy, O. Gaponova, Ie. Konoplianchenko, A. Belous, V. Gerasimenko, and M. Zakharov, 15th Int. Sci. Eng. Conf. Hermetic Sealing, Vibration Reliability and Ecological Safety of Pump and Compressor Machinery, HERVICON+PUMPS, 233, No. 1: 012048 (2017); https://doi.org/10.1088/1757-899X/233/1/012048
  95. A. Cowley and B. Mintz, Mater. Sci. Technol., 20, No. 11: 1431 (2004); https://doi.org/10.1179/026708304X4268
  96. V.B. Tarelnyk, V.S. Martsynkovskyi, O.P. Gaponova, Ye. Konoplianchenko, N.V. Tarelnyk, M.Yu. Dumanchuk, M.V. Honcharenko, B. Antoshevskyi, and Ch. Kundera, Sposib Obrobky Poverkhon Stalevykh Detalei [The Method of Processing the Surfaces of Steel Parts]: Patent 121346 UA. IPC B23H 1/06 (2006.01), B23H 9/00, C23C 12/02 (2006.01) (Bul. 9) (2020) (in Ukrainian).
  97. V.B. Tarelnyk, O.P. Gaponova, and Ye.V. Konoplianchenko, Progress in Physics of Metals, 23, No. 1: 27 (2022); https://doi.org/10.15407/ufm.23.01.027
  98. V.B. Tarelnyk, E.V. Konoplyanchenko, O.P. Gaponova, and N.V. Tarelnik, Ensuring the Protection of the Surfaces of End Pulse Seals of Turbomachines by Forming Wear-Resistant Nanostructures (Sumy: University Book: 2022).
  99. R.N. Johnson, 45th Annual Technical Conf. Proceedings, Society of Vacuum Coaters (April 13–18, 2002, Madison, MI, USA), p. 87.
  100. J.L. Reynold, R.L. Holdren, and L.E. Brown, Adv. Mater. Process., 161, No. 3: 35 (2003).
  101. R. Johnson and G. Sheldon, J. Vac. Sci. Technol. A, 4, No. 6: 2740 (1986); https://doi.org/10.1116/1.573672
  102. O.P. Gaponova, B. Antoszewski, V.B. Tarelnyk, O.M. Myslyvchenko, and N.V. Tarelnyk, Materials, 14, No. 21: 63322021 (2021); https://doi.org/10.3390/ma14216332
  103. V.B. Tarelnyk, V.S. Martsynkovskyi, O.P. Gaponova, O.M. Myslyvchenko, V.O. Pyrohov, O.O. Hapon, and A.D. Lazarenko, Sposib Formuvannya Pokryttya na Poverkhni Stalevoi Detali Metodom Ehlektroiskrovoho Leguvannya [The Method of Forming the Coating on the Surface of a Steel Part by the Electric-Spark Alloying Method]: Patent 144932 UA. IPC B23H 1/00, B23H 9/00, C23C 4/00, C23C 6/00, C23C 8/60 (2006.01) (Bul. 21) (2020) (in Ukrainian).
  104. O. Haponova, V. Tarelnyk, T. Mościcki, N. Tarelnyk, J. Półrolniczak, O. Myslyvchenko, B. Adamczyk-Cieślak, and J. Sulej-Chojnacka, Coatings, 14: 563 (2024); https://doi.org/10.3390/coatings14050563