Layered Titanium-Based Materials Manufactured with Cast and Wrought: Production, Composition, Microstructure, and Mechanical Properties

MARKOVSKY P.E.$^1$, AKHONIN S.V.$^2$, BEREZOS V.O.$^2$, STASIUK O.O.$^1$, BONDARCHUK V.I.$^1$, ORYSHYCH D.V.$^1$, LIPCHANCHUK Ye.I.$^2$, and ZATSARNA O.V.$^1$

$^1$G.V. Kurdyumov Institute for Metal Physics of the N.A.S. of Ukraine, 36, Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine
$^2$E.O. Paton Electric Welding Institute of the N.A.S. of Ukraine, 11, Kazymyr Malevych Str., UA-03150 Kyiv, Ukraine

Received 31.10.2024, final version 11.11.2024 Download PDF logo PDF

Abstract
The features of formation of the structure, composition and certain mechanical properties of layered materials based on titanium and its alloys during melting by the electron-beam cold-hearth melting technique are considered. The influence of composition in two-layer structures Ti64 (Ti–6Al–4V)/LCB (low-cost beta Ti–1.5Al–6.8Mo–4.5Fe) and Ti64/Ti5553 (Ti–5Al–5V–5Mo–3Cr), as well as 4-layer Ti5553/Ti64/c.p.Ti (commercial purity titanium)/Ti64 is studied. The processes of formation of transition layers at the boundaries between alloys after both the smelting and the subsequent deformation by rolling, as well as after heat treatments, are studied. A relationship is established between the composition and the formed microstructure, on the one hand, and hardness, strength, ductility, and fracture under 3-point bending, on the other hand. A comparison of the titanium-layered materials produced by this method with the results provided by other technological approaches is carried out, and the advantages of the proposed technology are shown.

Keywords: titanium alloys, layered metal materials, electron-beam cold-hearth melting, microstructure, hardness, strength, ductility.

DOI: https://doi.org/10.15407/ufm.25.04.736

Citation: P.E. Markovsky, S.V. Akhonin, V.O. Berezos, O.O. Stasiuk, V.I. Bondarchuk, D.V. Oryshych, Ye.I. Lipchanchuk, and O.V. Zatsarna, Layered Titanium-Based Materials Manufactured with Cast and Wrought: Production, Composition, Microstructure, and Mechanical Properties, 25, No. 4: 736–764 (2024)


References  
  1. U. Zwicker, Titan und Titanlegierungen (Berlin: Springer-Verlag: 1974); https://doi.org/10.1007/978-3-642-80587-5
  2. G. Luetjering and J.C. Williams, Titanium (Berlin: Springer: 2007); https://doi.org/10.1007/978-3-540-73036-1
  3. M. Peters, J. Kumpfert, C.H. Ward, and C. Leyens, Adv. Eng. Mater. 5, No. 6: 419–427 (2003); https://doi.org/10.1002/adem.200310095
  4. J.H. Bernt and M.S. Persson, Ballistic Protection Plate of Titanium with Layered Properties (2008), European patent application EP 1935995A1.
  5. J.K. Lee, Analysis of Multi-Layered Materials under High Velocity Impact Using CTH (Theses for Master of Science in Aeronautical Engineering) (Ohio: Air Force Institute of Technology: 2008); https://scholar.afit.edu/etd/2685
  6. P.E. Markovsky, D.G. Savvakin, O.O. Stasiuk, S.H. Sedov, V.A. Golub, D.V. Kovalchuk, and S.V. Prikhodko, Metallofiz. Noveishie Tekhnol., 43, No. 12: 1573–1588 (2021); https://doi.org/10.15407/mfint.43.12.1573
  7. P. Ranaweera, D. Weerasinghe, P. Fernando, S.N. Raman, and D. Mohotti, Int. J. Prot. Struct., 11, No. 3: 379–410 (2020); https://doi.org/10.1177/2041419619898693
  8. G. Ben-Dor, A. Dubinsky, and T. Elperin, Theor. Appl. Fract. Mech., 88: 1–8 (2017); https://doi.org/10.1016/j.tafmec.2016.11.002
  9. O.M. Ivasishin, P.E. Markovsky, D.G. Savvakin, O.O. Stasiuk, M.N. Rad, and S.V. Prikhodko, J. Mater. Process. Technol., 269: 172–181 (2019); https://doi.org/10.1016/j.jmatprotec.2019.02.006
  10. S.L. Semiatin and I.M. Sukonnik, Rapid heat treatment of titanium alloys, Symposium on Physical Simulation of Casting, Hot Rolling, and Welding (Ed. H.G. Suzuki) (New York: Dynamic Systems, Inc. Poestenkill: 1997), p. 395–405.
  11. S.L. Semiatin and D.R. Douglas, Rapid Heat Treatment of Nonferrous Metals and Alloys to Obtain Graded Microstructures (US Patent 5447580: 1995).
  12. O.M. Ivasishin and R.V. Teliovich, Mater. Sci. Eng. A, 263, No. 2: 142–154 (1999); https://doi.org/10.1016/S0921-5093(98)01173-3
  13. P.E. Markovsky and S.L. Semiatin, J. Mater. Process. Technol., 210, No. 3: 518–528 (2010); https://doi.org/10.1016/j.jmatprotec.2009.10.015
  14. P.E. Markovsky and S.L. Semiatin, Mater. Sci. Eng. A, 528, Nos. 7–8: 3079–3089 (2011); https://doi.org/10.1016/j.msea.2010.12.002
  15. V.M. Fedirko, I.M. Pogreliuk, O.I. Yaskiv, Thermal Diffusion Multicomponent Saturation of Titanium Alloys (Kyiv: Naukova Dumka: 2008).
  16. A. Zhecheva, S. Malinov, and W. Sha, Surf. Coat. Technol., 201, No. 6: 2467–2474 (2006); https://doi.org/10.1016/j.surfcoat.2006.04.019
  17. M.Y.P. Costa, M.L.R. Venditti, M.O.H. Cioffi, H.J.C. Voorwald, V.A. Guimarães, and R. Ruas, Int. J. Fatigue, 33, No. 6: 759–765 (2011); https://doi.org/10.1016/j.ijfatigue.2010.11.007
  18. H.-J. Song, M.-K. Kim, G.-C. Jung, M.-S. Vang and Y.-J. Park, Surf. Coat. Technol., 201, No. 21: 8738–8745 (2007); https://doi.org/10.1016/j.surfcoat.2006.11.022
  19. O.M. Ivasishin, P.E. Markovsky, and E.I. Sharipov, Int. J. Mater. Prod. Technol., 8, Nos. 2–4: 204–212 (1993); https://doi.org/10.1504/ijmpt.1993.036531
  20. S.V. Prikhodko, O.M. Ivasishin, P.E. Markovsky, D.G. Savvakin, and O.O. Stasiuk, MATEC Web Conf., 321: 11028 (2020); https://doi.org/10.1051/matecconf/202032111028
  21. O.M. Ivasishin, D.V. Kovalchuk, P.E. Markovsky, D.G. Savvakin, O.O. Stasiuk, V.I. Bondarchuk, D.V. Oryshych, S.G. Sedov, and V.A. Golub, Prog. Phys. Met., 24, No. 1: 75–105 (2023); https://doi.org/10.15407/ufm.24.01.075
  22. Y. Guo, P. Chen, A. Arab, Q. Zhou, and Y. Mahmood, Def. Technol., 16, No. 3: 678–688 (2020); https://doi.org/10.1016/j.dt.2019.10.002
  23. J.S. Montgomery, M.G.H. Wells, B. Roopchand, and J.W. Ogilvy, JOM, 49, No. 5: 45–47 (1997); https://doi.org/10.1007/bf02914684
  24. J.S. Montgomery and M.G.H. Wells, JOM, 53, No. 4: 29–32 (2001); https://doi.org/10.1007/s11837-001-0144-2
  25. S.V. Akhonin, R.N. Mishchenko, and I.K. Petrichenko, Mater. Sci., 42, No. 3: 323–329 (2006); https://doi.org/10.1007/s11003-006-0086-5
  26. O.M. Ivasishin, S.V. Akhonin, D.G. Savvakin, V.A. Berezos, V.I. Bondarchuk, O.O. Stasyuk, and P.E. Markovsky, Prog. Phys. Met., 19, No. 3: 309–336 (2018); https://doi.org/10.15407/ufm.19.03.309
  27. P.E. Markovsky, S.V. Akhonin, V.A. Berezos, V.I. Bondarchuk, O.O. Stasuk, O.P. Karasevska and I.M. Gavrysh, Metallogr., Microstruct., Anal., 9(6): 856–872 (2020); https://doi.org/10.1007/s13632-020-00705-7
  28. V.M. Nesterenkov, M.O. Rusynyk, O.M. Berdnikova, V.A. Matviychuk, and R.V. Strashko, Avtom. Svarka, 5: 31–36 (2020); https://doi.org/10.37434/as2020.05.05
  29. S. Akhonin, V. Nesterenkov, V. Pashynskyi, V. Matviichuk, S. Motrunich, V. Berezos, and I. Klochkov, Eastern-European J. Enterp. Technol., 3, No. 12 (129): 36–45 (2024); https://doi.org/10.15587/1729-4061.2024.306613
  30. A.N. Kalinyuk, N.P. Trigub, V.N. Zamkov, O.M. Ivasishin, P.E. Markovsky, R.V. Teliovich, and S.L. Semiatin, Mater. Sci. Eng. A, 346, Nos. 1–2: 178–188 (2003); https://doi.org/10.1016/s0921-5093(02)00518-x
  31. P.E. Markovsky, D.V. Kovalchuk, J. Janiszewski, B. Fikus, D.G. Savvakin, O.O. Stasiuk, D.V. Oryshych, M.A. Skoryk, V.I. Nevmerzhytskyi, V.I. Bondarchuk, Prog. Phys. Met., 24, No. 4: 741–763 (2023); https://doi.org/10.15407/ufm.24.04.741
  32. P.E. Markovsky, J. Janiszewski, S.V. Akhonin, V.I. Bondarchuk, V.O. Berezos, K. Cieplak, O.P. Karasevska, and M.A. Skoryk, Prog. Phys. Met., 23, No. 3: 438–475 (2022); https://doi.org/10.15407/ufm.23.03.438
  33. S. Akhonin, O. Pikulin, V. Berezos, A. Severyn, O. Erokhin, and V. Kryzhanovsky, Eastern-European J. Enterp. Technol., 5, No. 12 (119): 6–12 (2022); https://doi.org/10.15587/1729-4061.2022.265014
  34. S.V. Akhonin, N.P. Trigub, V.N. Zamkov, and S.L. Semiatin, Metall. Mater. Trans. B, 34, No. 4: 447–454 (2003); https://doi.org/10.1007/s11663-003-0071-4
  35. P.E. Markovsky, Mater. Sci. Forum, 941: 839–844 (2018); https://doi.org/10.4028/www.scientific.net/msf.941.839
  36. A.V.K. Suryanarayana, Testing of Metallic Materials (Bsp Books Pvt. Limited: 2018).
  37. M. Colangeli, A. De Masi, and E. Presutti, J. Phys. A, 50, No. 43: 435002 (2017); https://doi.org/10.1088/1751-8121/aa8c68
  38. J. Alvarez-Ramirez, L. Dagdug, and M. Meraz, Phys. A, 395: 193–199 (2014); https://doi.org/10.1016/j.physa.2013.10.027
  39. O.P. Karasevskaya, O.M. Ivasishin, S.L. Semiatin, and Y.V. Matviychuk, Mater. Sci. Eng., 354, Nos. 1–2: 121–132 (2003); https://doi.org/10.1016/s0921-5093(02)00935-8
  40. O.M. Ivasishin, P.E. Markovsky, Y.V. Matviychuk, and S.L. Semiatin, Metall. Mater. Trans. A, 34, No. 1: 147–158 (2003); https://doi.org/10.1007/s11661-003-0216-8
  41. O.M. Ivasishin, P.E. Markovsky, S.L. Semiatin, and C.H. Ward, Mater. Sci. Eng. A, 405, Nos. 1–2: 296–305 (2005); https://doi.org/10.1016/j.msea.2005.06.027
  42. G. Lütjering, Mater. Sci. Eng. A, 243, Nos. 1–2: 32–45 (1998); https://doi.org/10.1016/s0921-5093(97)00778-8
  43. Titanium Alloy Ti5553 (Aubert & Duval: 2024); https://www.aubertduval.com/wp-media/uploads/sites/2/2017/06/Ti5553_GB.pdf
  44. A. Caballero, A.E. Davis, J.R. Kennedy, J. Fellowes, A. Garner, S. Williams, and P. Prangnell, Philos. Mag., 102, No. 22: 2256–2281 (2022); https://doi.org/10.1080/14786435.2022.2113470
  45. Y. Guo, P. Genelot, A.P. Singh, L. Bolzoni, Y. Qu, H. Kou, J. Lin, and F. Yang, J. Mater. Eng. Perform., 31: 8619–8629 (2022); https://doi.org/10.1007/s11665-022-06846-w
  46. O.M. Ivasishin, P.E. Markovsky, G.A. Pakharenko, and A.V. Shevchenko, Mater. Sci. Eng., 196, Nos. 1–2: 65–70 (1995); https://doi.org/10.1016/0921-5093(94)09707-0
  47. S. Suresh, Fatigue of Materials. 2nd Edition (Cambridge University Press: 2012); https://doi.org/10.1017/CBO9780511806575
  48. W. Zhang, P. Yang, Y. Cao, X. Li, D. Wei, H. Kato, and Z. Wu, Mater. Sci. Eng. A, 822: 141702 (2021); https://doi.org/10.1016/j.msea.2021.141702
  49. Z. Zhong, B. Zhang, Y. Jin, H. Zhang, Y. Wang, J. Ye, Q. Liu, Z. Hou, Z. Zhang, and F. Ye, Ceram. Int., 46, No. 18: 28244–28249 (2020); https://doi.org/10.1016/j.ceramint.2020.07.325
  50. P. Markovsky, J. Janiszewski, D. Savvakin, O. Stasyuk, B. Fikus, V. Samarov, V. Ellison, and S. Prikhodko, Def. Technol., 39: 1–14 (2024); https://doi.org/10.1016/j.dt.2024.04.002
  51. W.J. Bruchey, Suppression of Material Failure Modes in Titanium Armors (Army Research Laboratory Report ARL-TR-3124: 2003).
  52. J. Pu, T. Chen, Y. Sun, W. Long, H. Sun, and Y. Chen, Coatings, 14, No. 9: 1096 (2024); https://doi.org/10.3390/coatings14091096
  53. A. Patnaik, N. Poondla, U. Bathini, Proc. Int. Symp. ‘Processing and Fabrication of Advanced Materials — XVIII’ (December 12–14, 2009, Sendai, Japan), vol. 2, p. 831–848.
  54. K.B. Panda and K.S. Ravi Chandran, Metall. Mater. Trans. A, 34, No. 9: 1993–2003 (2003); https://doi.org/10.1007/s11661-003-0164-3
  55. M. Radhakrishnan, M. Hassan, B. Long, D. Otazu, T. Lienert, and O. Anderoglu, Additive Manufacturing, 46: 102198 (2021); https://doi.org/10.1016/j.addma.2021.102198
  56. A. Jimoh, I. Sigalas, and M. Hermann, Mater. Sci. Appl., 3, No. 1: 30–35 (2012); https://doi.org/10.4236/msa.2012.31005
  57. M. Motyka, S. Mróz, W. Więckowski, A. Stefanik, W. Ziaja, M. Poręba, and J. Adamus, Arch. Civ. Mech. Eng., 24, No. 3: (2024); https://doi.org/10.1007/s43452-024-01005-5
  58. P.E. Markovsky, D.V. Kovalchuk, S.V. Akhonin, D.G. Savvakin, O.O. Stasiuk, D. Shwab, D.V. Oryshych, M.A. Skoryk, and V.P. Tkachuk, Prog. Phys. Met., 24, No. 4: 715–740 (2023); https://doi.org/10.15407/ufm.24.04.715