Post-Processing of Inconel 718 Alloy Fabricated by Additive Manufacturing: Selective Laser Melting

VASYLYEV M.O.$^{1}$, MORDYUK B.M.$^{1}$, and VOLOSHKO S.M.$^{2}$

$^1$G.V. Kurdyumov Institute for Metal Physics of the N.A.S. of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine
$^2$National Technical University of Ukraine ‘Igor Sikorsky Kyiv Polytechnic Institute’, 37 Beresteiskyi Prosp., UA-03056 Kyiv, Ukraine

Received 20.05.2024, final version 06.08.2024 Download PDF logo PDF

Abstract
The review analyses Inconel 718 (IN718) alloy, which is the nickel-based superalloy and has great application in industries due to its superior mechanical properties even at elevated temperatures by means of the solid-solution strengthening and precipitation strengthening. However, because of the tool over-wear, poor part surface integrity, high hardness and low thermal-conductivity properties, it is difficult to manufacture finished products with using conventional machining methods. It is especially urgent for the products of complex designs. In this regard, justification is given for the widespread use of modern additive manufacturing (AM) for the fabrication of the products from IN718. The most popular is AM based on the selective laser melting (SLM) technique, which can fabricate complex geometries with superior material properties. At the same time, the metal parts fabricated by SLM suffer from excessive residual porosity, residual tensile stress in the near-surface layer, and the formation of a relatively rough surface. In addition, the SLM-inherited surface defects can cause stress concentration to initiate cracks, reducing the fatigue strength of the printed parts. The review focuses on identifying potential solutions to the surface-finish complex additive manufactured to improve the surface roughness to meet the industry requirements. Therefore, the improvement of the IN718-alloy-parts’ surface properties printed by the SLM becomes especially relevant. Currently, different surface post-processing technologies are being developed to obtain the expected surface quality of the SLM-components. As demonstrated, the finish surface enhancement treatments led to significant improvement in the wear resistance, corrosion resistance, increase in fatigue life, and tensile strength of the metallic materials. Therefore, adapting surface post-processing technologies has become a growing area of interest as an effective tool for improving the functionality and service lifetime of SLM IN718-alloy components. The review aims to analyse the main results of the most systematic studies of the currently developed surface post-treatments aimed to improving the surface-structure quality and properties of the IN718 parts fabricated by SLM. These results contribute to a better understanding of the role of the various-parameters’ effects on the surface improvements during the surface post-processing and changes in the structure–phase state, and physical, chemical and mechanical properties. Examples of the effects of a series of surface post-processing methods are presented: laser polishing, mechanical magnetic polishing, cutting finish-machining operations, shot peening, sandblasting technique, ultrasonic-impact treatment, and electrochemical polishing.

Keywords: additive manufacturing, laser melting, Inconel 718 alloy, surface properties, relief, microstructure, hardness.

DOI: https://doi.org/10.15407/ufm.25.03.614

Citation: M.O. Vasylyev, B.M. Mordyuk, and S.M. Voloshko, Post-Processing of Inconel 718 Alloy Fabricated by Additive Manufacturing: Selective Laser Melting, Progress in Physics of Metals, 25, No. 3: 614–642 (2024)


References  
  1. H.L. Eiselstein, Age-Hardenable Nickel Alloy, U.S. Patent US3046108A (Published 24 July 1962).
  2. H. Qi, J. Mater. Eng., 0, No. 8: 92–100 (2012). https://jme.biam.ac.cn/EN/Y2012/V0/I8/92
  3. E. Akca and A. Gürsel, Periodicals Eng. Nat. Sci., 3: 15 (2015). https://doi.org/10.21533/pen.v3i1.43
  4. J. Rösler, T. Hentrich, and B. Gehrmann, Metals, 9: 1130 (2019). https://doi.org/10.3390/met9101130
  5. A. Shard, Deepshikha, V. Gupta, and M.P. Garg, IOP Conf. Ser.: Mater. Sci. Eng., 1033: 012069 (2021). https://doi.org/10.1088/1757-899X/1033/1/012069
  6. E.A. Loria, Superalloy 718: Metallurgy and Applications: Proc. Int. Symp. Metall. Appl. of Superalloy 718 (Minerals, Metals & Materials Society: 1989).
  7. E.A. Loria, JOM, 44: 33 (1992). https://doi.org/10.1007/BF03222252
  8. M.J. Donachie and S.J. Donachie, Superalloys: A Technical Guide (ASM International: 2002).
  9. S. Sanchez, P. Smith, Z. Xu, G. Gaspard, C.J. Hyde, W.W. Wits, I.A. Ashcroft, H. Chen, and A.T. Clare, Int. J. Mach. Tools Manuf., 165: 103729 (2021). https://doi.org/10.1016/j.ijmachtools.2021.103729
  10. S.V. Adzhams’kyy and H.A. Kononenko, Metallofiz. Noveishie Tekhnol., 43, No. 6: 741 (2021). https://doi.org/10.15407/mfint.43.06.0741
  11. M. Anderson, R. Patwa, and Y.C. Shin, Int. J. Machine Tools & Manufact., 46: 1879 (2006). https://doi.org/10.1016/j.ijmachtools.2005.11.005
  12. Y. Wang, W.Z. Shao, L. Zhen, and X.M. Zhang, Mater. Sci. Eng. A, 486: 321 (2008). https://doi.org/10.1016/j.msea.2007.09.008
  13. S.C. Medeiros, Y.V.R.K. Prasad, W.G. Frazier, and R. Srinivasan, Mater. Sci. Eng. A, 293: 198 (2000). https://doi.org/10.1016/S0921-5093(00)01053-4
  14. Y. Wang, W.Z. Shao, L. Zhen, and B.Y. Zhang, Mater. Sci. Eng. A, 528: 3218 (2011). https://doi.org/10.1016/j.msea.2011.01.013
  15. J.J. Ruan, N. Ueshima, and K. Oikawa, J. Alloys Compd., 737: 83 (2018). https://doi.org/10.1016/j.jallcom.2017.11.327
  16. R. Firoz, S.K. Basantia, N. Khutia, H.N. Bar, S. Sivaprasad, and G.V.S. Murthy, J. Alloys Compd., 845: 156276 (2020). https://doi.org/10.1016/j.jallcom.2020.156276
  17. E.A. Loria, JOM, 40: 36 (1988). https://doi.org/10.1007/BF03258149
  18. G. Appa Rao, M. Kumar, M. Srinivas, and D.S. Sarma, Mater. Sci. Eng. A, 355: 114 (2003). https://doi.org/10.1016/S0921-5093(03)00079-0
  19. R.C. Reed, The Superalloys: Fundamentals and Applications (Cambridge: University Press: 2008).
  20. T.M. Pollock and S. Tin, J. Propulsion and Power, 22: 361 (2006). https://doi.org/10.2514/1.18239
  21. J. Pou, A. Riveiro, and J. Paulo Davim, Additive Manufacturing (Elsevier: 2021).
  22. I. Gibson, D. Rosen, B. Stucker, and M. Khorasani, Additive Manufacturing Technologies (Springer International Publishing: 2021). https://doi.org/10.1007/978-3-030-56127-7
  23. P.R. Gradl, C. Protz, O.R. Mireles, and C. Garcia (American Institute of Aeronautics & Ast.: 2022).
  24. T. Mukherjee and T. DebRoy, Theory and Practice of Additive Manufacturing (Wiley‐VCH GmbH: 2023). https://www.wiley.com/en-ae/Theory+and+Practice+of+Additive+Manufacturing-p-9781394202270
  25. Additive Manufacturing Technology: Design, Optimization, and Modelling (Ed. K. Zhou) (Wiley‐VCH GmbH: 2023). https://doi.org/10.1002/9783527833931
  26. F. Y. Liao, G. Chen, C.X. Gao, and P.Z. Zhu, Adv. Eng. Mater., 4: 1801013 (2019). https://doi.org/10.1002/adem.201801013
  27. C.Y. Yap, C.K. Chua, Z.L. Dong, Z.H. Liu, D.Q. Zhang, L.E. Loh, and S.L. Sing, Appl. Phys. Rev., 2: 041101 (2015). https://doi.org/10.1063/1.4935926
  28. X.Q. Wang, X.B. Gong, and K. Chou, J. Eng. Manufacture, 231: 1890 (2017). https://doi.org/10.1177/0954405415619883
  29. X. Peng, L.B. Kong, J.Y.H. Fuh, and H.A. Wang, J. Manuf. Mater. Process., 5: 38 (2021). https://doi.org/10.3390/jmmp5020038
  30. V. Monfared, S. Ramakrishna, N. Nasajpour-Esfahani, D. Toghraie, M. Hekmatifar, and S. Rahmati, Met. Mater. Int., 29: 3442 (2023). https://doi.org/10.1007/s12540-023-01467-x
  31. H.B. Liu, W.H. Cheng, Y.M. Sun, R. Ma, Y.J. Wang, J. Bai, L.N. Xue, X.G. Song, and C.W. Tan, Coatings, 13: 189 (2023). https://doi.org/10.3390/coatings13010189
  32. J.-Y. Lee, A. Prasanth Nagalingam, and S.H. Yeo, Virt. Phys. Prototyp., 16: 68 (2021). https://doi.org/10.1080/17452759.2020.1830346
  33. A. Barari, H.A. Kishawy, F. Kaji, and M.A. Elbestawi, Int. J. Adv. Manuf. Technol., 89: 1969 (2017). https://doi.org/10.1007/s00170-016-9215-y
  34. D.A. Lesyk, B.N. Mordyuk, S. Martinez, V.V. Dzhemelinskyi, D. Grzesiak, D. Grochała, and A. Lamikiz, Lasers Manufact. Mater. Proc., 10: 702 (2023). https://doi.org/10.1007/s40516-023-00231-8
  35. A. Malakizadi, D. Mallipeddi, S. Dadbakhsh, R. M’Saoubi, and P. Krajnik, Int. J. Machine Tools & Manufact., 179: 103908 (2022). https://doi.org/10.1016/j.ijmachtools.2022.103908
  36. A. Amanov, R. Karimbaev, C. Li, and M. Abdel Wahab, Surf. Coat. Technol., 454: 3442 (2023). https://doi.org/10.1016/j.surfcoat.2022.129175
  37. M. Kuntoğlu, E. Salur, E. Canli, A. Aslan, M.K. Gupta, S. Waqar, G.M. Krolczyk, and J. Xu, Int. J. Adv. Manuf. Technol., 127: 1103 (2023). https://doi.org/10.1007/s00170-023-11534-7
  38. S. Dadbakhsh, L. Hao, and C.Y. Kong, Virtual Phys. Prototyp., 5: 215 (2010). https://doi.org/10.1080/17452759.2010.528180
  39. Z.H.Fang, L.B. Lu, L.F. Chen, and Y.C. Guan, Procedia CIRP, 71: 150 (2018). https://doi.org/10.1016/j.procir.2018.05.088
  40. Y. Tian, W.S. Gora, A.P. Cabo, L.L. Parimi, D.P. Hand, S. Tammas-Williams, and P.B. Prangnell, Add. Manuf., 20: 11 (2018). https://doi.org/10.1016/j.addma.2017.12.010
  41. S. Raghavan, B.C. Zhang, P. Wang, C.N. Sun, M.L.S.R. Nai, T. Li, and J. Wei, Mater. Manuf. Process, 32: 1588 (2017). https://doi.org/10.1080/10426914.2016.1257805
  42. Y.H. Li, Z. Zhang, and Y.C. Guan, Appl. Surf. Sci., 511: 145423 (2020). https://doi.org/10.1016/j.apsusc.2020.145423
  43. M. Bureš and M. Zetek, MM Sci. J., 1: 3873 (2020). https://doi.org/10.17973/MMSJ.2020_03_2019141
  44. M. Cwikla, R. Dziedzic, and J. Reiner, Mater., 14: 1479 (2021). https://doi.org/10.3390/ma14061479
  45. D. Lesyk, V. Dzhemelinskyi, B. Mordyuk, S. Martinez, O. Stamann, and A. Lamikiz, 2020 IEEE 10th International Conference Nanomaterials: Applications & Properties (NAP) (9–13 November 2020, Sumy, Ukraine). https://doi.org/10.1109/NAP51477.2020.9309600
  46. H. Yamaguchi, O. Fergani, and P.-Y. Wu, CIRP Annals, 66: 305 (2017). https://doi.org/10.1016/j.cirp.2017.04.084
  47. Y. Kaynak and E. Tascioglu, Procedia CIRP, 71: 500 (2018). https://doi.org/10.1016/j.procir.2018.05.013
  48. D.A. Lesyk, V.V. Dzhemelinskyi, S. Martinez, B.N. Mordyuk, and A. Lamikiz, J. Mater. Eng. Perform., 30: 6982 (2021). https://doi.org/10.1007/s11665-021-06103-6
  49. E. Maleki, O. Unal, M. Gugliano, and S. Bagherifard, Mater. Sci. Eng. A, 810: 141029 (2021). https://doi.org/10.1016/j.msea.2021.141029
  50. H. Yu, F. Li, Z. Wang, and X. Zeng, Int. J. Fatigue, 120: 175 (2019). https://doi.org/10.1016/j.ijfatigue.2018.11.019
  51. S. Bagherifard, N. Beretta, S. Monti, M. Riccio, M. Bandini, and M. Guagliano, Mater. Des., 145: 28 (2018). https://doi.org/10.1016/j.matdes.2018.02.055
  52. C.L. Yu, Z.Y. Huang, Z. Zhang, J. Wang, J.B. Shen, and Z.P. Xu, J. Mater. Res. Technol., 18: 29 (2022). https://doi.org/10.1016/j.jmrt.2022.02.077
  53. B.N. Mordyuk, G.I. Prokopenko, М.А. Vasylyev, and M.O. Iefimov, Mater. Sci. Eng. A, 458: 253 (2007). https://doi.org/10.1016/j.msea.2006.12.049
  54. Yu.N. Petrov, G.I. Prokopenko, B.N. Mordyuk, M.A. Vasylyev, S.M. Voloshko, V.S. Skorodzievski, and V.S. Filatova, Mater. Sci. Eng. C, 58: 1024 (2016). https://doi.org/10.1016/j.msec.2015.09.004
  55. M.A. Vasylyev, B.N. Mordyuk, S.I. Sidorenko, S.M. Voloshko, and A.P. Burmak, Surf. Coat. Technol., 343: 57 (2018). https://doi.org/10.1016/j.surfcoat.2017.11.019
  56. M.A. Vasylyev, S.P. Chenakin, and L.F. Yatsenko, Acta Mater., 60: 6223 (2012). https://doi.org/10.1016/j.actamat.2012.08.006
  57. S.P. Chenakin, V.S. Filatova, I.N. Makeeva, and M.A. Vasylyev, Appl. Surf. Sci., 408: 11 (2017). https://doi.org/10.1016/j.apsusc.2017.03.004
  58. A. Amanov, I.-S. Cho, D.-E. Kim, and Y.-S. Puyn, Surf. Coat. Technol., 207: 135 (2012). https://doi.org/10.1016/j.surfcoat.2012.06.046
  59. S.S. Kuldeep, S. Jing, K. Vasudevan Vijay, and R. Mannava Seetha, ASME 2017 12th Int. Manufact. Sci. Eng. Conf. (June 4–8, 2017, Los Angeles, California), Paper No. MSEC2017-2918, V002T01A013. https://doi.org/10.1115/MSEC2017-2918
  60. D.A. Lesyk, S. Martinez, B.N. Mordyuk, V.V. Dzhemelinskyi, A. Lamikiz, and G.I. Prokopenko, Surf. Coat. Technol., 381: 125136 (2020). https://doi.org/10.1016/j.surfcoat.2019.125136
  61. D.A. Lesyk, S. Martinez, B.N. Mordyuk, O.O. Pedash, V.V. Dzhemelinskyi, and А. Lamikiz, Additive Manufact. Let., 3, 100063 (2022). https://doi.org/10.1016/j.addlet.2022.100063
  62. N. Sunay, M. Kaya, and Y. Kaynak, Sigma J. Eng. Nat. Sci., 38: 2027 (2020). https://eds.yildiz.edu.tr/sigma
  63. Z. Chaghazardi and R. Wüthrich, J. Electrochem. Soc., 169: 043510 (2022). https://doi.org/10.1149/1945-7111/ac6450
  64. B.C. Zhang, X.H. Lee, J.M. Bai, J.F. Guo, P. Wang, C.-N. Sun, M.L. Nai, G.J. Qi, and J. Wei, Mater. Des., 116: 531 (2017). https://doi.org/10.1016/j.matdes.2016.11.103
  65. K.M. Ajmal, R. Yi, Z.J. Zhan, J.W. Ji, L.F. Zhang, and H. Deng, J. Mater. Proc. Technol., 299: 117356 (2022). https://doi.org/10.1016/j.jmatprotec.2021.117356