Superplasticity of Metals in Modern Engineering and Technology

VOLOKITINA I.E.

Karaganda Industrial University, Republic Ave. 30, 101400 Temirtau, Kazakhstan

Received 01.02.2024, final version 30.07.2024 Download PDF logo PDF

Abstract
Currently, studies of structural superplasticity (SP) are of great interest, since the use of this mode in metalworking technologies allows for the production of parts of various shapes in one operation (with high repetition accuracy of even very complex shapes), while requiring less energy and material resources (relatively low pressures and tool wear) compared to deformation in the ‘normal plasticity’ mode. Other advantages of using a structural SP are improved physical and mechanical characteristics of the finished product: better surface quality after deformation, high ductility at elevated temperatures, increased strength at temperatures close to room one without reducing ductility (most often there is an increase in ductility), increased cyclic strength, hardness, impact resistance, elevated corrosion-resistance durability, and absence of anisotropy of properties after superplastic deformation.

Keywords: superplasticity, superplastic deformation, mechanical characteristics, corrosion resistance, grain boundaries, dislocations, diffusion creep.

DOI: https://doi.org/10.15407/ufm.25.03.570

Citation: I.E. Volokitina, Superplasticity of Metals in Modern Engineering and Technology, Progress in Physics of Metals, 25, No. 3: 570–599 (2024)


References  
  1. H.J. McQueen, O. Knustad, N. Ryum, and J.K. Solberg, Scr. Metall., 19, No. 1: 73–78 (1985). https://doi.org/10.1016/0036-9748(85)90268-6
  2. I.E. Volokitinа and A.V. Volokitin, Metallurgist, 67: 232–239 (2023). https://doi.org/10.1007/s11015-023-01510-7
  3. A. Bychkov and A. Kolesnikov, Metallogr. Microst. Anal., 12, No. 3: 564–566 (2023). https://doi.org/10.1007/s13632-023-00966-y
  4. B. Sapargaliyeva, A. Agabekova, G. Ulyeva, A. Yerzhanov, and P. Kozlov, Case Studies Construct. Mater., 18: e02162 (2023). https://doi.org/10.1016/j.cscm.2023.e02162
  5. I.E. Volokitina, A.V. Volokitin, M.A. Latypova, V.V. Chigirinsky, and A.S. Kolesnikov, Prog. Phys. Met., 24, No. 1: 132–156 (2023). https://doi.org/10.15407/ufm.24.01.132
  6. A.P. Gulyaev, Sverkhplastichnost’ Stali [Superplasticity of Steel] (Moskva: Metallurgiya: 1982) (in Russian).
  7. O.A. Kaibyshev, Sverkhplastichnost’ Stali [Superplasticity of Industrial Alloys] (Moskva: Metallurgiya: 1984) (in Russian).
  8. G.D. Bengough, J. Inst. Metals, 7: 123 (1912).
  9. R.A. Vasin and F.U. Yenikeev, Vvedenie v Mekhaniku Sverkhplastichnosti [Introduction to Mechanics of Superplasticity] (Ufa: Gilem: 1998).
  10. I.E. Volokitina, Metal Sci. Heat Treat., 62: 253–258 (2020). https://doi.org/10.1007/s11041-020-00544-x
  11. I.E. Volokitina, A.V. Volokitin, and E.A. Panin, Prog. Phys. Met., 23, No. 4: 684–728 (2022). https://doi.org/10.15407/ufm.23.04.684
  12. N. Vasilyeva, R. Fediuk, and A. Kolesnikov, Materials, 15: 3975 (2022). https://doi.org/10.3390/ma15113975
  13. A. Naizabekov, A. Volokitin, and E. Panin, J. Mater. Eng. Perform., 28, No. 3: 1762 (2019). https://doi.org/10.1007/s11665-019-3880-6
  14. I. Volokitina, A. Volokitin, A. Denissova, and Y. Kuatbay, and Y. Liseitsev, Case Studies Construct. Mater., 19: e02346 (2023). https://doi.org/10.1016/j.cscm.2023.e02346
  15. V.V. Chigirinsky, Y.S. Kresanov, and I.E. Volokitina, Metallofiz. Noveishie Tekhnol., 45, No. 4: 467–479 (2023). https://doi.org/10.15407/mfint.45.04.0467
  16. A.H. Chokshi, Mater. Chem. Phys., S0254 (2017). https://doi.org/10.1016/j.matchemphys.2017.07.079
  17. A.D. Kotov, A.V. Mikhaylovskaya, and V.K. Portnoy, Phys. Metals Metallogr., 115, No. 7: 730 (2014). https://doi.org/10.1134/S0031918X14070047
  18. H. Tsutsui, H. Watanabe, T. Mukai, M. Kohzu, S. Tanabe, and K. Higashi, Mater. Trans., 40, No. 9: 931 (1999). https://doi.org/10.2320/matertrans1989.40.931
  19. R.Z. Valiev and T.G. Langdon, Acta Metall. Mater., 41, No 3: 949 (1993). https://doi.org/10.1016/0956-7151(93)90029-R
  20. R.Z. Valiev, R.K. Islamgaliev, and N.F. Yunusova, Mater. Sci. Forum, 357–359: 449–458 (2001). https://doi.org/10.4028/www.scientific.net/msf.357-359.449
  21. I.E. Volokitina, J. Chem. Technology Metallurgy, 57: 631 (2022).
  22. E. Panin, Z. Gelmanova, and Y. Liseitsev, Case Studies Construct. Mater., 19: e02609 (2023). https://doi.org/10.1016/j.cscm.2023.e02609
  23. N. Zhangabay, I. Baidilla, A. Tagybayev, Y. Anarbayev, and P. Kozlov, Case Studies Construct. Mater., 18: e02161 (2023). https://doi.org/10.1016/j.cscm.2023.e02161
  24. T.G. Langdon, J. Mater. Sci., 41, No. 3: 597–609 (2006). https://doi.org/10.1007/s10853-006-6476-0
  25. R.L. Bell and T.G. Langdon, J. Mater. Sci., 2, No. 4: 313–323 (1967). https://doi.org/10.1007/bf00572414
  26. P.B. Berbon, S. Komura, A. Utsunomiya, Z. Horita, M. Furukawa, M. Nemoto, and T.G. Langdon, Mater. Transact., 40, No. 8: 772–778 (1999). https://doi.org/10.2320/matertrans1989.40.772
  27. M. Furukawa, A. Utsunomiya, K. Matsubara, Z. Horita, and T.G. Langdon, Acta Mater., 49, No. 18: 3829–3838 (2001). https://doi.org/10.1016/S1359-6454(01)00262-2
  28. P.H.R. Pereira, Y. Huang, and T.G. Langdon, Letters Mater., 5, No. 3: 294–300 (2015). https://doi.org/10.22226/2410-3535-2015-3-294-300
  29. M.K. Rabinovich, M.V. Markushev, and M.Y. Murashkin, Mater. Sci. Forum, 243–245: 591–596 (1997). https://doi.org/10.4028/www.scientific.net/MSF.243-245.591
  30. L. Ye, X. Zhang, D. Zheng, S. Liu, and J. Tang, J. Alloys Compd., 487, Nos. 1–2: 109–115 (2009). https://doi.org/10.1016/j.jallcom.2009.07.148
  31. I.E. Volokitina, Met. Sci. Heat Treat., 61: 234–238 (2019). https://doi.org/10.1007/s11041-019-00406-1
  32. A.V. Volokitin, I.E. Volokitina, and E.A. Panin, Prog. Phys. Met., 23, No. 3: 411–437 (2022). https://doi.org/10.15407/ufm.23.03.411
  33. P.B. Berbon, T.G. Langdon, N.K. Tsenev, R.Z. Valiev, M. Furukawa, Z. Horita, and M. Nemoto, Metall. Mater. Trans. A, 29: 2237–2243 (1998). https://doi.org/10.1007/s11661-998-0101-6
  34. S.V. Dobatkin, E.N. Bastarache, G. Sakai, T. Fujita, Z. Horita, and T.G. Langdon, Mater. Sci. Eng. A, 408, Nos. 1–2: 141–146 (2005). https://doi.org/10.1016/j.msea.2005.07.023
  35. F. Musin, R. Kaibyshev, Y. Motohashi, T. Sakuma, and G. Itoh, Materials Transactions, 43, No. 10: 2370–2377 (2002). https://doi.org/10.2320/matertrans.43.2370
  36. P.V. Trusov and A.I. Shveykin, Phys. Mesomech., 20: 377–391 (2017). https://doi.org/10.1134/S1029959917040026
  37. I. Volokitina, A. Volokitin, and D. Kuis, J. Chem. Technol. Metallurgy, 56, No. 3: 643–647 (2021). https://journal.uctm.edu/node/j2021-3/25_20-126p643-647.pdf
  38. I.E. Volokitina, Prog. Phys. Met., 3: No. 24: 593–622 (2023). https://doi.org/10.15407/ufm.24.03.593
  39. A.I. Yurkova, A.V. Byakova, A.V. Belot’sky, Yu.V. Milman, and S.N. Dub, Metallofiz. Noveishie Tekhnol., 28, No. 10: 1397–1420 (2006).
  40. R. Kaibyshev, K. Shipilova, F. Musin, and Y. Motohashi, Mater. Sci. Eng. A, 396, Nos. 1–2: 341–351 (2005). https://doi.org/10.1016/j.msea.2005.01.053
  41. S. Lezhnev, A. Naizabekov, E. Panin, and I. Volokitina, Procedia Engineering, 81: 1499–1504 (2014). https://doi.org/10.1016/j.proeng.2014.10.180
  42. S. Lezhnev, A. Naizabekov, A. Volokitin, and I. Volokitina, Procedia Engineering, 81: 1505–1510 (2014). https://doi.org/10.1016/j.proeng.2014.10.181
  43. I.E. Volokitina and G.G. Kurapov, Metal Sci. Heat Treat., 59, Nos. 11–12: 786–792 (2018). https://doi.org/10.1007/s11041-018-0227-0
  44. S.N. Lezhnev, I.E. Volokitina, and A.V. Volokitin, Phys. Metals Metallogr., 118, No. 11: 1167–1170 (2017). https://doi.org/10.1134/S0031918X17110072
  45. S. Lezhnev, A. Naizabekov, and I. Volokitina, J. Chem. Technol. Metallurgy, 52, No. 4: 626–635 (2017). https://journal.uctm.edu/node/j2017-4/3_17-04_Lezhnev_p_626-635.pdf
  46. A. Volokitin, A. Naizabekov, I. Volokitina, and A. Kolesnikov, J. Chem. Technol. Metallurgy, 57, No. 4: 809–815 (2022). https://journal.uctm.edu/node/j2022-4/20_22-18_br4_2022_pp809-815.pdf
  47. S. Lezhnev, I. Volokitina, and T. Koinov, J. Chem. Technol. Metallurgy, 49, No. 6: 621–630 (2014). https://journal.uctm.edu/node/j2014-6/14-Koinov-621-630.pdf
  48. A. Volokitin, I. Volokitina, and E. Panin, Metallogr. Microstruct. Anal., 11: 673–675 (2022). https://doi.org/10.1007/s13632-022-00877-4
  49. P.B. Berbon, M. Furukawa, Z. Horita, M. Nemoto, N.K. Tsenev, R.Z. Valiev, and T.G. Langdon, Mater. Sci. Forum, 217–222: 1013–1018 (1996). https://doi.org/10.4028/www.scientific.net/MSF.217-222.1013
  50. J.T. Wang, Z. Horita, M. Furukawa, M. Nemoto, N.K. Tsenev, R.Z. Valiev, Y. Ma, and T.G. Langdon, J. Mater. Res., 8: 2810–2818 (1993). https://doi.org/10.1557/JMR.1993.2810
  51. M. Furukawa, Z. Horita, M. Nemoto, R.Z. Valiev, and T.G. Langdon, Philosophical Magazine A, 78: 203–215 (1998). https://doi.org/10.1080/01418619808244809
  52. H. Akamatsu, T. Fujinami, Z. Horita, and T.G. Langdon, Scr. Mater., 44, No. 5: 759–764 (2001). https://doi.org/10.1016/S1359-6462(00)00666-7
  53. I.C. Hsiao and J.C. Huang, Mater. Sci. Forum, 304–306: 639–644 (1999). https://doi.org/10.4028/www.scientific.net/MSF.304-306.639
  54. I.C. Hsiao, J.C. Huang, and S.W. Su, Mater. Trans., 40, No. 8: 744–753 (1999). https://doi.org/10.2320/matertrans1989.40.744
  55. A.A. Mazilkin and M.M. Myshlyaev, J. Mater. Sci., 41: 3767–3772 (2006). https://doi.org/10.1007/s10853-006-2637-4
  56. M.M. Myshlyaev, A.A. Mazilkin, and M.M. Kamalov, Nanomaterials by Severe Plastic Deformation (Eds. M. Zehetbauer and R.Z. Valiev) (Wiley: 2004), p. 734–739. https://doi.org/10.1002/3527602461.ch13f
  57. M.M. Myshlyaev, S. Mironov, E.V. Konovalova, M.M. Kamalov, M.A. Prokunin, and M.M. Myshlyaeva, Phys. Metals Metallogr., 102: 328–332 (2006). https://doi.org/10.1134/S0031918X06090146
  58. S. Lezhnev, E. Panin, and I. Volokitina, Adv. Mater. Res., 814: 68–75 (2013). https://doi.org/10.4028/www.scientific.net/AMR.814.68
  59. I.E. Volokitina, Metal Sci. Heat Treat., 63: 163 (2021). https://doi.org/10.1007/s11041-021-00664-y
  60. I. Volokitina, B. Sapargaliyeva, A. Agabekova, S. Syrlybekkyzy, A. Volokitin, L. Nurshakhanova, F. Nurbaeva, A. Kolesnikov, G. Sabyrbayeva, A. Izbassar, O. Kolesnikova, Y. Liseitsev, and S. Vavrenyuk, Case Studies Construct. Mater., 19: e02256 (2023). https://doi.org/10.1016/j.cscm.2023.e02256
  61. M. Kai, Z. Horita, and T.G. Langdon, Mater. Sci. Eng. A, 488, Nos. 1–2: 117–124 (2008). https://doi.org/10.1016/j.msea.2007.12.046
  62. R.B. Figueiredo and T.G. Langdon, J. Mat. Res. Technol., 6, No. 2: 129–135 (2017). https://doi.org/10.1016/j.jmrt.2016.05.005
  63. M. Demirtas, G. Purcek, H. Yanar, Z.J. Zhang, and Z.F. Zhang, Mater. Sci. Eng. A, 620: 233–240 (2015). https://doi.org/10.1016/j.msea.2014.09.114
  64. Y. Huang and T.G. Langdon, J. Mater. Sci., 37: 4993–4998 (2002). https://doi.org/10.1023/A:1021071228521
  65. S. Sun, Y. Ren, L. Wang, B. Yang, and G. Qin, Mater. Sci. Eng. A, 676: 336–341 (2016). https://doi.org/10.1016/j.msea.2016.09.013
  66. R.Z. Valiev, M.Yu. Murashkin, and B.B. Straumal, Mater. Sci. Forum, 633–634: 321–332 (2010). https://doi.org/10.4028/www.scientific.net/MSF.633-634.321
  67. M. Kawasaki, A. Filho, V.L. Sordi, and M. Ferrante, J. Mater. Sci., 46: 155–160 (2011). https://doi.org/10.1007/s10853-010-4889-2
  68. L.P. Lugon, R.B. Figueiredo, and P.R. Cetlin, J. Mater. Res. Technol., 3, No. 4: 327–330 (2014). https://doi.org/10.1016/j.jmrt.2014.09.003
  69. E.A. El-Danaf, K.A. Khalil, and M.S. Soliman, Mater. Design, 314: 235–241 (2012). https://doi.org/10.1016/j.matdes.2011.08.004
  70. O.A. Yakovtseva, A.V. Mikhaylovskaya, A.D. Kotov, and V.K. Portnoi, Phys. Metals Metallogr., 117: 742–748 (2016). https://doi.org/10.1134/S0031918X16070188
  71. F. Gao, W. Li, B. Meng, and M. Wan, J. Alloys Compd., 701: 177–185 (2017). https://doi.org/10.3390/ma12213520
  72. Y.G. Ko, C.S. Lee, D.H. Shin, and S.L. Semiatin, Metall. Mater. Trans. A, 37: 381–391 (2006).
  73. G. Kurapov, E. Orlova, I. Volokitina, and A. Turdaliev, J. Chem. Technol. Metallurgy, 51, No. 4: 451–457 (2016). https://journal.uctm.edu/node/j2016-4/13-Volokitina_451-457.pdf
  74. A.B. Naizabekov and S.N. Lezhnev, Metal Sci. Heat Treat., 57, Nos. 5–6: 254 (2015).
  75. A.B. Nayzabekov and I.E. Volokitina, Phys. Metals Metallogr., 120, No. 2: 177–183 (2019). https://doi.org/10.1134/S0031918X19020133
  76. H. Watanabe and T. Mukai, Scr. Mater., 40, No. 4: 477–484 (1999). https://doi.org/10.1016/S1359-6462(98)00469-2
  77. K. Neishi, Z. Horita, and T.G. Langdon, Scr. Mater., 45, No. 8: 965–970 (2001). https://doi.org/10.1016/S1359-6462(01)01119-8
  78. A.V. Sergueeva, V.V. Stolyarov, R.Z. Valiev, and A.K. Mukherjee, Mater. Sci. Eng. A, 323: 318–325 (2002). https://doi.org/10.1016/S0921-5093(01)01384-3
  79. R.K. Islamgaliev, N.F. Yunusova, and R.Z. Valiev, Mater. Sci. Forum, 503–504: 585–590 (2006). https://doi.org/10.4028/www.scientific.net/MSF.503-504.585
  80. R.S. Mishra, R.Z. Valiev, S.X. McFadden, and R.K. Islamgaliev, Philos. Mag. A, 81: 37–48 (2001). https://doi.org/10.1002/adem.200400213
  81. K. Sotoudeh and P.S. Bate, Acta Mater., 58: 1909–1920 (2010).
  82. I.I. Novikov, V.K. Portnoy, V.S. Levchenko, and A.O. Nikiforov, Mater. Sci. Forum, 243–245: 463–468 (1997). https://doi.org/10.4028/www.scientific.net/MSF.243-245.463
  83. J.C. Tan and M.J. Tan, Mater. Sci. Eng. A, 339: 81–89 (2003). https://doi.org/10.1016/S0921-5093(02)00097-7
  84. G.T. Langdon, J. Mater. Sci., 41: 597–609 (2006). https://doi.org/10.1007/s10853-006-6476-0
  85. M.Kh. Rabinovich and V.G. Trifonov, Acta Mater., 44, No. 5: 2073–2078 (1996). https://doi.org/10.1016/1359-6454(95)00263-4
  86. D.H. Shin, Y.J. Joo, W.J. Kim, and C.S. Lee, J. Mater. Sci., 33: 3073–3078 (1998). https://doi.org/10.1023/A:1004383420256
  87. F. Li, D.H. Bae, and A.K. Ghosh, Acta Mater., 45, No. 9: 3887–3895 (1997). https://doi.org/10.1016/S1359-6454(97)00032-3
  88. M.F. Ashby and R.A. Verrall, Acta Metall., 21, No. 2: 149–163 (1973). https://doi.org/10.1016/0001-6160(73)90057-6
  89. M.E. Kassner, Fundamentals of Creep in Metals and Alloys (Elsevier: 2015). https://doi.org/10.1016/C2012-0-06071-1
  90. J.R. Spingarn and W.D. Nix, Acta Metall., 26, No. 9: 1389–1398 (1978). https://doi.org/10.1016/0001-6160(78)90154-2
  91. A. Ball and M.M. Hutchinson, Met. Sci. J., 3: 1–7 (1969).
  92. Amiya K. Mukherjee, Mater. Sci. Eng., 8, No. 2: 83–89 (1971). https://doi.org/10.1016/0025-5416(71)90085-1
  93. A. Arieli and Amiya K. Mukherjee, Scr. Metall., 15: 237–244 (1981). https://doi.org/10.1016/0036-9748(81)90335-5
  94. T.G. Langdon, Mater. Sci. Eng. A, 174: 225–230 (1994). https://doi.org/10.1016/0921-5093(94)91092-8
  95. R.C. Gifkins, J. Mater. Sci., 13: 1926–1936 (1978). https://doi.org/10.1007/BF00552899
  96. R.I. Todd, Mater. Sci. Technol., 16: 1287–1294 (2000). https://doi.org/10.1179/026708300101507118
  97. M.P. Dewald and W.A. Curtin, Philos. Mag., 87, No. 30: 4615–4641 (2007). https://doi.org/10.1080/14786430701297590
  98. S. Poulat, B. Decamps, and L. Priester, Philos. Mag. A, 79: 2655–2680 (1999).
  99. E.O. Hall, Proc. Phys. Soc. Lond., 64, No. 9: 747–753 (1951). https://doi.org/10.1088/0370-1301/64/9/303
  100. N.J. Petch, J. Iron Steel Inst. London., 173: 25–28 (1953).
  101. T.K. Ha, J.R. Son, W.B. Lee, C.G. Park, and Y.W. Chang, Mater. Sci. Eng. A, 307, Nos. 1–2: 98–106 (2001). https://doi.org/10.1016/S0921-5093(00)01952-3
  102. H. Solouki, E. Borhani, and M. Toroghinezhad, J. Ultrafine Grained and Nanostructured Materials, 48: 125–132 (2015). https://doi.org/10.7508/jufgnsm.2015.02.007
  103. R. Kaibyshev, A. Goloborodko, F. Musin, I. Nikulin, and T. Sakai, Mater. Trans., 43, No. 10: 2408–2414 (2002). https://doi.org/10.2320/matertrans.43.2408
  104. R. Kaibyshev, F. Musin, D. Gromov, T.G. Nieh, and D.R. Lesuer, Mater. Trans., 43, No. 10: 2392–2399 (2002). https://doi.org/10.2320/matertrans.43.2392
  105. H.P. Pu, F.C. Liu, and J.C. Huang, Met. Mater. Trans. A, 26: 1153–1167 (1995). https://doi.org/10.1007/BF02670612
  106. M. Mabuchi, K. Ameyama, H. Iwasaki, and K. Higashi, Acta Mater., 47, No. 7: 2047–2057 (1999). https://doi.org/10.1016/S1359-6454(99)00094-4
  107. H. Watanabe, K. Kurimoto, T. Uesugi, Y. Takigawa, and K. Higashi, Philos. Mag., 93, No. 22: 2913–2931 (2013). https://doi.org/10.1080/14786435.2013.793460
  108. Z.R. Lin, A.H. Chokshi, and T.G. Langdon, J. Mater. Sci., 23: 2712–2722 (1988). https://doi.org/10.1007/BF00547441
  109. S.A. Shei and T.G. Langdon, J. Mater. Sci., 16: 2988–2996 (1981). https://doi.org/10.1007/BF00540303
  110. R.Z. Valiev and O.A. Kaibyshev, Acta Metal., 31: 2121–2128 (1983). https://doi.org/10.1016/0001-6160(83)90031-7
  111. I.E. Volokitina and A.V. Volokitin, Phys. Metals Metallogr., 119: 917–921 (2018). https://doi.org/10.1134/S0031918X18090132
  112. V.V. Chigirinsky, Yu.S. Kresanov, and I.Ye. Volokitina, Metallofiz. Noveishie Tekhnol., 45, No. 5: 631–646 (2023). https://doi.org/10.15407/mfint.45.05.0631
  113. R.N. Stevens, Philos. Mag., 23, No. 182: 265–283 (1971). https://doi.org/10.1080/14786437108216383
  114. S.N. Patankar and T.M. Jen, Scr. Mater., 38, No. 8: 1255–1261 (1998). https://doi.org/10.1016/S1359-6462(98)00017-7
  115. C.L. Chen and M.J. Tan, Mater. Sci. Eng., 338, Nos. 1–2: 243–252 (2002). https://doi.org/10.1016/S0921-5093(02)00083-7
  116. M.A. Rust and R.I. Todd, Acta Mater., 59, No. 13: 5159–5170 (2011). https://doi.org/10.1016/j.actamat.2011.04.051
  117. H. Zhang, L. Zhang, X. Cheng, L. Xu, and B. Bai, Scr. Mater., 62, No. 10: 798–801 (2010). https://doi.org/10.1016/j.scriptamat.2009.12.001
  118. H. Zhang, K.G. Pradeep, S. Mandal, D. Ponge, P. Choi, C.C. Tasan, and D. Raabe, Acta Mater., 63: 232–244 (2014). https://doi.org/10.1016/j.actamat.2013.10.034
  119. P.S. Bate, N. Ridley, and B. Zhang, Acta Mater., 55, No. 15: 4995–5006 (2007). https://doi.org/10.1016/j.actamat.2007.05.017
  120. W.A. Rachinger, J. Inst. Metals, 81, No. 1412: 33–41 (1952).
  121. P. Chaudhury, Acta Metall., 15, No. 12: 1777–1786 (1967). https://doi.org/10.1016/0001-6160(67)90041-7
  122. H.E. Adabbo, G. Gonzalez-Doncel, O.A. Ruano, J.M. Belzunce, and O.D. Sherby, Mater. Res. Soc., 3: 587–594 (1989). https://doi.org/10.1557/JMR.1989.0587
  123. J. Liu and D.J. Chakrabarti, Acta Mater., 44, No. 12: 4641–4661 (1996). https://doi.org/10.1016/S1359-6454(96)00141-3
  124. Y.L. Duan, G.F. Xu, L. Zhou, D. Xiao, Y. Deng, Z. Yin, B. Peng, Q. Pan, Y. Wang, and L. Lu, J. Alloys Compd., 638: 364–373 (2015). https://doi.org/10.1016/j.jallcom.2015.03.090
  125. S. Katsas, R. Dashwood, R. Grimes, M. Jackson, G. Todd, and H. Henein, Mater. Sci. Eng. A, 444, Nos. 1–2: 291–297 (2007). https://doi.org/10.1016/j.msea.2006.08.096
  126. M.E. Van Dalen, T. Gyger, D.C. Dunand, and D.N. Seidman, Acta Mater., 59, No. 20: 7615–7626 (2011). https://doi.org/10.1016/j.actamat.2011.09.019
  127. P.K. Rout, M.M. Ghosh, and K.S. Ghosh, Materials Characterization, 104: 49–60 (2015). https://doi.org/10.1016/j.matchar.2015.03.025
  128. K. Wang, F.C. Liu, Z.Y. Ma, and F.C. Zhang, Scr. Mater., 64, No. 6: 572–575 (2011). https://doi.org/10.1016/j.scriptamat.2010.11.050
  129. Y.L. Duan, G.F. Xu, D. Xiao, L.Q. Zhou, Y. Deng, and Z.M. Yin, Mater. Sci. Eng. A, 624: 124–131 (2015). https://doi.org/10.1016/j.msea.2014.11.054
  130. L.B. Johannes and R. S. Mishra, Mater. Sci. Eng. A, 464, Nos. 1–2: 255–260 (2007). https://doi.org/10.1016/j.msea.2007.01.141
  131. A.V. Mikhaylovskaya, A.D. Kotov, A.V. Pozdniakov, and V.K. Portnoy, J. Alloys and Compd., 599: 139–144 (2014). https://doi.org/10.1016/j.jallcom.2014.02.061
  132. E. Subbotina, D. Kitaeva, and Ya. Rudaev, Proceeding of the 23rd International Conference on Metallurgy and Materials–METAL, (2014), p. 347–352.
  133. E.V. Panchenko, Razvitie Teorii i Tekhnologii Listovoi Pnevmoformovki v Rezhime Sverkhplastichnosti [Development of the Theory and Technology of Sheet Pneumoforming in the Superplasticity Mode] (Tula: TSU: 2005) (in Russian).
  134. T.M. Radchenko, V.A. Tatarenko, H. Zapolsky, and D. Blavette, J. Alloys Compd., 452, No. 1: 122–126 (2008). https://doi.org/10.1016/j.jallcom.2006.12.149
  135. T.M. Radchenko, V.A. Tatarenko, and H. Zapolsky, Solid State Phenom., 138: 283–302 (2008). https://doi.org/10.4028/www.scientific.net/ssp.138.283
  136. V.A. Tatarenko, T.M. Radchenko, A.Yu. Naumuk, and B.M. Mordyuk, Prog. Phys. Met., 25, No. 1: 3–26 (2024). https://doi.org/10.15407/ufm.25.01.003
  137. I.M. Melnyk, T.M. Radchenko, and V.A. Tatarenko, Metallofiz. Noveishie Tekhnol., 32, No. 9: 1191–1212 (2010).
  138. V.A. Tatarenko and T.M. Radchenko, Usp. Fiz. Met., 3, No. 2: 111–236 (2002). https://doi.org/10.15407/ufm.03.02.111
  139. T.M. Radchenko, O.S. Gatsenko, V.V. Lizunov, and V.A. Tatarenko, Prog. Phys. Met., 21, No. 4: 580–618 (2020). https://doi.org/10.15407/ufm.21.04.580
  140. T.M. Radchenko, O.S. Gatsenko, V.V. Lizunov, and V.A. Tatarenko, Fundamentals of Low-Dimensional Magnets (Eds. R.K. Gupta, S.R. Mishra, and T.A. Nguyen) (Boca Raton: Taylor & Francis, CRC Press: 2022), Ch. 18, p. 343–364. https://doi.org/10.1201/9781003197492-18
  141. K.H. Levchuk, T.M. Radchenko, and V.A. Tatarenko, Metallofiz. Noveishie Tekhnol., 43, No. 1: 1–26 (2021). https://doi.org/10.15407/mfint.43.01.0001
  142. S.V. Lizunova, V.B. Molodkin, B.V. Sheludchenko, and V.V. Lizunov, Metallofiz. Noveishie Tekhnol., 35, No. 11: 1585–1593 (2013).
  143. A. Naizabekov, A. Arbuz, S. Lezhnev, E. Panin, and I. Volokitina, Phys. Scr., 94, No. 10: 105702 (2019). https://doi.org/10.1088/1402-4896/ab1e6e