Features of Solid-Solution Hardening and Temperature Dependence of the Critical Shear Stress in Binary and Multicomponent Alloys

FIRSTOV S.O. and ROGUL T.G.

I.M. Frantsevich Institute for Problems in Materials Science of the N.A.S. of Ukraine, 3 Omeljan Pritsak Str., UA-03142 Kyiv, Ukraine

Received 21.03.2024, final version 26.07.2024 Download PDF logo PDF

Abstract
The paper analyses the hardening of binary and multicomponent solid solutions (including high-entropy alloys (HEAs)); addresses the notion of a compositional–cluster structure of binary solid solutions with unlimited solubility to propose an equation describing the concentration dependence of the critical shear stress; presents findings from a comparative analysis of the temperature dependences for critical shear stress (yield stress) for a series of binary and multicomponent solid solutions and pure metals with b.c.c. and f.c.c. lattices; considers potential mechanisms, which lead to a ‘plateau’ on the temperature dependence of critical shear stress for binary and multicomponent solid solutions and for pure metals; discusses the specifics of athermal hardening of HEAs and proposes a relatively simple equation for assessing their athermal hardening; and addresses the capabilities of using the x-ray diffraction to determine the root-mean-square displacements of atoms from ideal positions at crystal-lattice sites, $\sqrt{U^2}$, and crystal-lattice microdistortions, $\varepsilon$, in multicomponent solid solutions.

Keywords: binary and multicomponent alloys, solid-solution hardening, yield stress, critical shear stress.

DOI: https://doi.org/10.15407/ufm.25.03.545

Citation: S.O. Firstov and T.G. Rogul, Features of Solid-Solution Hardening and Temperature Dependence of the Critical Shear Stress in Binary and Multicomponent Alloys, Progress in Physics of Metals, 25, No. 3: 545–569 (2024)


References  
  1. N.F. Mott and F.R.N. Nabarro, Report of a Conference on the Strength of Solids (London: The Physical Society: 1948).
  2. J. Friedel, Dislocations (Oxford: Pergamon, Elsevier: 1964). https://doi.org/10.1016/C2013-0-02250-5
  3. P. Haasen, Mechanical Properties of Solid Solutions, Physical Metallurgy (Fourth, Revised and Enhanced Edition) (Eds. R.W. Cahn and P. Haasen) (Elsevier: 1996), Vol. 3, Ch. 23, p. 2009. https://doi.org/10.1016/B978-044489875-3/50028-4
  4. J.P. Hirth and J. Lothe, Theory of Dislocations (New York: McGraw-Hill: 1968).
  5. R.L. Fleischer and W.R. Hibbard, Conference on Relation of Structure to Mechanical Properties of Metals (Teddington: National Physical Laboratories National Physical Laboratories: 1964).
  6. M. Z. Butt and P. Feltham, J. Mater. Sci., 28: 2557 (1993). https://doi.org/10.1007/BF00356192
  7. J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, and C.H. Tsau, Adv. Eng. Mater., 6, No. 5: 299 (2004). https://doi.org/10.1002/adem.200300567
  8. J.W. Yeh, Yu-L. Chen, Su-J. Lin, and S.-K. Chen, Mater. Sci. Forum, 560: 1 (2007). https://doi.org/10.4028/www.scientific.net/MSF.560.1
  9. K.H. Huang, A Study on the Multi-Component Alloy System Containing Equal-mole Elements (Thesis for Master Degree) (National Tsing Hua University in Taiwan: 1995).
  10. Y. Zhang and Y. J. Zhou, Mater. Sci. Forum, 561–565: 1337 (2007). https://doi.org/10.4028/www.scientific.net/MSF.561-565.1337
  11. Y. Zhang, Mater. Sci. Forum, 654–656: 1058 (2010). https://doi.org/10.4028/www.scientific.net/MSF.654-656.1058
  12. S.A. Firstov, V.F. Gorban’, and N.A. Krapivka, Vestnik SamGTU. Ser. Fiziko-Matematicheskie Nauki (Samara: 2009), p. 19 (in Russian).
  13. S. Praveen and H.S. Kim, Adv. Eng. Mater., 20, No. 1: 1700645 (2017). https://doi.org/10.1002/adem.201700645
  14. H. Zhang, Y. Zhao, S. Huang, S. Zhu, F. Wang, and D. Li, Materials, 12, 720: 2 (2019). https://doi.org/10.3390/ma12050720
  15. Y. Chen, Yu. Li, X. Cheng, C. Wu, Bo Cheng, and Z. Xu, Materials, 11, 208: 2 (2018).
  16. O.N. Senkov, G.B. Wilks, D.B. Miracle, C.P. Chuang, and P.K. Liaw, Intermetallics, 18: 1758 (2010). https://doi.org/10.1016/j.intermet.2010.05.014
  17. M.-H. Tsai, Entropy, 18: 252 (2016). https://doi.org/10.3390/e18070252
  18. D.B. Miracle and O.N. Senkov, Acta Mater., 122: 448 (2017). https://doi.org/10.1016/j.actamat.2016.08.081
  19. Yu-Sheng Tian, Wen-Zhe Zhou, Qing-Biao Tan, Ming-Xu Wu, Shen Qiao, Guo-Liang Zhu, An-Ping Dong, Da Shu, and Bao-de Sun, and Bao-de Sun, Trans. Nonferrous Met. Soc. China, 32: 3487 (2022).
  20. A.C. Yeh, T.K. Tsao, Y.J. Chang, K.C. Chang, J.W. Yeh, M.S. Chiou, S.R. Jian, C.M. Kuo, W.R. Wang, and H. Murakami, Int. J. Metall. Mater. Eng., 1: 107 (2015). https://doi.org/10.15344/2455-2372/2015/107
  21. H.M. Daoud, A.M. Manzoni, N. Wanderka, and U. Glatzel, JOM, 67: 2271 (2015). https://doi.org/10.1007/s11837-015-1484-7
  22. I. Toda-Caraballo and P.E.J. Rivera-Díaz-del-Castillo, Acta Mater., 85: 14 (2015). https://doi.org/10.1016/j.actamat.2014.11.014
  23. C. Varvenne, A. Luque, and W.A. Curtin, Acta Mater., 118: 164 (2016). https://doi.org/10.1016/j.actamat.2016.07.040
  24. Z.G. Wu, Y.F. Gao, and H.B. Bei, Acta Mater., 120: 108 (2016). https://doi.org/10.1016/j.actamat.2016.08.047
  25. N.L. Okamoto, K. Yuge, K. Tanaka, H. Inui, and E.P. George, AIP Advances, 6, No. 12: 125008 (2016). https://doi.org/10.1063/1.4971371
  26. F. Moitzi, L. Romaner, A.V. Ruban, and O.E. Peil, Phys. Rev. Mater., 6: 103602 (2022). https://doi.org/10.1103/PhysRevMaterials.6.103602
  27. S.I. Rao, C. Woodward, B. Akdim, E. Antillon, T.A. Parthasarathy, and O.N. Senkov, Scripta Mater., 172: 135 (2019). https://doi.org/10.1016/j.scriptamat.2019.07.025
  28. H.L. Zhang, D.D. Cai, X. Sun, H. Huang, S. Lu, Y.Z. Wang, Q.M. Hu, L. Vitos, and X.D. Ding, J. Mater. Sci. Technol., 121: 105 (2022). https://doi.org/10.1016/j.jmst.2021.11.076
  29. R.L. Fleischer, Solid-Solution Hardening, The Strengthening of Metals (Eds. D. Peckner) (New York: Reinhold Publishing Corp.: 1964), p. 93.
  30. R.A. Labusch, Phys. Stat. Sol., 41: 659 (1970). https://doi.org/10.1002/pssb.19700410221
  31. H. Suzuki, Strength of Metals and Alloys (Eds. H. J. McQueen) (Toronto: Pergamon: 1986), p. 1727.
  32. I. Wesemann, A. Hoffmann, T. Mrotzek, and U. Martin, 17th Plansee Seminar, 1: 18/1 (2009).
  33. S. Takeuchi, Scripta Metallurgica, 2: 481 (1968). https://doi.org/10.1016/0036-9748(68)90177-4
  34. H. Hattendorf and A. R. Büchner, Zeitschrift für Metallkunde, 83: 690 (1992). https://doi.org/10.1515/ijmr-1992-830910
  35. S.A. Fіrstov and T.G. Rogul, Metallofiz. Noveishie Tekhnol., 39, No. 1: 33 (2017) (in Russian). https://doi.org/10.15407/mfint.39.01.0033
  36. S. Patinet and L. Proville, Phys. Rev. B, 78: 104109:1 (2008). https://doi.org/10.1103/PhysRevB.78.104109
  37. A. Seeger, Theorie der Kristallplastizität, IV, Verfestigung und Gleitmechanismus dichtest gepackter Metalle und Legierungen. Z. Naturforschg, 11a: 985 (1956).
  38. G. Saсhs and J. Weerts, Tensile Tests on Gold–Silver Crystals (Berlin–Dahlem: Communication from the Kaiser-Wilhelm-Institut für Metallforschung: 1930), p. 473.
  39. S.A. Firstov and T.G. Rogul, Dopov. Nac. Akad. Nauk Ukr., 8: 58 (2018) (in Russian). https://doi.org/10.15407/dopovidi2018.08.058
  40. B. Chalmers, Physical Metallurgy (New York: Wiley: 1959), p. 468.
  41. I. Milne and R.E. Smallman, Trans. AIME, 242: 120 (1968).
  42. O.N. Carlson and A.L. Eustice, Vanadium–Chromium Alloy System (Iowa State University Ames Laboratory Technical Reports: 1959), p. 12. http://lib.dr.iastate.edu/ameslab_isreports/12
  43. L.A. Gypen and A. Deruyttere, J. Mater. Sci., 12, No. 5: 1028 (1977). https://doi.org/10.1007/BF00540988
  44. L.A. Gypen and A. Deruyttere, J. Mater. Sci., 12, No. 5: 1034 (1977). https://doi.org/10.1007/BF00540988
  45. O.N. Senkov, J.M. Scott, S.V. Senkova, D.B. Miracle, and C.F. Woodwart, Intermetallics, 509: 6043 (2011). https://doi.org/10.1016/j.jallcom.2011.02.171
  46. I. Toda-Caraballo, Scripta Mater., 127: 113 (2017). https://doi.org/10.1016/j.scriptamat.2016.09.009
  47. C.R. LaRosa, M. Shiha, C. Varvenneb, and M. Ghazisaeidia, Materials Characterization, 151: 310 (2019). https://doi.org/10.1016/j.matchar.2019.02.034
  48. M. Walbrühl, D. Linder, J. Ågren, and A. Borgenstam, Mater. Sci. Eng. A, 700: 301 (2017). https://doi: 10.1016/j.mseaa.2017.06.001
  49. S.-P. Wanga and J. Xua, Intermetallics, 95: 59 (2018). https://doi.org/10.1016/j.intermet.2018.01.017
  50. C.-M. Lin, C.-C. Juan, C.-H. Chang, C.-W. Tsai, and J.-W. Yeh, J. Alloys Compd., 624: 100 (2015). https://doi.org/10.1016/S1003-6326(19)65054-5
  51. S.A. Firstov, T.G. Rogul’, N.A. Krapivka, S.S. Ponomarev, V.N. Tkach, V.V. Kovylyaev, V.F. Gorban’, and M.V. Karpets, Russ. Metallurgy (Metally), 4: 285 (2014). https://doi.org/10.1134/S0036029514040028
  52. S.A. Firstov, T.G. Rogul’, N.A. Krapivka, S.S. Ponomarev, V.V. Kovylyaev, N.I. Danilenko, N.D. Bega, V.I. Danilenko, and S.I. Chugunova, Powder Metall. Met. Ceram., 55: 225 (2016). https://doi.org/10.1007/s11106-016-9797-9
  53. L. Vegard, Zeitschrift für Physik, 5, Nr. 1: 17 (1921). doi:10.1007/BF01349680
  54. D. Tabor, The Hardness of Metals (Oxford, UK: Clarendon Press: 1951), p. 102.
  55. https://studme.org/1258042620681/statistika/srednee_kvadraticheskoe_otklonenie
  56. M.A. Baranov and V.M. Sherbakov, EFTZh (Ehlektronnyi Fiziko-Tekhnicheskii Zhurnal), 5: 1 (2010) (in Russian).
  57. A.A. Rusakov, Rentgenografiya Metallov [Röntgenography of Metals] (Moskva: Atomizdat: 1977), p. 480 (in Russian).
  58. J.D. Dunitz, V. Schomaker, and K.N. Trueblood, J. Phys. Chem., 92: 856 (1988). https://doi.org/10.1021/j100315a002
  59. W. Yeh, S.Y. Chang, Y.D. Hong, S.K. Chen, and S.J. Lin, Mater. Chem. Phys., 103: 41 (2007). https://doi.org/10.1016/j.matchemphys.2007.01.003
  60. O.B. Perevalova, A.V. Panin, and E.O. Tyurin, Fazovyye Perekhody, Uporyadochennyye Sostoyaniya i Novyye Materialy, 1: 28 (2013) (in Russian).
  61. O.V. Sobol, V.F. Gorban, M.O. Krapivka, T.G. Rogul, and S.O. Firstov, Powder Metall. Met. Ceram., 59: 715 (2021). https://doi.org/10.1007/s11106-021-00206-4
  62. V.F. Gorban, M.I. Danylenko, M.A. Krapivka, and S.A. Firstov, Powder Metall. Met. Ceram., 58: 469 (2019). https://doi.org/10.1007/s11106-019-00097-6
  63. S.A. Firstov, T.G. Rogul’, and O.A. Shut, Powder Metall. Met. Ceram., 57: 161 (2018). https://doi.org/10.1007/s11106-018-9964-2
  64. V.I. Trefilov, Yu.V. Milman, and S.A. Firstov, Fizicheskie Osnovy Prochnosti Tugoplavkikh Metallov [Physical Fundamentals of Strength of Refractory Metals] (Kiev: Naukova Dumka: 1975), p. 315 (in Russian).
  65. Y.V. Mil’man and V.I. Trefilov, Powder Metal. Met. Ceram., 49: 374 (2010). https://doi.org/10.1007/s11106-010-9248-y
  66. A. Seeger, An International Conference ‘Dislocations and Mechanical Properties of Crystals’ (September 6–8, 1956, Lake Placid), p. 179.
  67. H. Conrad, Yielding and Flow of the B.C.C. Metals at Low Temperatures, (Aerospace Report No. TDR-169(3240-11)TN-5,7 March, 1963), p. 73.
  68. S.O. Fіrstov and T.G. Rogul, Metallofiz. Noveishie Tekhnol., 44, No. 1: 127 (2022) (in Ukrainian). https://doi.org/10.15407/mfint.44.01.0127
  69. O. Boser, Metall. Trans., 3: 843 (1972). https://doi.org/10.1007/BF02647658
  70. T.E. Mitchell, Progr. Applied Materials Res., 6: 117 (1964).
  71. S.O. Firstov, T.G. Rogul, M.O. Krapivka, and S.I. Chugunova, Metallofiz. Noveishie Tekhnol., 40, No. 2: 219 (2018) (in Russian). https://doi.org/10.15407/mfint.40.02.0219
  72. S.A. Firstov and G.F. Sarzhan, Ehlektronnaya Mikroskopiya i Prochnost’ Materialov: Sb. Nauchn. Trudov (Kiev: ІPM NAN Ukrainy: 2014), vol. 20, p. 71 (in Russian).
  73. Z. Guo, N. Saunders, J.P. Schillé, and A.P. Miodownik, MRS Int. Materials Research Conf. (June 20, 2008, Chongqing, China), р. 9.
  74. Z. Wu, H. Bei, G.M. Pharr, and E.P. George, Acta Mater., 81: 428 (2014). https://doi.org/10.1016/j.actamat.2014.08.026
  75. J.R. Stephens and W. R. Witzke, Alloy Softening in Binary Iron Solid Solutions (Washington, D.C.: NASA Scientific and Technical Publication, Lewis Research Center: February, 1976).
  76. W.C. Leslie, Metall. Trans., 3: 5 (1972). https://doi.org/10.1007/BF02680580
  77. E. Pink and R.J. Arsenault, Prog. Mater. Sci., 24: 1 (1979). https://doi.org/10.1016/0079-6425(79)90003-3
  78. O.N. Senkov, G.B. Wilks, J.M. Scott, and D.B. Miracle, Intermetallics, 19, 5: 698 (2011). https://doi.org/10.1016/j.intermet.2011.01.004
  79. D. Zakarian, A. Khachatrian, and S. Firstov, Metal Powder Rep., 74, No. 4: 204 (2021). https://doi.org/10.1016/j.mprp.2018.12.079
  80. B.M. Drapkin, Metally, 3: 193 (1980) (in Russian).
  81. V.S. Zolotorevskiy, Mekhanicheskie Svoistva Metallov [Mechanical Properties of Metals] (Moskva: Metallurgiya: 1983) (in Russian).
  82. Yu.A. Bagarjackij, Ya.M. Golovchiner, and V. Il’na, Rentgenografiya v Fizicheskom Metallovedenii [Röntgenography in Physical Metallurgy] (Moskva: Metallurgiya: 1961) (in Russian).
  83. P. Lukac and Z. Trojanova, J. Mechanical Behavior of Materials, 4, No. 1: 71 (1992). https://doi.org/10.1515/JMBM.1992.4.1.71
  84. R. Carroll, C. Lee, C.-W. Tsai, J.-W. Yeh, J. Antonaglia, B.A.W. Brinkman, M. LeBlanc, X. Xie, S. Chen, P.K. Liaw, and K.A. Dahmen, Sci. Rep., 5: 16997 (2015). https://doi.org/10.1038/srep16997
  85. B. Wang, X. Huang, A. Fu, Y. Liu, and B. Liu, Mater. Sci. Eng. A, 726: 37 (2018). https://doi.org/10.1016/j.msea.2018.04.071
  86. I. Nikulin, R. Kaibyshev, and V. Skorobogatykh, J. Phys.: Conf. Ser., 240: 1 (2010). https://doi.org/10.1088/1742-6596/240/1/012071