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1. Introduction

The development of models describing solid-solution hardening of binary 
solid solutions is addressed in numerous papers. These papers have been 
analysed and summarised in sufficient detail in various monographs and 
overviews (e.g., [1–6]). Nevertheless, recent years have seen a growing 
interest in exploring the mechanisms of solid-solution hardening in multi­
component solid solutions. This surge in interest is attributed to the in­
tensive research into a new class of materials, namely high-entropy alloys 
(HEAs), whose creation was advanced by J.W. Yeh in 2004 [7].

The development of HEAs relies on a fundamentally new scientific ap­
proach that emphasizes the predominant role of mixing entropy in form­
ing a solid solution in multicomponent alloys. HEAs contain at least five 
key elements, each having an atomic concentration ranging from 5 to 35% 
and possessing high mixing entropy. The minimization of the Gibbs free 
energy G = H - TS, where H is the enthalpy, S is the entropy, and T is 
the absolute temperature, promotes the formation of single-phase multi­
element substitutional solid solutions with simple lattices (b.c.c., h.c.p., 
and f.c.c. ones). The HEA crystal lattice, constituted by atoms varying in 
size and electronic structure, is significantly distorted, giving rise to a 
spectrum of unique properties.

Principles for selecting the elemental composition of HEAs with the 
desired type of crystal lattice have been established, and studies are ongoing 
to ascertain the influence of their elemental composition on the structure 
and mechanical properties (see, e.g., [8–20]). It is shown (e.g., [8–14])) that 
HEAs are distinguished by enhanced thermal stability, slow diffusion ki­
netics, and high wear and corrosion resistance. Consequently, they are 
expected to be successfully used as structural materials in current and 
future industrial applications.

Specifically, a series of studies highlighted the potential of developing 
HEAs that could compete with today’s leading high-temperature creep-
resistant polycrystalline alloys (such as Inconel 718 and Haynes 230) [19, 
20, 21]. For example, Yeh [20] examined a series of HEAs in the Al–Co–
Cr–Fe–Ni–Ti system that possesses high creep resistance, good oxidation 
resistance, and low specific weight (below 8 g/cm3). It is also important 
that costs for raw materials for such systems are approximately 20% 
lower than for conventional nickel-based superalloys. The paper [21] pre­
sents the promising Al10Co25Cr8Fe15Ni36Ti6 alloy, showing a strength 
limit of 650 MPa at 800  °C, which is higher than that of Inconel 617 
(strength limit lower than 500 MPa).

However, there are several issues to be solved in terms of developing 
novel multicomponent high-entropy structural and functional materials. 
Primarily, mechanisms of abnormally high solid-solution hardening perti­
nent to HEAs are to be ascertained [16, 18]. Thus, it is noted [16] that the 
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high hardness (5.25 GPa) of the single-phase WNbMoTaV alloy with a 
b.c.c. lattice can be due to the activation of an ‘unobvious strengthening 
mechanism’. Despite a fairly large number of studies focusing on the fea­
tures peculiar to solid-solution hardening and its estimation for HEAs 
[22–28], the mechanism of such hardening remains to be fully determined. 
Systematic analysis of the temperature dependence of critical shear stress 
tcr in solid solutions is also of special interest: in particular, long-term 
athermal hardening, leading to a characteristic ‘plateau’ on the tcr(T) de­
pendence at temperatures above (0.2–0.35)Tmelt. The findings of this analy­
sis are noteworthy not only for their scientific value but also important 
for the design of creep-resistant HEAs.

To systematize the literature results and our research findings, this 
paper consistently addresses the mechanisms of solid-solution hardening 
in binary and multicomponent solid solutions (HEAs) and presents a com­
parative analysis between the temperature dependences of critical shear 
stress for binary and multicomponent solid solutions and ‘pure metals’.

2. Concentration Dependence of Solid-Solution  
Hardening in Binary Solid Solutions

Solid-solution hardening (SSH) is known to result from the resistance to 
the movement of dislocations by atoms of doping elements present in the 
matrix lattice [1–3].

The models of Mott and Nabarro [1], Friedel [2], Fleischer [5, 29], 
Labusch [30], and Suzuki [31] are discussed most comprehensively in the 
literature to describe the solid-solution hardening in binary solid solu­
tions. Quite a detailed analysis of the theories and models is presented, 
e.g., in Refs. [2, 3, 6].

In essence, the proposed solid-solution hardening models are similar: 
they actually focus on athermal (temperature-independent) hardening, as­
suming that dislocations behave as elastic lines and the solid-solution 
hardening is primarily due to the size mismatch between the atoms of the 
doping element and the matrix and the difference in their elastic moduli.

In terms of the interaction between dislocations and dissolved atoms, 
the models presented in the literature can be conditionally divided into 
two categories: (i) interaction at low concentrations of dissolved atoms, 
when the dissolved atoms are regarded as individual point obstacles to the 
movement of dislocations and the moving dislocations bend in the regions 
between them and break away under the influence of additional stresses 
(Fleischer and Friedel) (Fig. 1, a), and (ii) interaction at high concentra­
tions of impurity atoms, when their strain fields overlap and the disloca­
tions interact with these fields but not with isolated atoms (Mott–Nabarro) 
(Fig. 1, b). An intermediate range of impurity-atoms’ concentrations in­
cludes Labusch’s model describing the interaction of a dislocation with a 
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group of closely spaced atoms (cluster) and its subsequent bending in the 
region between this group.

According to Mott and Nabarro [1], the movement of dislocations is 
hindered by internal lattice distortions induced by atoms of the dissolved 
element, whose sizes depend on the difference in the atomic sizes of the 
solvent and the dissolved element, which is the size mismatch parameter 
dа defined as the change in the lattice constant with the concentration of 
the dissolved doping elements c (dа = a−1da/dc). As the concentration of 
impurities increases, the distance between the dislocation anchor points, 
being inversely proportional to the atomic concentration c of the doping 
element, decreases, while the critical stress of dislocation separation t in­
creases. At high concentrations of impurity atoms, the strain fields over­
lap (Fig. 1, b) and the long-range stress fields interacting with the disloca­
tion are the algebraic mean of the stress fields of the impurity atoms and 
are equal to zero. This makes the dislocations located in clusters of impu­
rity atoms rectilinear, and their interaction with impurity atoms is pri­
marily limited to the nuclei [4]. Based on several assumptions, Mott and 
Nabarro derived an equation for calculating the solid-solution hardening, 
Dt, for concentrated binary solid solutions (c > 0.1 at.% according to [32]):

	 ∆τ = 2.5Gδα1/4c,	 (1)

where G is the shear modulus, dа is the atomic mismatch parameter, and c 
is the concentration of the doping element.

Fleischer’s model [5, 29] focuses on the interaction of dislocations 
with individual dissolved atoms in the slip plane and addresses, unlike 
Mott–Nabarro model, not only the atomic size mismatch between the sol­
vent and impurity but also the mismatch in their elastic moduli. Fleischer 
concluded that the mismatch in elastic moduli dG (dG = G−1dG/dc) promoted 
greater hardening than the atomic size mismatch dа. According to 
Fleischer’s model, solid-solution hardening ∆t for low-concentration solid 
solutions can be calculated using the following equation:

	
3 2 1 2

760

G cd
Dt = ,	 (2)

Fig. 1. Interaction of dislocations with dis­
solved atoms according to the Mott–Nabar­
ro theory (atoms are shown with dots and 
their stress fields are shown with circles): 
(a) diluted solution under the action of ad­
ditional stresses (dislocation separation 
from A atoms to B atoms); (b) concentrated 
solution [4]
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where d = |δG| + α|δa| with dG and da being the elastic modulus mismatch and 
atomic size mismatch parameters, a = 3 for screw dislocations and a = 16 
for edge dislocations.

However, the paper [33] indicates that the influence of the elastic 
modulus mismatch on hardening in Fleischer’s theory is overestimated 
since the moduli for metals commonly change when dissolved atoms are 
added. The paper determined a correction to the calculation of the modu­
lus mismatch between the dissolved atoms and matrix atoms. In the case 
of copper alloys, this correction leads to a 30% reduction in the modulus 
mismatch in Fleischer’s model.

Labusch [30] revised the alloy-hardening theory by Mott and Nabarro 
[1] and pointed out that a uniform distribution of doping atoms could not 
be found in solid solutions and that there were groups (clusters) of closely 
spaced atoms. These groups serve as ‘effective’ obstacles to the movement 
of dislocations, exceeding the action of individual atoms in a cluster but 
being weaker than the sum of their individual forces. According to 
Labusch’s model, the level of solid-solution hardening is proportional to 
the concentration of the dissolved substance as c2/3:

	
4 3 2 3

550

G cd
Dt = ,	 (3)

where d = (δ2
G + α2δ2

a)
1/2 (3 < a < 16 for screw dislocations and a > 16 for 

edge dislocations).
Hence, in a general form, the concentration dependence of solid-solu­

tion hardening ∆t for binary solid solutions can be represented as

	 ∆τ(c) = BGcn,	 (4)

where t is the critical shear resistance, B is a constant that depends on the 
modulus and size mismatch parameters between the atoms that form the 
solid solution, and с is the concentration of the doping element.

At the same time, models with n = 1/2 (Fleischer) perform better in 
the region of low concentrations of solute atoms, n = 2/3 (Labusch) when 
a dislocation interacts with a group of closely spaced solute atoms (clus­
ters), and n = 1 (Mott) in transition to higher concentrations. Note that in 
Suzuki’s approach to assessing solid-solution hardening in concentrated 
solid solutions with the temperature dependence of the shear modulus, 
G(T), is taken into account that n = 1 [31, 34].

Therefore, with a higher content of the doping element, the concen­
tration dependence of solid-solution hardening transfers from parabolic  
to linear. This transition is schematically shown in Fig. 2 [35]. The  
bend is clearly visible experimentally, for example, on the concentra- 
tion dependence of hardness for the Mo–W alloy at 4 at.% W [32]. The 
models leading to parabolic and straight-line dependences are compared  
in [36].
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The concentration dependence of 
solid-solution hardening Dt(с) in bi­
nary solid solutions with unlimited 
solubility of the components, which 
have the same lattice type and slight­

ly differing atomic sizes and whose hardening reaches a maximum at 50% 
doping element (Fig. 3) Seeger [37] described as

	 ∆τ(c) = Ac(1 − c),	 (5)
where A = const.

G. Saсhs and J. Weerts [38] described the complete expression t(с) of 
the Au–Ag solid solution as

	 Ag Au 0( ) (1 ) (1 )4c c c c ct = t + - t + - t ,	 (6)

where tAg and tAu are the critical shear stresses for pure Ag and Au; t0 is 
the deviation from the values of the critical shear stress calculated accor­
ding to the mixture rule for 50 at.% of Ag and 50 at.% of Au.

The paper [39] notes that Eqs. (5) and (6) were derived for ideal (ho­
mogeneous) binary solid solutions with unlimited solubility, while actual 
solid solutions might be characterized by some concentration heterogene­
ity. It is assumed that a binary solid solution with unlimited solubility of 
components can be represented as a mixture of areas (clusters) enriched in 
component A and enriched in component B since atoms of the doping ele­
ment are unevenly distributed in the alloy. This ‘composite’ is peculiar in 
that there is no physically clear boundary that separates these areas (Fig. 4).

Assuming that the solid solution has a compositional cluster struc­
ture, the paper [39] proposed the following equation to describe the con­
centration dependence of critical shear stress t(с) in binary solid solutions 
with unlimited solubility:

	 τ(c) = [(τA + α1c(1 − c)](1 − c) + [τB + α2(1 − c)c]c,	 (7)

where tА and tВ are the critical shear stresses of pure components A and B, 
a1 and a2 are hardening coefficients for the formation of solid solutions 
based on components A and B.

As obvious, the critical shear stress τ(0) = τA at c = 0, τ(1) = τB at c = 1, 
and τ (0.5) = 0.5 (τA + τB) + 0.125 (α1 + α2) at c = 0.5.

Proposed Eq. (7) is a third-order polynomial from the concentration c of 
component B. To find coefficients a1 and a2, it will suffice to take the  
first derivatives from the experimental dependence of critical shear stress 
on concentration at the initial and final points of the concentration 

Fig. 2. Schematic dependence of solid-solu­
tion hardening Dt on the concentration c of 
the doping element with the transition 
from parabolic to linear shape [35]
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dependences and then refine them to obtain the best match through ana­
lysis of root-mean-square deviations of the experimental data from the 
calculations.

To compare the dependences calculated following Eq. (7) and experi­
mental dependences of critical shear stress on concentration, the paper 
[39] analysed binary solid solutions with a b.c.c. structure, Nb–Mo and 
V–Cr, and with an f.c.c. structure, Au–Ag and Cu–Au [38, 40–42] (Fig. 3). 
As shown, the calculated curves describe the experimental data well.

Summarizing the above, we should note that different explanations 
for the solid-solution hardening mechanisms depending on the concentra­
tion of the dissolved element are proposed within the described approaches 
for assessing solid-solution hardening in bi­
nary solid solutions. Nevertheless, each pro­
posed model has its assumptions and limita­
tions. The situation is more complicated for 
the hardening of multicomponent solid solu­
tions, since the presence of a greater number 

Fig. 3. Experimental data on the concentration dependences of 
critical shear stress tcr(с) in unlimited solid solutions of the Au–Ag 
[38], Cu–Au [40], Nb–Mo [41], and V–Cr [42] systems (points on 
the curve) and the same dependences for these systems calculated 
following Eq. (6) [39] (solid line)

Fig. 4. Schematic compositional cluster structure of a 
binary solid solution: ○ (open circle) — atoms of ele­
ment A, and ● (solid circle) — atoms of element B [39]
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of elements leads to more complex interactions between them. Some ap­
proaches to assessing the solid-solution hardening in multicomponent sol­
id solutions are described below.

3. Features Peculiar to Athermal Hardening  
of Multicomponent Solid Solutions

As noted above, differences in the atomic sizes and elastic moduli of ele­
ments in the multicomponent solid solution can lead to significant lattice 
distortions, significantly complicating the movement of dislocations and, 
accordingly, giving rise to high levels of solid-solution hardening. For this 
reason, the choice of both the model and the method for determining the 
size and elastic mismatch between the atoms of elements contained in such 
solutions are important in the development of approaches to calculating 
their hardening, since the interaction between atoms of different elements 
can significantly change their parameters.

A model for calculating solid-solution hardening in multicomponent 
alloys was first proposed by Gypen and Deruyttere far back in 1977 [43, 
44]. The model uses Labusch’s approach for binary solid solutions: 
∆τ(c) ∝ c2/3. The effect of solid-solution hardening is accordingly expressed 
by the following equation:

	
2 3

3 2
n

i i
i

B c
 

Dt =  
 
∑ .	 (8)

Here, сi is the concentration of an element in the alloy; Bi = 3ЕZ, where Е 
is Young’s modulus and Z depends on size mismatch dа and elastic mis­
match dE between atoms of elements in the alloy. Parameter Bi in (8) is 
calculated for a binary solution.

To calculate solid-solution hardening of HEAs, most papers suggest 
approaches that also rely on the use of Labusch’s model for binary solid 
solutions, but with different options for determining the size and elastic 
mismatch of atoms, e.g., [22–24, 45–48].

However, the application of approaches relying on Labusch’s model to 
calculate solid-solution hardening of HEAs does not seem to be entirely 
justified in our opinion. As HEAs, by definition, do not contain elements, 
whose concentration is lower than 5%; the solid-solution hardening of 
HEAs rather resembles the behaviour in concentrated solid solutions and 
∆τ(c) ∝ c. This is confirmed, for instance, in Refs. [49, 50]. Thus, as Ref. 
[49] shows, the microhardness of (TiZrNbTa)100-xMox (0 ≤ x ≤ 20) HEAs 
produced by arc melting increases linearly with molybdenum concentra­
tion that is similar to the case of a concentrated binary solid solution. The 
paper [50] established that the yield stress s of the AlxHfNbTaTiZr alloy 
also increases linearly with the aluminium concentration and can be de­
scribed as σ = 1031 + 26.1c.
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Using single-phase AlTiVCrNbMo and Cr MnCoFeNi alloys as an 
example, it is shown in Refs. [51, 52] that their abnormally high athermal 
solid-solution hardening is associated with a change in the Burgers vector 
b along the dislocation line (both in length and in direction). This leads to 
the appearance of component ∆b, which is perpendicular to the slip plane 
(Fig. 5). In this case, the full Burgers vector is equal to

	 b = b0 + ∆b.	 (9)

These alloys are single-phase substitutional solutions. The b.c.c.-lattice 
parameter of the AlTiVCrNbMo alloy is a = 3.128 Å, and the f.c.c.-lattice 
parameter of the CrMnCoFeNi alloy is a = 3.603 Å. The alloys have a 
polyhedral structure with grain sizes of 200–700 µm, the grains are quite 
evenly distributed by orientation, and internal stresses are virtually zero. 
In the early deformation stages, the sublattice of the f.c.c. CrMnCoFeNi 
alloy is characterized by stacking faults and twins, being indicative of low 
energy of stacking faults in the alloy.

As shown in Refs. [51, 52], the hardness of the AlTiVCrNbMo and 
CrMnFeCoNi alloys, Hexp, significantly exceeds (by DН) the hardness cal­
culated according to the rule of mixture, Hmix. According to Ref. [53], 

mix

n

i ii
H c H= ∑ , where ci and Нi are the concentration and hardness of an 
element in the alloy. For the AlTiVCrNbMo alloy, Hexp = 5.1 GPa and Hmix = 
= 0.95 GPa. For the CrMnFeCoNi alloy, Hexp = 1.66 GPa and Hmix = 0.72 GPa.

To assess solid-solution hardening Dt (or DН), a relatively simple equ­
ation is proposed, which accounts for the ‘average’ shear modulus mix

n

i ii
G c G= ∑ 

mix

n

i ii
G c G= ∑ and the ‘average’ size mismatch parameter mix mix( )

n

i ii
a a c a a aD = -∑

mix mix( )
n

i ii
a a c a a aD = -∑  with mix

n

i ii
a c a= ∑ ,

	 mixk G
a

D
Dt = 	 (10)

or

	 mixH

a
H k G

a

D
D = .	 (11)

It should be noted that the size mismatch parameter Da/a is actually 
equivalent to the ∆b/b ratio (Fig. 5).
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The hardness of the alloy is then equal to

	 mix mix mixH

a
H H H H k G

a

D
= + D = + .	 (12)

The proportionality coefficients in Eqs. (10) and (11) are related by 
the expression kH ≈ 3k, which corresponds to Tabor’s equation [54] for 
hardness and yield stress (s0.2 = H/3). Equation (12) is obeyed for several 
alloys at kH values approximately equal to 1.4–1.7.

Equations (10)–(12) include the average size mismatch, mix mix( )
n

i ii
a a c a a aD = -∑ 

mix mix( )
n

i ii
a a c a a aD = -∑ . At the same time, several papers use, as a measure 

of the size mismatch, root-mean-square discrepancy of atomic sizes, [ ]2av av( )
n

i ii
c r r rd = -∑ 

[ ]2av av( )
n

i ii
c r r rd = -∑ , where ri is the atomic radius of ci i-th element in 

the alloy; av

n

i ii
r c r= ∑ . It should be noted that the root-mean-square de­

viations are higher than the average deviation by ≈1.25p2/2 according to 
equations in Ref. [55]. Hence, this factor allows an easy transition from 
the average deviation to the root-mean-square one.

4. Experimental Determination of Root-Mean-Square  
Displacements of Atoms in Multicomponent Solid Solutions

Differences in atomic sizes and elastic moduli between the elements in a 
multicomponent solid solution can lead to significant shifts of atoms from 
their ideal lattice positions. An attempt was made in [56] to calculate the 
displacement of specific atoms from ideal lattice sites in multicomponent 
f.c.c. stainless steels to evaluate their solid-solution hardening. Computer 
simulation methods (in particular, molecular dynamics methods) are cur­
rently employed to predict the displacement of atoms from ideal lattice 
positions. However, the actual root-mean-square displacements of atoms 
from their ideal lattice positions, 2U , resulting from self-organization 
processes, can be experimentally determined from x-ray diffraction pat­
terns by changes in the intensity of reflections of various orders. Respective 
methodologies are described in Refs. [57, 58].

The experimental values of U2 are the sum of squared static Us and 
dynamic Ud displacements of atoms from ideal-lattice sites:

	 2 2 2
s dU U U= + .	 (13)

Static distortions Us are due to the difference in sizes of atoms, while 
dynamic distortions Ud are due to thermal vibration of atoms. Dynamic 
distortions are known to grow with temperature and should increase the 
resistance to the movement of dislocations in almost the same way as 
static distortions. In this regard, the root-mean-square displacement 2U  
of atoms, including both static and dynamic components, characterizes the 
actual displacements of atoms in multicomponent solid solutions and can 
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be used to calculate the hardening of such solutions. Thus, the paper [59] 
indicates that the addition of elements in the Cu–Ni–Al–Co–Cr–Fe–Si 
system decreases the intensity of x-ray lines that is associated with the 
lattice distortion.

The paper [25], using the f.c.c. CrMnFeCoNi HEA as an example, 
shows that root-mean-square displacements 2U  determined by x-ray dif­
fraction and the displacement of atoms from the ideal lattice positions 
calculated from first principles and averaged over five elements are in 
good agreement (23.5 pm2 and 25.2 pm2, respectively). To determine the 
yield stress s0.2 normalized to the shear modulus G at 0 K, the following 
empirical equation is used in Ref. [25]:

	 * 20.2 k U
G

s
= ,	 (14)

where k* is a constant.
It is shown [25] that the above approach to calculating the solid-solu­

tion hardening effect can be successfully applied to the FeCoNi, MnFeCoNi, 
MnCoNi, MnFeNi, CrCoNi, CrFeCoNi, and CrMnCoNi medium-entropy al­
loys, being a subset of the CrMnFeCoNi alloy.

It is convenient to determine U2 from the intensities of lines (111) and 
(222) for f.c.c. alloys and from the intensities of lines (110) and (220) for 
b.c.c. alloys, allowing the effect of texture to be excluded. In this in­
stance, the root-mean-square shifts are apparently determined in the direc­
tion perpendicular to these planes, which is consistent with the ideas set 
forth in Refs. [51, 52] regarding the Burgers vector component ∆b that is 
induced by severe lattice distortions and is normal to the slip plane, and 
actually define the value of this component. Accordingly, instead of expres­
sion Da/a, being present in Eq. (10) and characterizing only the ‘average’ 
size mismatch of atoms in the crystal lattice, we propose to use 2U  
normalized by dhkl, where dhkl is the interplanar distance. Then Eq. (10) 
reads as

	
2

1
hkl

U
k G

d
Dt = ,	 (15)

where k1 is a constant, which also accounts for the factor for conversion 
from the average displacement of atoms in the crystal lattice to the root-
mean-square shift (≈1.25 [55]).

At the same time, it is shown [60] that there is a linear relationship 

between the root-mean-square displacements of atoms 2U  and lattice 
microdistortions e for solid solutions. Lattice microdistortions e are ba­
lanced within individual crystallites or their parts (mosaic blocks) and, 
along with the sizes of coherent scattering domains (CSDs), lead to the 
broadening of x-ray lines in comparison with the reference sample lines: e = 
= Dd/d, where Dd is the maximum deviation of the interplanar spacing for 
a given interference line from its average value d.
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Our paper [61] established a re­
lationship between the level of solid-
solution hardening DH, the amount 
of lattice microdistortions e, and the 
elastic modulus Е:

	 H ED = aε ,	 (16)

or, according to [53],

	
3

E
a

Dt = ε ,	 (17)

where a ≈ 22.
The data obtained in [61] support the fact that, under precise determi­

nation of microdistortions e, this value can be regarded as a measure of 
solid-solution lattice distortion and can be used to assess the level of solid-
solution hardening.

It should be noted that not only high-entropy and medium-entropy al­
loys, but also binary solid solutions are characterized by a situation, 
where, to one degree or another, not a single atom is located exactly in a 
node of the crystal lattice. Therefore, normalized to the interplanar dis­
tance, empirically determined mean square displacements of atoms from 

ideal positions are 2
hklU d  is the most correct measure of crystal lattice 

distortions. Another acceptable measure of such distortions can be the 
microdistortion values of the crystal lattice e.

The cluster structure characteristic of binary solid solutions is even 
more characteristic of multicomponent solid solutions. For example, the 
microinhomogeneity of the distribution of the elements of the high-entro­
py TiVZrNbHfTa coating was clearly observed in Ref. [62]. In this case, 
the size of the clusters is of 15–20 nm (Fig. 6). However, if it was possible 
to propose a compositional–cluster model (reviewed above, [39)] for binary 
solid solutions for the evaluation of solid-solution strengthening, such a 
model has not yet been developed for multicomponent solutions.

The maximum lattice distortions may occur not only in the HEAs, but 
also in properly chosen medium-entropy alloys. Hence, with a greater 
number of components, distortions may decrease since the appearance of 
numerous atoms of varying sizes and moduli can compensate for the dis­
tortion introduced by neighbours. For instance, the paper [63] shows that 
ternary NiCoCr alloys demonstrate greater distortions and hardening than 
quaternary ones in a series of multicomponent f.c.c. Fe–Ni–Co–Cr solid 
solutions.

Fig. 6. Chemical inhomogeneity of the cast 
TiVZrNbHfTa alloy [62]
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5. Temperature Dependence of Critical Shear Stress  
(Yield Stress) in Binary and Multicomponent Solid Solutions  
with F.C.C. and B.C.C. Lattices. Activation Energy  
for Movement of Dislocations and Activation Volume

To study further the features peculiar to solid-solution hardening of mul­
ticomponent alloys (including HEAs) a detailed analysis of their tempera­
ture dependence of the critical shear stress tcr(T) (yield stress s0.2(Т)), 
quantitative parameters characterizing the athermal and temperature-de­
pendent component — activation energy of dislocation movement and ac­
tivation volume, compared to pure metals, is necessary.

As known (see, e.g., Refs. [64–67]), critical shear stress tcr can be de­
scribed by the following equation:

	 a   ( , )T Tt = t + t ε ,	 (18)

where the first term, ta, characterizes athermal component and the second 
term,  ( , )T Tt ε , is the temperature-dependent component introduced by 
barriers that can be overcome by dislocations through thermal fluctua­
tions (T is the temperature and ε  is the strain rate).

Following analysis of the papers [64–73], we plotted a schematic tem­
perature dependence (Fig.  7) of critical shear stress tcr(T) for metals 
(curve 1), of Young’s modulus E(T) (curve 2), and of tcr(T) for solid solu­
tions (curve 3) in Ref. [68].

For metals, the typical temperature dependence of critical shear stress 
tcr(T) (Fig.  7, curve 1 according to Ref. [65]) below Т1 (approximately 
0.1Тmelt) can be described by straight-line Eq. (19) and that at Т1 < Т < Т2 
(approximately (0.1–0.2)Тmelt) is exponential (20):

	
( )0 ln

T

U kT M

V

- ε
t =



,	 (19)

	
1 3

03 exp
3T

UT
B k

V kT
  t = ε   

   
 .	 (20)

where U0 is the activation energy for the movement of dislocations; V is 

Fig. 7. Schematic temperature-dependent 
[68] (1) critical shear stress (tcr) for metals, 
(2) Young’s modulus (E), and (3) critical 
shear stress (tcr) for solid solutions. (Plot­
ted considering findings from Refs. [3, 
65–72]). Here, T1 and 1T′  are the transition 
temperatures from linear to exponential de­
pendence, T2 and 2T′  — the transition tem­
peratures to athermal dependence, T3 and 

3T′  — the transition temperatures to diffu­
sion-dislocation deformation mechanisms, 
for metals and solid solutions, respectively
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the activation volume for overcoming various potential barriers by dislo­
cations; M, actually, is 0ε , lnM weakly depends on temperature; B is a 
constant for the singing material and the degree of deformation ε , which 
is indicated by tcr(T); k is Boltzmann’s constant.

In the temperature range Т < Т2, hardening is determined by barriers 
that can be overcome through thermal fluctuations. For pure b.c.c. and 
f.c.c. metals, the barriers significantly differ in nature [64]. In b.c.c. met­
als, these are Peierls–Nabarro barriers. The ability of dislocations to over­
come these barriers through thermal activation at room temperature and 
below largely determines the critical shear stress. In f.c.c. metals, the 
level of Peierls–Nabarro barriers is low. The barriers are forest disloca­
tions and dislocation thresholds. Pure b.c.c. metals have a sharper tcr(T) 
dependence compared to pure f.c.c. metals.

Above Т2 (≈0.2Тmelt) for most metals and alloys [64]) and up to Т3 
((0.33–0.4)Tmelt), athermal tcr(T) dependence is observed. There is a weak 
tcr(T) dependence resulting from the temperature dependence of elastic 
modulus Е (curve 2, according to [72]).

Above Т3, diffusion–dislocation strain mechanisms are induced, and 
the tcr(T) dependence is further weakened (for example, [73]).

Temperatures 2T′  and 3T′  on curve 3, which demonstrates the sche­
matic dependence of tcr(T) for multicomponent solid solutions, are higher 
than temperatures T2 and T3 (curve 1) and are discussed below.

The paper [35] shows that, compared to pure f.c.c. metals, binary and 
multicomponent f.c.c. solid solutions demonstrate a sharper dependence of 
the thermal component in the critical shear stress and a significant in­
crease in its athermal component (Fig. 8). At the same time, the tcr(T) 
dependence for f.c.c. solid solutions with increase in the concentration of 
doping elements demonstrates ‘b.c.c.-like behaviour’, where Peierls–

Fig. 8. Temperature dependence of critical shear stress tcr(T) for f.c.c. Cu–Zn binary 
solid solutions [69] (a); temperature dependence of yield stress s0.2(Т) for multicompo­
nent f.c.c. solid solutions [35] (b)
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Nabarro barriers determine it. Similar dependences for the group of f.c.c. 
HEAs were obtained in [74].

A somewhat more complicated pattern is observed in solid solutions 
with a b.c.c. lattice. The papers [75–77] show that tcr decreases (i.e., the 
thermal component of the dependence tcr(T) weakens) in binary solid solu­
tions compared to the base metal (the so-called ‘solid-solution softening’ 
occurs) in the region of low concentrations of doping elements at low tem­
peratures. The thermal component in multicomponent b.c.c. solid solu­
tions enhances as compared to pure b.c.c. metals (Fig. 9) [71]. As in the 
case with f.c.c. solid solutions, the athermal component increases for both 
binary and multicomponent b.c.c.-solid solutions with greater concentra­
tion of the doping element. Note that numerous theories have been put 
forward, whose systematic analysis is reported in [75], to explain the 
hardening of binary solutions at low temperatures, i.e., in the temperature 
range, where the critical shear stress is largely determined by the ther­
mally activated overcoming of Peierls barriers.

According to the methodology developed by Trefilov and Milman [65], 
the activation energy for the movement of dislocations U0 and the activa­
tion volume V for binary and multicomponent solid solutions with f.c.c. 
and b.c.c. lattices were calculated, and a comparative analysis with the 
values for pure metals was carried out in Refs. [35, 71]. This methodology 
determines the thermal activation parameters using only the tcr(T) curve 
(or the s0.2(Т) curve) without the need to vary the strain rate, contrast­
ingly to well-known Seeger–Konrad technique [66, 67].

As shown in Ref. [35], the activation energy for the movement of dis­
locations U0 changes relatively weakly, while the activation volume V 
mainly decreases (Table 1) in transition from pure f.c.c. metals to solid 
solutions. Thus, for example, U0 is of 0.11 eV for Cu, 0.18 eV for Cu–
30Zn, and 0.21 eV for CrMnFeCoNi, while the activation volume V de­

Fig. 9. Temperature depen­
dence of yield stress s0.2 
normalized to Young’s mo­
dulus E for multicompo­
nent b.c.c. AlCrFeCoNi, Al 
TiVCrNbMo, Ti25Zr25 Hf25 
Nb12.5Ta12.5, VNbMoTaW 
alloys and for b.c.c. metals 
such as chromium, molyb­
denum, vanadium, and ni­
obium [71]
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creases from 2450 · 1024 cm3 for Cu to 520·1024 cm3 for Cu–30Zn and to 
114 · 1024 cm3 for CrMnFeCoNi.

In the case of the b.c.c. crystal lattice (Table 2), U0 in both multicom­
ponent and binary solid solutions is comparable to the values for pure 
metals: e.g., 0.22 eV for Fe, 0.20 eV for Fe–4.03Mo, and 0.22 eV for 
AlTiVCrNbMo. However, the activation volume V in b.c.c. alloy is signifi­
cantly lower in multicomponent solid solutions than it is in binary ones, 
in which the thermal component is weakened in comparison with pure me­
tals. This volume can be compared to (or is even lower than) the values for 
b.c.c. metals: e.g., 84·1024 cm3 for Fe, 18.7·1024 cm3 for AlTiVCrNbMo, and 
176  · 1024 cm3 for Fe–4.03 Mo.

Table 1. Activation energy for the movement of dislocations U0,  
activation volume V, and average size mismatch Da/a for f.c.c.  
binary and multicomponent solid solutions and metals [35]

Material U0, eV V ⋅ 1024, cm3 ∆a/a 

Cu 0.11 2450
Cu–5Zn 0.13 860 0.004
Cu–30Zn 0.18 520 0.019
Cu–10Ni 0.2 1990 0.0045
Cu–50Ni 0.26 820 0.0127
Ag 0.07 10560
Ag–0.5In 0.11 7150 0.0008
Ag–4In 0.22 4490 0.0064
Ni 0.19 800
Ni–30Cu 0.23 460 0.0108
CrFeCoNi 0.21 194 0.008
CrMnFeCoNi 0.21 114 0.015
CrMnFeCoNi2 0.24 113 0.014
VCrMnFeCoNi2 0.32 111 0.038

Table 2. Activation energy for the movement of dislocations U0,  
activation volume V, and average size mismatch Da/a for b.c.c.  
binary and multicomponent solid solutions and metals [71]

Material U0, eV V ⋅ 1024, cm3 Da/a

Fe 0.22 84
Cr 0.20 44
Mo 0.19 45
Fe–4.03 Mo 0,20 176 0.0075
Ti25Zr25Hf25Nb12.5Ta12.5 0.18 45 0.0391
VNbMoTaW 0.16 — 0.0281
AlTiVCrNbMo 0.22 18.7 0.04
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Tables 1 and 2 also show that there is an undoubted correlation bet­
ween the increase in lattice picoscale distortions, described by the average 
size mismatch Da/a, and the decrease in the activation volume V.

The thermal activation analysis indicates that the activation volume V 
decreases in binary and multicomponent f.c.c. solid solutions and multi­
component b.c.c.-solid solutions compared to pure metals mainly because 
of a shorter distance between the anchor points of the dislocation line. 
Accordingly, the resistance to the movement of dislocations from the lat­
tice side (‘friction’ force) increases, leading to enhancement of the ther­
mal component in the yield stress.

The difference in the absolute values of the activation volume V in 
b.c.c. and f.c.c. metals (Tables 1 and 2) is associated with the distinct na­
tures of the barriers that are overcome by dislocations in these metals 
through thermal fluctuations when temperature decreases below (0.15–
0.2)Тmelt (in [K]). Thus, in b.c.c. metals, dislocations overcome the Peierls 
barriers through the nucleation and displacement of paired bends. In f.c.c. 
metals, the Peierls barriers are low, and the temperature–rate dependence 
of yield stress is controlled by barriers of different nature: this is an in­
tersection of forest dislocations in pure f.c.c. metals, while an increase in 
frictional forces is obviously due to the interaction of dislocations with 
impurity atoms in doped alloys.

It should be noted that the above approaches to the assessment of 
solid-solution hardening in binary and multicomponent solid solutions in­
volve analysis of data obtained at room temperature, while we believe that 
data obtained at the temperatures of incipient athermal hardening would 
be more correct in this case.

6. ‘Plateau’ on the Temperature Dependence  
of Critical Shear Stress (Yield Stress) in Solid Solutions

As seen from Figs. 7 (curve 3), 8, and 9, an extended temperature-inde­
pendent hardening region, the so-called ‘plateau’, is observed on the tem­
perature dependence of critical shear stress tcr(Т) (yield stress s0.2(Т)) for 
binary and multicomponent solid solutions and some metals at tempera­
tures in the range 2 3T T T′ ′< < .

The appearance of a ‘plateau’ on the tcr(Т) dependence for binary solid 
solutions was pointed out in Refs. [69, 70]. It is indicated that while tcr is 
determined by the ‘athermal’ component at temperatures approximately 
above Тmelt for pure metals and weakly decreases along the tcr(Т) depen­
dence (Fig. 7, curve 1) because of the temperature dependence of the elas­
tic modulus E (curve 2), tcr for solid solutions does not depend on tem­
perature in the range (0.33–0.66)Тmelt 2 3( )T T T′ ′< <  and a ‘plateau’ ap­
pears on the tcr(Т) dependence. However, in some cases, a ‘plateau’ is ob­
served not only on the tcr(Т) dependence for solid solutions but also for 
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pure metals, for example, pure copper (Fig. 8, a). It should be noted that 
the ‘plateau’ extends to ≈0.6Тmelt for some medium- and high-entropy al­
loys, such as Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20, while it 
extends only up to ≈0.35Тmelt [78] in conventional well-known creep-resist­
ant alloys, such as Inconel and Haynes ones. This is indicative of the fun­
damental possibility of developing a new generation of high-temperature 
creep-resistant materials from multicomponent solid solutions.

At the same time, work [67] showed that, since the decrease in Young’s 
modulus with increasing temperature [72, 79–81] should lead to a de­
crease in the critical shear stress, the presence of a ‘plateau’ on the de­
pendence of tcr(Т) is, in fact, anomalous. A ‘plateau’ may be observed only 
on the temperature dependence of tcr normalized to the ЕТ/Е0 ratio (where 
ЕТ and Е0 are the elastic moduli at T and 0 K, respectively) (Fig. 10). Note 
that the paper [66] also draws attention to the fact that a plateau should 
be observed on the tcr(Т)/G(Т) dependence but not the tcr(Т) dependence.

The analysis conducted in Ref. [68] testifies that the factor that com­
pensates for the decrease in tcr associated with the reduction in the elastic 
modulus for pure metals is an increase in the root-mean-square displacements 
of atoms from ideal lattice positions resulting from a linear growth in 
dynamic distortions with temperature [82]. In multicomponent solid solu­
tions, besides an increase in the root-mean-square displacements of atoms, 
the tcr(Т) dependence in the temperature range where a ‘plateau’ is obser­

Fig. 10. Schematic temperature de­
pendence of critical shear stress tcr, 

Young’s modulus ЕТ, critical shear 
stress tcr normalized to the ЕТ/Е0 ratio 
(above); experimental temperature de­
pendences of tcr and s0.2, tcr and s0.2 
normalized to ЕТ/Е0 for the Cu–20Zn 
(below left) and CrFeCoNiMn (below 
right) alloys [68]
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ved can also be influenced by effects similar to dynamic strain ageing, which 
are accompanied by unequal movement of atoms from different elements.

Effects of dynamic strain ageing in HEAs are described, for example, 
in Refs. [83–86]. Noteworthy data are data reported in the papers showing 
that the temperature range of effects similar to Portevin–Le Chatelier ef­
fect expands as the composition of the alloy becomes more complex.

For example, the paper [84] notes that, while the CoNi alloy shows no 
serration behaviour in stress strain curves during tests in the range 300–
700 °C at a strain rate of 1 · 10-4 s-1, the CoFeNi alloy shows a serration 
behaviour at 400 and 500 °С, the CoCrFeNi alloy at 300, 400, 500, and 
600 °С, and the CoCrFeMnNi alloy at 300, 325, 350, 375, 400, 500, 600, 
and 620 °С. The paper [86] reports on the effects of dynamic strain aging 
in the 18Cr–9Ni–W–Nb–VN austenitic stainless steel at a strain rate 
ranging from 6.7 · 10-6 to 1.3 · 10-2 s-1 at temperatures varying from 530 to 
680 °C. It is shown that tungsten, niobium, and vanadium additions con­
tribute to the expansion of the temperature range, over which the effects 
of dynamic strain ageing are manifested from 350 to 740 °С.

When temperature increases, there is a transition from dislocation to 
dislocation–diffusion strain mechanisms associated with dislocation climb, 
intergranular sliding. These processes limit the upper temperature, at 
which a ‘plateau’ is manifested.

7. Conclusions

(i) Most previous publications regard solid-solution hardening in binary 
alloys as athermal, which can be described by the following equation: 
∆τ(с) = BGcn(с), where t is the critical shear resistance; B is a coefficient 
that depends on the parameters of modulus and size mismatch between the 
atoms that form the solid solution; G is the shear modulus; and с is the 
concentration of the doping element. For diluted solid solutions, n = 1/2 
or 2/3 (when dislocations bend between clusters of dissolved atoms accord­
ing to Labusch’s model). At high concentrations, n = 1 and, then, harde­
ning is ∆τ(с) ∝ c.

For alloys with unlimited solubility, ∆τ(с) ∝ c(1 − c). Considering the 
inhomogeneous distribution of atoms in a solid solution, hardening is well 
described by a third-order polynomial [39].

(ii) Models of solid-solution strengthening in multicomponent (high-
entropy) solutions based on the Labusch’s model (e.g., Refs. [22–24, 44–
47]) do not seem to be fully justified, since abnormally high solid-solution 
hardening in such solutions is similar in nature to hardening in concen­
trated binary solid solutions and is determined by the averaged resistance 
to the movement of dislocations, resulting from the presence of lattice 
picoscale distortions induced by atoms of the alloy components through 
the size and modulus mismatch.
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(iii) The root-mean-square displacements of atoms from ideal lattice 
positions, 2U , oriented perpendicularly to the slip plane of dislocations, 
should be used as a measure of the alloy lattice distortion. These displace­
ments are determined by x-ray diffraction and characterized by the inten­
sity of reflections (111) and (222) for f.c.c. lattices and reflections (110) 
and (220) for b.c.c. lattices. Solid-solution hardening can be defined as 

2
1 hklk G U dDt =  (where k1 = const and dhkl is interplanar spacing).

Microdistortions e = Dd/d can be another empirical way of determining 
the degree of lattice distortion using precision x-ray analysis. In this case, 
solid-solution hardening is GDt = aε , where a = const.

(iv) The lattice picoscale distortions in binary f.c.c. and multicompo­
nent f.c.c. and b.c.c. solid solutions increase the athermal component in 
shear stress ta and substantially enhance the tcr(T) dependence. The effect 
of a sharp increase in the temperature dependence for f.c.c. solid solutions 
is called ‘b.c.c.-like behaviour’.

(v) Solid-solution hardening in binary and multicomponent alloys is 
peculiar in that there is an extended athermal ‘plateau’ on the tempera­
ture dependence of critical shear stress tcr(T) (yield stress s0.2(Т)) above 
(0.2–0.35)Тmelt. Taking into account the temperature dependence of elastic 
moduli, the presence of a ‘plateau’ for solid solutions and some pure me­
tals (e.g., Cu) is anomalous. The factors compensating for the effect of the 
decrease in the elastic moduli with temperature on the tcr(T) dependence 
are as follow:

• in pure metals is the growth of the root-mean-square displacements 
of atoms from ideal lattice positions with temperature (dynamic distor­
tions of the crystal lattice);

• in binary and multicomponent solid solutions, in addition to the 
growth of dynamic distortions of the crystal lattice, are the effects of dy­
namic deformation ageing; note that the ‘plateau’ length for high-entropy 
alloys can reach (0.5–0.6)Тmelt.

The findings presented in the paper can be useful in the creation of 
multicomponent materials (medium- and high-entropy ones) with a high 
complex of physical and mechanical properties (in particular, strength, 
plasticity, heat resistance, and wear resistance).
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ОСОБЛИВОСТІ ТВЕРДОРОЗЧИННОГО ЗМІЦНЕННЯ  
ТА ТЕМПЕРАТУРНОЇ ЗАЛЕЖНОСТІ КРИТИЧНОГО НАПРУЖЕННЯ  
ЗСУВУ В БІНАРНИХ І БАГАТОКОМПОНЕНТНИХ СПЛАВАХ

Наведено аналіз твердорозчинного зміцнення бінарних і багатокомпонентних твер­
дих розчинів (у тому числі високоентропійних сплавів); розглянуто уявлення про 
композиційно-кластерну будову бінарних твердих розчинів з необмеженою роз­
чинністю, на основі якого запропоновано рівняння, що описує концентраційну за­
лежність критичного напруження зсуву; наведено результати порівняльного ана­
лізу температурних залежностей критичного напруження зсуву (межі плинності) 
для низки бінарних та багатокомпонентних твердих розчинів і чистих металів з 
ОЦК- та ГЦК-ґраткою; описано можливі механізми появи «плато» на температур­
ній залежності критичного напруження зсуву для бінарних і багатокомпонентних 
твердих розчинів та чистих металів; досліджено специфіку атермічного зміцнення 
високоентропійних сплавів і запропоновано відносно простий вираз для його оці­
нювання; розглянуто можливості використання методів рентгенографічного ана­
лізу для визначення середньоквадратичних зміщень атомів з ідеальних положень 
у вузлах кристалічної ґратки 2U  та мікроспотворень кристалічної ґратки e у 
багатокомпонентних твердих розчинах.

Ключові слова: бінарні та багатокомпонентні сплави, твердорозчинне зміцнення, 
межа плинності, критичне напруження зсуву.




