Effect of Alloying on the Hydrogen Sorption in Ti–Zr–Mn-Based Alloys. Pt. 1: C14-Type Laves-Phase-Based Alloys

DEKHTYARENKO V.A.$^{1,2}$, PRYADKO T.V.$^1$, VLADIMIROVA T.P.$^1$, MAKSYMOVA S.V.$^2$, MYKHAILOVA H.Yu.$^1$, and BONDARCHUK V.I.$^1$

$^1$G.V. Kurdyumov Institute for Metal Physics of the N.A.S. of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine
$^2$E.O. Paton Electric Welding Institute of the N.A.S. of Ukraine, 11 Kazymyr Malevych Str., UA-03150 Kyiv, Ukraine

Received 12.03.2024, final version 05.08.2024 Download PDF logo PDF

Abstract
The alloys of the Ti–Zr–Mn system based on the C14-type Laves phase are considered as ones of the most promising materials for safe storage and transportation of hydrogen. These alloys have appropriate parameters for activating the processes of absorption and release of hydrogen, a low cost, and a fairly high cyclic stability. In this work, the microstructure and phase composition of the starting alloys and the crystal structure of the hydrides synthesized from them are studied. Possible ways to reduce the cost of the final products are shown. The fact that changing the method of the alloy fabrication does not significantly affect its hydrogen absorption properties is shown. On the example of the considered alloys, it is shown that, as expected, alloying with an element with a larger atomic radius that forms a stable chemical compound with hydrogen results in an increase in the hydrogen capacity. This is explained by both the increased radius of the tetrahedral interstitial sites, where hydrogen atoms are located after dissolution, and the higher total amount of the element interacting with hydrogen.

Keywords: Laves phase, intermetallic compound, alloying element, tetrahedral interstitial sites, hydrogenation–dehydrogenation, hydrogen capacity.

DOI: https://doi.org/10.15407/ufm.25.03.520

Citation: V.A. Dekhtyarenko, T.V. Pryadko, T.P. Vladimirova, S.V. Maksymova, H.Yu. Mykhailova, and V.I. Bondarchuk, Effect of Alloying on the Hydrogen Sorption in Ti–Zr–Mn-Based Alloys. Pt. 1: C14-Type Laves-Phase-Based Alloys, Progress in Physics of Metals, 25, No. 3: 520–544 (2024)


References  
  1. D. Shaltiel, I. Jacob, and D. Davidov, Hydrogen Absorption and Desorption Properties of AB2 Laves-phase Pseudobinary Compounds, J. Less-Common Met., 53: 117–131 (1977). https://doi.org/10.1016/0022-5088(77)90162-X
  2. І. Jacob, D. Shaltiel, D. Davidov, and I. Miloslavski, A Phenomenological Model for the Hydrogen Absorption Capacity in Pseudobinary Laves Phase Compounds, Solid State Commun., 23: 669–672 (1977). https://doi.org/10.1016/0038-1098(77)90546-4
  3. І. Jacob and D. Shaltiel, Hydrogen Absorption in Zr(AlxFe1-x)2 Laves Phase Compounds, Solid State Commun., 27: 175–180 (1978). https://doi.org/10.1016/0038-1098(78)90826-8
  4. H. Oesterreicher and H. Bittner, Studies of Hydride Formation in Тi1-xZrxMn2, Mat. Res. Bull., 13: 83–88 (1978). https://doi.org/10.1016/0025-5408(78)90031-4
  5. D.P. Shoemaker and C.B. Shoemaker, Concerning Atomic Sites and Capacities for Hydrogen Absorption in the AB2 Friauf–Laves Phases, J. Less-Common Met., 68: 43–58 (1979). https://doi.org/10.1016/0022-5088(79)90271-6
  6. X. Li, D. Wu, Q. Zhou, R. Tang, Y. Zhu, F. Xiao, W. Li, and H.-J. Lin, Improved Hydrogen Storage Properties of Low-cost Ti–Cr–V Alloys by Minor Alloying of Mn, Int. J. Hydrogen Energy, 50: 224–234 (2024). https://doi.org/10.1016/j.ijhydene.2023.07.020
  7. M. Piao, X. Xiao, L. Zhan, Z. Cao, P. Zhou, J. Qi, M. Lu, Z. Li, L. Jiang, F. Fang, and L. Chen, Laves Phase Double Substitution Alloy Design and Device Filling Modification for Ti-Based Metal Hydride Hydrogen Compressors, Int. J. Hydrogen Energy, 50: 1358–1368 (2024). https://doi.org/10.1016/j.ijhydene.2023.09.228
  8. X. Zhang, B. Li, L. Wang, W. Xiong, J. Li, S. Zhou, J. Xu, Y. Zhao, X. He, and H. Yan, Hydrogen Storage Properties of AB2 Type Ti–Zr–Cr–Mn–Fe Based Alloys, Int. J. Hydrogen Energy, 51: 193–201 (2024). https://doi.org/10.1016/j.ijhydene.2023.11.045
  9. L. Yang, Y. Zhiyi, Z. Panpan, X. Xuezhang, Q. Jiacheng, B. Jiapeng, H. Xu, K. Huaqin, and C. Lixin, A Review of Classical Hydrogen Isotopes Storage Materials, Mater. Rep.: Energy, 4: 100250 (2024). https://doi.org/10.1016/j.matre.2024.100250
  10. V.A. Dekhtyarenko, Composite Material Based on Laves Phase with Magnesium for Hydrogen Storage, MRS Communications, 14: 337–344 (2024). https://doi.org/10.1557/s43579-024-00534-7
  11. M. Lototskyy, I. Tolj, Y. Klochko, M.W. Davids, D. Swanepoel, and V. Linkov, Metal Hydride Hydrogen Storage Tank for Fuel Cell Utility Vehicles, Int. J. Hydrogen Energy, 45: 7958–7967 (2020). https://doi.org/10.1016/j.ijhydene.2019.04.124
  12. V.A. Yartys and M.V. Lototskyy, Laves Type Intermetallic Compounds as Hydrogen Storage Materials: A Review, J. Alloys Compd., 916: 165219 (2022). https://doi.org/10.1016/j.jallcom.2022.165219
  13. P. Ma, W. Li, and E. Wu, Hydrogen Activation and Storage Properties of Laves Phase Ti1-xScxMn1.6V0.4 Alloys, Int. J. Hydrogen Energy, 46: 34389–34398 (2021). https://doi.org/10.1016/j.ijhydene.2021.08.017
  14. W. Qiao, D. Yin, S. Zhao, N. Ding, L. Liang, C. Wang, L. Wang, M. He, and Y. Cheng, Effects of Cu Doping on the Hydrogen Storage Performance of Ti-Mn-based, AB2-Type Alloys, Chem. Eng. J., 465: 142837 (2023). https://doi.org/10.1016/j.cej.2023.142837
  15. J.L. Bobet, B. Chevalier, and Т.B. Darrie, Crystallographic and Hydrogen Sorption Properties of ТiMn2 Based Alloys, Intermettallics, 8, No. 4: 359–363 (2000). https://doi.org/10.1016/S0966-9795(99)00092-8
  16. X. Yu, B. Xia, Z. Wu, and N. Xu, Phase Structure and Hydrogen Sorption Performance of Ti–Mn-Based Alloys, Mat. Sci. Eng. A, 373, Nos. 1–2: 303–308 (2004). https://doi.org/10.1016/j.msea.2004.02.008
  17. S. Samboshi, N. Masahashi, and S. Hanada, Effect of Composition on Hydrogen Absorbing Properties in Binary ТiMn2 Based Alloys, J. Alloys Compd., 352: 210–217 (2003). https://doi.org/10.1016/S0925-8388(02)01125-8
  18. V. Ivanchenko, V. Dekhtyarenko, T. Kosorukova, and T. Pryadko, Phase Equilibria in the TiMn2–TiFe2, Polythermal Section, Chem. Met. Alloys, 1, No. 2: 137–139 (2008). https://doi.org/10.30970/cma1.0045
  19. W. Jian, C. He, X. Yang, X. Xiao, L. Ouyang, and M. Zhu, Influence of Element Substitution on Structural Stability and Hydrogen Storage Performance: A Theoretical and Experimental Study on TiCr2–xMnx Alloy, Renewable Energy, 197: 564–573 (2022). https://doi.org/10.1016/j.renene.2022.07.113
  20. P. Zhou, Z. Cao, X. Xiao, L. Zhan, J. He, Y. Zhao, Li Wang, Mi Yan, Z. Li, and L. Chen, Development of RE-Based and Ti-Based Multicomponent Metal Hydrides with Comprehensive Properties Comparison for Fuel Cell Hydrogen Feeding System, Mater. Today Energy, 33: 101258 (2023). https://doi.org/10.1016/j.mtener.2023.101258
  21. Yh. Zhang, C. Li, W. Zhang, X. Wei, J. Li, Y. Qi, and Dong-liang Zhao, Research and Application of Ti–Mn-Based Hydrogen Storage Alloys, J. Iron Steel Res. Int., 30: 611–625 (2023). https://doi.org/10.1007/s42243-022-00905-1
  22. J.L. Bobet and Т.B. Darriet, Relationship Between Hydrogen Sorption Properties and Crystallography for TiMn2 Based Alloys, Int. J. Hydrogen Energy, 25: 767–772 (2000). https://doi.org/10.1016/S0360-3199(99)00101-9
  23. X.Y. Song, Y. Chen, Z. Zhang, Y.Q. Lei, X.B. Zhang, and Q.D. Wang, Microstructure and Electrochemical Properties of Ti-containing AB2 Type Hydrogen Storage Electrode Alloy, Int. J. Hydrogen Energy, 25: 649–656 (2000). https://doi.org/10.1016/S0360-3199(99)00080-4
  24. J.G. Park, H.Y. Jang, S.C. Han, P.S. Lee, and J.Y. Lee, Hydrogen Storage Properties of TiMn2-Based Alloys for Metal Hydride Heat Pump, Mat. Sci. Eng. A, 329–331: 351–355 (2002). https://doi.org/10.1016/S0921-5093(01)01598-2
  25. V.G. Ivanchenko, V.A. Dekhtyarenko, and T.V. Pryadko, Hydrogen-Sorption Properties of (Ti, Zr)Mn2–x Intermetallic Alloy, Powder Metall. Met. Ceram., 52: 340–344 (2013). https://doi.org/10.1007/s11106-013-9531-9
  26. G. Andrade, B. H. Silva, G. Zepon, and R. Floriano, Hydrogen Storage Properties of Zr-Based Multicomponent Alloys with C14-Laves Phase Structure Derived from the Zr–Cr–Mn–Fe–Ni System, Int. J. Hydrogen Energy, 51: 246–254 (2024). https://doi.org/10.1016/j.ijhydene.2023.11.111
  27. V.A. Dekhtyarenko, D.G. Savvakin, V.I. Bondarchuk, V.M. Shyvanyuk, T.V. Pryadko, and O.O. Stasiuk, TiMn2-Based Intermetallic Alloys for Hydrogen Accumulation: Problems and Prospects, Prog. Phys. Met., 22, No. 3: 307–351 (2021). https://doi.org/10.15407/ufm.22.03.307
  28. H. Zhao, P. Yao, Y. Zhao, Z. Zeng, C. Xia, and T. Yang, Microstructure and Hydrogen Storage Properties of Zr-Based AB2-Type High Entropy Alloys, J. Alloys Compd., 960: 170665 (2023). https://doi.org/10.1016/j.jallcom.2023.170665
  29. H. Smithson, C.A. Marianetti, D. Morgan, A. Van der Ven, A. Predith, and G. Ceder, First-Principles Study of the Stability and Electronic Structure of Metal Hydrides, Phys. Rev. B, 66, No. 12: 144107 (2002). https://doi.org/10.1103/PhysRevB.66.144107
  30. K. Young, D. F. Wong, and L. Wang, Effect of Ti/Cr Content on the Microstructures and Hydrogen Storage Properties of Laves Phase-Related Body-Centered-Cubic Solid Solution Alloys, J. Alloys Compd., 622: 885–893 (2015). https://doi.org/10.1016/j.jallcom.2014.11.006
  31. R.R. Jeng, C.Y. Chou, S.-L. Lee, Y.C. Wu, and H.Y. Bor, Effect of Mn, Ti/Cr Rratio, and Heat Treatment on Hydrogen Storage Properties of Ti–V–Cr–Mn Alloys, J. Chin. Inst. Eng., 34, No. 5: 601–608 (2011). https://doi.org/10.1080/02533839.2011.577595
  32. D.N. Movchan, V.N. Shyvanyuk, B.D. Shanina, and V.G. Gavriljuk, Atomic Interactions and Hydrogen-Induced γ* Phase in FCC Iron–Nickel Alloys, Phys. Status Solidi A, 207: 1796–1801 (2010). https://doi.org/10.1002/pssa.200925548
  33. P. Liu, X. Xie, L. Xu, X. Li, and T. Liu, Hydrogen Storage Properties of (Ti0.85Zr0.15)1.05Mn1.2Cr0.6V0.1M0.1 (M = Ni, Fe, Cu) Alloys Easily Activated at Room Temperature, Prog. Nat. Sci., 27: 652–657 (2017). https://doi.org/10.1016/j.pnsc.2017.09.007
  34. M. Hara, K. Yudou, E. Kinoshita, K. Okazaki, K. Ichinose, K. Watanabe, and M. Matsuyama, Alloying Effects on the Hydride Formation of Zr(Mn1-xCox)2, Int. J. Hydrogen Energy, 36: 12333–12337 (2011). https://doi.org/10.1016/j.ijhydene.2011.07.024
  35. S.V. Mitrokhin, T.N. Bezuglaya, and V.N. Verbetsky, Structure and Hydrogen Sorption Properties of (Ti,Zr)–Mn–V Alloys J. Alloys Compd., 330–332: 146–151 (2002). https://doi.org/10.1016/S0925-8388(01)01469-4
  36. X.B. Yu, J.Z. Chen, Z. Wu, B.J. Xia, and N.X. Xu, Effect of Cr Content on Hydrogen Storage Properties for Ti–V–Based BCC-Phase Alloys, Int. J. Hydrogen Energy, 29: 1377–1381 (2004). https://doi.org/10.1016/j.ijhydene.2004.01.015
  37. E.A. Anikina and V.N. Verbetsky, Calorimetric Investigation of the Hydrogen Interaction with Ti0.9Zr0.1Mn1.2V0.1, Int. J. Hydrogen Energy, 36: 1344–1348 (2011). https://doi.org/10.1016/j.ijhydene.2010.06.085
  38. T.V. Pryadko, Features of Hydrogenation of the T–V System Alloys, Metallofiz. Noveishie Tekhnol., 37, No. 2: 243–255 (2015) (in Russian). https://doi.org/10.15407/mfint.37.02.0243
  39. V.A. Dekhtyarenko, Alloy Based on Intermetallic (Ti, Zr)(V, Mn, Cr)2-x Obtained Using Titanium Sponge for Hydrogen Sorption, Metallofiz. Noveishie Tekhnol., 41, No. 10: 1283–1290 (2019). https://doi.org/10.15407/mfint.41.10.1283
  40. V.A. Dekhtyarenko, Structure and Hydrogen Sorption Properties of (Ti0.34Zr0.66)Mn1.11V0.1 Alloy, Metallofiz. Noveishie Tekhnol., 37, No. 5: 683–688 (2015) (in Russian). https://doi.org/10.15407/mfint.37.05.0683
  41. T.V. Pryadko and V.A. Dekhtyarenko, Influence of Partial Substitution of Manganese with Chromium on Structure and Kinetics of Hydrogenation of an Alloy Based on the (Ti, Zr)(V, Mn)2-x Intermetallide, Metallofiz. Noveishie Tekhnol., 40, No. 5: 649–660 (2018) (in Russian). https://doi.org/10.15407/mfint.40.05.0649
  42. V.A. Dekhtyarenko, Hydrogen Storage Properties of Ti15.4Zr30.2Mn44V5.4Сr5 Alloy Produced by Induction and Arc Melting, Metallofiz. Noveishie Tekhnol., 43, No. 8: 1053–1063 (2021). https://doi.org/10.15407/mfint.43.08.1053
  43. H.Y. Mykhailova, V.A. Dekhtyarenko, and Y.V. Vasylyk, Hydrogen Sorption Properties of Ti15.4Zr30.2Mn(54.4-x-y)VxCryNiy Alloy Able of Being Activated at Room Temperature and Pressure of 0.23 MPa, MRS Communications, 13: 1288–1295 (2023). https://doi.org/10.1557/s43579-023-00451-1
  44. V.A. Dekhtyarenko, Hydrogen-Sorption Properties of the Alloy Ti15.5Zr30Mn38V5.5Cr5.5Co5.5 Based on the Laves Phase (Type C14), Metallofiz. Noveishie Tekhnol., 45, No. 6: 743–755 (2023). https://doi.org/10.15407/mfint.45.06.0743
  45. H. Kazemipour, A. Salimijazi, A. Saidi, A. Saatchi, and A. Arefarjmand, Hydrogen Storage Properties of Ti0.72Zr0.28Mn1.6V0.4 Alloy Prepared by Mechanical Alloying and Copper Boat Induction Melting, Int. J. Hydrogen Energy, 39: 12784–12788 (2014). https://doi.org/10.1016/j.ijhydene.2014.06.085
  46. Y. Zhang, J. Li, T. Zhang, T. Wu, H. Kou, and X. Xue, Hydrogenation Thermokinetics and Activation Behavior of Non-Stoichiometric Zr-Based Laves Alloys with Enhanced Hydrogen Storage Capacity, J. Alloys Compd., 694: 300–308 (2017). https://doi.org/10.1016/j.jallcom.2016.10.021
  47. S. Suwarno, J.K. Solberg, V.A. Yartys, and B. Krogh, Hydrogenation and Microstructural Study of Melt-Spun Ti0.8V0.2, J. Alloys Compd., 509: S775–S778 (2011). https://doi.org/10.1016/j.jallcom.2010.10.130
  48. Р. Pei, X.P. Song, J. Liu, M. Zhao, and G.L. Chen, Improving Hydrogen Storage Properties of Laves Phase Related BCC Solid Solution Alloy by SPS Preparation Method, Int. J. Hydrogen Energy, 34: 8597–8602 (2009). https://doi.org/10.1016/j.ijhydene.2009.08.038
  49. B. Predel, Cr–Zr (Chromium-Zirconium) (Berlin–Heidelberg: Springer-Verlag: 1994).
  50. J.R. Johnson, Reaction of Hydrogen with the High Temperature (C14) form of TiCr2, J. Less-Common Met., 73: 345–354 (1980) https://doi.org/10.1016/0022-5088(80)90328-8
  51. J. Bodega, J.F. Fernández, F. Leardini, J.R. Ares, and C. Sánchez, Synthesis of Hexagonal C14/C36 and Cubic C15 ZrCr2 Laves Phases and Thermodynamic Stability of Their Hydrides, J. Phys. Chem. Solids, 72, No. 11: 1334–1342 (2011). https://doi.org/10.1016/j.jpcs.2011.08.004
  52. T.L. Murashkina, Patterns of Change in the Structural-Phase State and Defective Structure of the Laves Intermetallic Phase of the C36 TiCr2 Structural Polytype during Cyclic Hydrogen Sorption/Desorption Processes (Abstract of Diss. Candidate of Physical and Mathematical Sciences) (Tomsk: National Research Tomsk Polytechnic University: 2018) (in Russian).
  53. V.A. Dekhtyarenko, T.V. Pryadko, D.G. Savvakin, and V.I. Bondarchuk, Structure, Phase Composition, and Hydrogen Absorption Properties of Multiphase Alloys of Ti–Zr–Mn–V System Alloyed with Holmium, Metallofiz. Noveishie Tekhnol., 44, No. 7: 913–926 (2022). https://doi.org/10.15407/mfint.44.07.0913
  54. N.N. Greenwood and A. Earnshaw, Chemistry of the Elements (Oxford: Butterworth Heinemann: 1997).
  55. S. Hong and C.L. Fu, Hydrogen in Laves Phase ZrX2 (X = V, Cr, Mn, Fe, Co, Ni) Compounds: Binding Energies and Electronic and Magnetic Structure, Phys. Rev. B, 66: 094109 (2002). https://doi.org/10.1103/PhysRevB.66.094109
  56. C. Weng, X. Xiao, X. Huang, F. Jiang, Z. Yao, S. Li, H. Ge, and, L. Chen, Effect of Mn Substitution for Co on the Structural, Kinetic, and Thermodynamic Characteristics of ZrCo1–xMnx (x = 0–0.1) Alloys for Tritium Storage, Int. J. Hydrogen Energy, 42: 28498–28506 (2017). https://doi.org/10.1016/j.ijhydene.2017.09.157
  57. S.V. Mitrokhin, Regularities of Hydrogen Interaction with Multicomponent Ti(Zr)–Mn–V Laves Phase Alloys, J. Alloys Compd., 404–406: 384–387 (2005). https://doi.org/10.1016/j.jallcom.2005.02.078
  58. V.G. Ivanchenko, I.S. Gavrylenko, V.V. Pogorelaya, V.I. Nychyporenko, and T.V. Pryadko, Study of Phase Equilibria in Alloys of the System Ti–Mn, Metaloznav. Obrob. Met., 4: 16–20 (2004) (in Ukrainian).
  59. T.A. Zotov, V.N. Verbetskii, T.Ya. Safonova, A.V. Garshev, and O.A. Petriiz, Hydrogen Sorption and Electrochemical Properties of Alloys: Systems Zr–Ti–Ni–V–Mn with Laves Phase Structures, Russ. J. Electrochem., 43, No. 3: 355–363 (2007). https://doi.org/10.1134/S1023193507030147
  60. F. Stein and A. Leineweber, Laves Phases: a Review of Their Functional and Structural Applications and an Improved Fundamental Understanding of Stability and Properties, J. Mater. Sci., 56: 5321–5427 (2021). https://doi.org/10.1007/s10853-020-05509-2
  61. G.F. Kobzenko and A.A. Shkola, Reactor for Studying Physical and Chemical Processes of Gas Saturation, Zavodskaya Laboratoriya, 7: 41–45 (1990) (in Russian).
  62. V.G. Ivanchenko, V.А. Dekhtyarenko, and T.V. Pryadko, Sorption Properties of Heterophase Alloys β(Ti, Zr, Mn) + (Ti, Zr)Mn2-x, Меtallofiz. Noveishie Tekhnol., 33, Spec. Iss.: 479–484 (2011) (in Russian).
  63. V.G. Ivanchenko, V.А. Dekhtyarenko, Т.V. Pryadko, D.G. Savvakin, and I.K. Evlash, Influence of Heat Treatment on the Hydrogen-Sorption Properties of Ti0.475Zr0.3Mn0.225 Eutectic Alloy Doped with Vanadium, Mater. Sci., 51, 492–499 (2016). https://doi.org/10.1007/s11003-016-9867-7
  64. V.A. Dekhtyarenko, T.V. Pryadko, D.G. Savvakin, V.I. Bondarchuk, and G.S. Mogylnyy, Hydrogenation Process in Multiphase Alloys of Ti–Zr–Mn–V System on the Example of Ti42.75Zr27Mn20.25V10 Alloy, Int. J. Hydrogen Energy, 46: 8040–8047 (2021). https://doi.org/10.1016/j.ijhydene.2020.11.283
  65. V.G. Ivanchenko, V.A. Dekhtyarenko, and T.V. Pryadko, Hydrogen Sorption Properties of Ti0.475Zr0.3Mn0.225 Eutectic Alloy Alloyed with 2 at.% and 5 at.% of Vanadium, Metallofiz. Noveishie Tekhnol., 37, No. 4: 521–530 (2015). https://doi.org/10.15407/mfint.37.04.0521
  66. V.A. Dekhtyarenko, Regularities and Mechanisms of Interaction of Hydrogen with Multicomponent Titanium Alloys Based on Laves Phases and B.C.C. Solid Solution (Abstract of Thesis for Dr. Tech. Sci.) (Kyiv: G.V. Kurdyumov Institute for Metal Physics, N.A.S.U.: 2021) (in Ukrainian).
  67. H. Kohlmann, Hydrogen Order in Hydrides of Laves Phases, Z. Kristallogr. Cryst. Mater., 235: 319–332 (2020). https://doi.org/10.1515/zkri-2020-0043
  68. Y. Tateyama and T. Ohno, Stability and Clusterization of Hydrogen–Vacancy Complexes in α-Fe: An ab Initio Study, Phys. Rev. B, 67: 174105 (2003). https://doi.org/10.1103/PhysRevB.67.174105
  69. Y. Fukai, The Metal–Hydrogen System (Berlin: Springer: 2005). https://doi.org/10.1007/3-540-28883-X
  70. M. Tamura and T. Eguchi, Nanostructured Thin Films for Hydrogen-Permeation Barrier, J. Vac. Sci. Technol. A, 33: 0415031–0415036 (2015). https://doi.org/10.1116/1.4919736
  71. J.G. Niu and W.T. Geng, Oxygen-Induced Lattice Distortion in β-Ti3Nb and its Suppression Effect on β to α″ Transformation, Acta Mater., 81: 194–203 (2014). https://doi.org/10.1016/j.actamat.2014.07.060
  72. V. Dekhtyarenko, Structure, Phase Composition and Hydrogen Sorption Properties of Eutectic Alloy Ti47.5Zr30.2Mn22.5 Obtained Using Titanium Sponge, Mater. Sci. Non-Equilibrium Phase Transformations, 5, No. 3: 78–80 (2019).
  73. V.N. Verbetsky, Synthesis and Properties of Multicomponent Metal Hydrides (Abstract of Diss. Doctor of Chemical Sciences) (Moskva: Lomonosov Moscow State University: 1998) (in Russian).
  74. O.M. Ivasyshyn and D.H. Savvakin, Synthesis of Zirconium and Titanium-Based Alloys with the Use of Their Hydrides, Mater. Sci., 51: 465–474 (2016). https://doi.org/10.1007/s11003-016-9863-y
  75. О.М. Ivasyshyn, D.H. Savvakin, V.А. Dekhtyarenko, and О.О. Stasyuk, Interaction of Ті–Al–V–Fe, Al–V–Fe, and Ті–Al–Mo–Fe Powder Master Alloys with Hydrogen, Mater. Sci., 54: 266–272 (2018). https://doi.org/10.1007/s11003-018-0182-3
  76. S.V. Mitrokhin, T.N. Smirnova, V.A. Somenkov, V.P. Glazkov, and V.N. Verbetsky, Structure of (Ti,Zr)–Mn–V Nonstoichiometric Laves Phases and (Ti0.9Zr0.1)(Mn0.75V0.15Ti0.1)2D2.8 Deuteride, J. Alloys Compd., 356–357: 80–83 (2003). https://doi.org/10.1016/S0925-8388(03)00257-3
  77. O.M. Ivasishin, V.T. Cherepin, V.N. Kolesnik, and M.M. Gumenyuk, Automated Dilatometric Complex, Instruments and Experimental Technique, 3: 147–151 (2010) (in Russian).
  78. О.М. Ivasishin, D.G. Savvakin, and M.M. Gumenyak, Dehydrogenation of Titanium-Hydride Powder and Role of This Process in a Sintering Activation, Меtallofiz. Noveishie Tekhnol., 33, No. 7: 899–917 (2011) (in Russian).
  79. X.B. Yu, Z. Wu, B.J. Xia, and N.X. Xu, Enhancement of Hydrogen Storage Capacity of Ti–V–Cr–Mn BCC Phase Alloys, J. Alloys Compd., 372: 272–277 (2004). https://doi.org/10.1016/j.jallcom.2003.09.153
  80. K.N. Young and J. Nei, The Current Status of Hydrogen Storage Alloy Development for Electrochemical Applications, Materials, 6, No. 10: 4574–4608 (2013). https://doi.org/10.3390/ma6104574
  81. T.P. Yadav, R.R. Shahi, and O.N. Srivastava, Synthesis, Characterization and Hydrogen Storage Behavior of AB2 (ZrFe2, Zr(Fe0.75V0.25)2, Zr(Fe0.5V0.5)2 Type Materials, Int. J. Hydrogen Energy, 37: 3689–3696 (2012). https://doi.org/10.1016/j.ijhydene.2011.04.210
  82. F. Stein, M. Palm, and G. Sauthoff, Structure and Stability of Laves Phases. Part I. Critical Assessment of Factors Controlling Laves Phase Stability, Intermetallics, 12, Nos. 7–9 (Spec. Iss.): 713–720 (2004). https://doi.org/10.1016/j.intermet.2004.02.010
  83. D.J. Thoma and J.H. Perepezko, A Geometric Analysis of Solubility Ranges in Laves Phases, J. Alloys Compd., 224: 330–341 (1995). https://doi.org/10.1016/0925-8388(95)01557-4
  84. T.V. Pryadko, V.A. Dekhtyarenko, K.M. Khranovs’ka, and H.S. Mohyl’nyi, Influence of the Substitution of Chromium for Manganese on the Structure and Hydrogen-Sorption Properties of Ti47.5Zr30Mn22.5 Eutectic Alloy, Mater. Sci., 55, 854–862 (2020). https://doi.org/10.1007/s11003-020-00379-0
  85. O.M. Ivasishin, D.G. Savvakin, M.M. Gumenyak, and О.B. Bondarchuk, Role of Surface Contamination in Titanium PM, Key Eng. Mater., 520: 121–132 (2012). https://doi.org/10.4028/www.scientific.net/KEM.520.121
  86. V.A. Dekhtiarenko, The Influence of Vanadium Addition on Hydrogen Capacity and Absorption–Desorption Kinetics of the Eutectic Ti–Zr–Mn Alloy, Metallofiz. Noveishie Tekhnol., 36, No. 3: 375–381 (2014) (in Russian). https://doi.org/10.15407/mfint.36.03.0375
  87. O.M. Ivasishin, О.B. Bondarchuk, and M.M. Gumenyak, Surface Phenomena During Heating of Titanium Hydride Powder, Phys. Chem. Solid State, 12, No. 4: 900–907 (2011) (in Ukrainian).
  88. S. Dong, G. Ma, P. Lei, T. Cheng, D. Savvakin, and O. Ivasishin, Comparative Study on the Densification Process of Different Titanium Powder, Adv. Powder Technol., 32: 2300–2310 (2021). https://doi.org/10.1016/j.apt.2021.05.009
  89. V.G. Ivanchenko, V.A. Dekhtyarenko, T.V. Pryadko, and I.I. Melnyk, Influence of the Laves Phase on Processes of Formation of Hydrides in the Heterophase Alloys of the Ti–Fe–Mn System, Metallofiz. Noveishie Tekhnol., 35, No. 11: 1465–1473 (2013) (in Russian).
  90. V.A. Dekhtyarenko, T.V. Pryadko, D.G. Savvakin, and T.A. Kosorukova, Structure, Phase Composition and Hydrogen Adsorption Properties of Eutectic Alloys of the Ti–Zr–Mn–V System, Metallofiz. Noveishie Tekhnol., 41, No. 11: 1455–1468 (2019) (in Russian). https://doi.org/10.15407/mfint.41.11.1455