High-Frequency Electrodynamics of Nanostructured Multiband Superconductors

KASATKIN O.L.$^{1,2}$, KALENYUK O.A.$^{1,3}$, POKUSINSKYI A.O.$^{4}$, FUTIMSKY S.I.$^{1}$, and SHAPOVALOV A.P.$^{1,3}$

$^1$G.V. Kurdyumov Institute for Metal Physics of the N.A.S. of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine
$^2$V.M. Bakul Institute for Superhard Materials of the N.A.S. of Ukraine, 2 Avtozavodska Str., UA-07074 Kyiv, Ukraine
$^3$Kyiv Academic University, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine
$^4$Faculty of Radio Physics, Electronics and Computer Systems, Taras Shevchenko National University of Kyiv, 4g Academician Glushkov Ave., UA-03187 Kyiv, Ukraine

Received 30.11.2023, final version 01.12.2023 Download PDF logo PDF

Abstract
The effect of artificially created 0D and 1D structural defects’ nanostructure formed by implanted dielectric nanoparticles or irradiation defects on microwave properties of high-Tc superconductor films is analysed based on the phenomenological theory for microwave response of type-II superconductors. The surface resistance is calculated for the Meissner and mixed states for such a kind of nanostructured type-II superconductor film. An emergence of nonlinear response caused by the entrance of microwave-induced vortices in the film interior through its edges is also theoretically explored. The obtained results demonstrate that artificial defect nanostructure inside the superconductor can significantly improve its microwave characteristics in both the Meissner states and the mixed ones and increase the range of the linear microwave response. We also present results of experimental studies on microwave properties of high-temperature superconductor (HTS) films with artificial defect nanostructure formed by heavy-ion irradiation. Noticeable decreases of the surface resistance and enhancement of the linear response range at low temperatures are observed for moderately irradiated HTS YBa2Cu3O7−x (YBCO) film exposed to irradiation by 3 MeV Au2+ ions at dose 1011 cm−2. These results are in agreement with the above-discussed phenomenological theory for microwave response of nanostructured superconductors. A theoretical model concerning the new unusual mechanism of the nonlinear radio-frequency (RF) response in multiband superconductors is also presented. This is a mechanism of nonlinearity based on the possible dissociation of Abrikosov’s vortices in multiband superconductors into fractional components under the strong RF current action. We have calculated the RF complex resistivity in two-band superconductors and grounded an emergence of specific peculiarities at critical current den-sity values corresponding to the vortex depinning and dissociation.

Keywords: high-Tc superconductor (HTS), point-like defects, columnar defects, ion irradiation, microwave field, surface impedance, nonlinear response.

DOI: https://doi.org/10.15407/ufm.25.02.416

Citation: O.L. Kasatkin, O.A. Kalenyuk, A.O. Pokusinskyi, S.I. Futimsky, and A.P. Shapovalov, High-Frequency Electrodynamics of Nanostructured Multiband Superconductors, Progress in Physics of Metals, 25, No. 2: 416–439 (2024)


References  
  1. B. Maiorov, S.A. Baily, H. Zhou, O. Ugurlu, J.A. Kennison, P.C. Dowden, T.G. Holesinger, S.R. Foltyn, and L. Civale, Nature Mater., 8: 398 (2009). https://doi.org/10.1038/nmat2408
  2. T.G. Holesinger, M.D. Feldmann, B. Maiorov, L. Civale, J.A. Kennison, Y.J. Coulter, P.D. Dowden, J.F. Baca, P.H. Tobash, E.D. Bauer, and K.R. Marken, Materials, 4, No. 11: 2042 (2011). https://doi.org/10.3390/ma4112042
  3. S.H. Wee, Y.L. Zuev, C. Cantoni, and A. Goyal, Sci. Rep., 3: 2310 (2013). https://doi.org/10.1038/srep02310
  4. T. Horide, K. Otsubo, R. Kita, N. Matsukida, M. Ishimaru, S. Awaji, and K. Matsumoto, Supercond. Sci. Technol., 30, No. 7: 074009 (2017). https://doi.org/10.1088/1361-6668/aa70d3
  5. V.L. Svetchnikov, V.S. Flis, A.A. Kalenyuk, A. L.Kasatkin, A.I. Rebikov, V.O. Moskaliuk, C.G. Tretiatchenko, and V.M. Pan, J. Phys.: Conf. Ser., 234: 012041 (2010). https://iopscience.iop.org/article/10.1088/17426596/234/1/012041
  6. V.I. Matsui ,V.S. Flis, V.O. Moskaliuk, A.L. Kasatkin, N.A. Skoryk, V.L. Svechnikov, J. Nanosci. Nanoeng., 1, No. 2: 38 (2015). http://files.aiscience.org/journal/article/html/70270011.html
  7. L. Civale, Supercond. Sci. Technol., 10, No. 7A: A11 (1997). https://iopscience.iop.org/article/10.1088/0953-2048/10/7A/003
  8. R. Biswal, J. John, P. Mallick, B.N. Dash, P.K. Kulriya, D.K. Avasthi, D. Kanjilal, D. Behera, T. Mohanty, P. Raychaudhuri, and N.C. Mishra, J. Appl. Phys., 106, No. 5: 053912 (2009). https://doi.org/10.1063/1.3212537
  9. F. Massee, P.O. Sprau, Y.-L. Wang, J.C.S. Davis, G. Ghigo, G. Gu, W.-K. Kwok, Sci. Adv., 1, No. 4: e1500033 (2015). https://www.science.org/doi/10.1126/sciadv.1500033
  10. J. Wosik, L.-M. Xie, J. Mazierska, and R. Grabovickic, Appl. Phys. Lett., 75, No. 12: 1781 (1999). https://doi.org/10.1063/1.124818
  11. R. Gerbaldo, G. Ghigo, L. Gozzelino, F. Laviano, A. Amato , A. Rovelli, and R. Cherubini, AIP Conf. Proc., 1530, No. 1: 95 (2013). https://doi.org/10.1063/1.4812910
  12. R. Woerdenweber, P. Lahl, and J. Einfeld, IEEE Trans. Appl. Supercond., 11, No. 1: 2812 (2001). https://ieeexplore.ieee.org/document/919648
  13. S. Ohshima, N. Takanashi, A. Saito, K. Nakajima, and T. Nagayama, IEEE Trans. Appl. Supercond., 28, No. 4: 1 (2018). https://ieeexplore.ieee.org/document/8299455
  14. S. Sato, T. Honma, S. Takahashi, K. Sato, M. Watanabe, K. Ichikawa, K. Takeda, K. Nakagawa, A. Saito, and S. Ohshima, IEEE Trans. Appl. Supercond., 23, No. 3: 7200404 (2013). https://ieeexplore.ieee.org/document/6380552
  15. P.A. Borisenko, A.O. Pokusinskii, and A.L. Kasatkin, Ukr. J. Phys., 64, No. 10: 969 (2019). https://doi.org/10.15407/ujpe64.10.969
  16. A. Pokusinskyi, A. Kasatkin, S. Futimsky, O. Kalenyuk, O. Boliasova, and A. Shapovalov, J. Appl. Phys., 132, No. 23: 233904 (2022). https://doi.org/10.1063/5.0121793
  17. A.L. Kasatkin, A.O. Pokusinskyi, O.O. Boliasova, V.P. Tsvitkovskyi, and A.P. Shapovalov, Low Temp. Phys., 49, No. 9: 1009 (2023). https://doi.org/10.1063/10.0020592
  18. A. Hosseini, R. Harris, S. Kamal, P. Dosanjh, J. Preston, R. Liang, W.N. Hardy, and D.A. Bonn, Phys. Rev. B, 60, No. 2: 1349 (1999). https://doi.org/10.1103/PhysRevB.60.1349
  19. P. J. Hirschfeld and N. Goldenfeld, Phys. Rev. B, 48, No. 6: 4219 (1993). https://doi.org/10.1103/PhysRevB.48.4219
  20. R. Prozorov and R. Giannetta, Supercond. Sci. Technol., 19, No. 8: R41 (2006). https://iopscience.iop.org/article/10.1088/0953-2048/19/8/R01
  21. M. Golosovsky, M. Tsindlekht, and D. Davidov, Supercond. Sci. Technol., 9, No. 1: 1 (1996). https://iopscience.iop.org/article/10.1088/0953-2048/9/1/001
  22. E.H. Brandt, Phys. Rev. Lett., 69, No. 7: 1105 (1992). https://doi.org/10.1103/PhysRevLett.69.1105
  23. E.H. Brandt, Rep. Prog. Phys., 58, No. 11: 1465 (1995). https://doi.org/10.1088/0034-4885/58/11/003
  24. M.W. Coffey and J.R. Clem, Phys. Rev. Lett., 67, No. 3: 386 (1991). https://doi.org/10.1103/PhysRevLett.67.386
  25. M.W. Coffey and J.R. Clem, Phys. Rev. B, 46, No. 18: 11757 (1992). https://doi.org/10.1103/PhysRevB.46.11757
  26. J.I. Gittleman and B. Rosenblum, Phys. Rev. Lett., 16, No. 17: 734 (1966). https://doi.org/10.1103/PhysRevLett.16.734
  27. G. Blatter, M.V. Feigel’man, V.B. Geshkenbein, A.I. Larkin, and V.M. Vinokur, Rev. Mod. Phys., 66, No. 4: 1125 (1994). https://doi.org/10.1103/RevModPhys.66.1125
  28. A.V. Velichko, M.J. Lancaster, and A. Porch, Supercond. Sci. Technol., 18, No. 3: R24 (2005). https://doi.org/10.1088/0953-2048/18/3/R02
  29. M.A. Hein, R.G. Humphreys, P.J. Hirst, S.H. Park, and D.E. Oates, J. Supercond., 16: 895 (2003). https://doi.org/10.1023/A:1026219405360
  30. S.M. Anlage, W. Hu, C.P. Vlahacos, D. Steinhauer, B.J. Feenstra, S.K. Dutta, A. Thanawalla, and F.C. Wellstood, J. Supercond., 12: 353 (1999). https://doi.org/10.1023/A:1007753316152
  31. M.I. Tsindlekht, E.B. Sonin, M.A. Golosovsky, and D. Davidov, Phys. Rev. B, 61, No. 2: 1596 (2000). https://doi.org/10.1103/PhysRevB.61.1596
  32. A. Gurevich and G. Ciovati, Phys. Rev. B, 77, No. 10: 104501 (2008). https://doi.org/10.1103/PhysRevB.77.104501
  33. J.R. Powell, A. Porch, A.P. Kharel, M.J. Lancaster, R.G. Humphreys, F. Wellhofer, and C.E. Gough, J. Appl. Phys., 86, No. 4: 2137 (1999). https://doi.org/10.1063/1.371021
  34. V.S. Flis, A.A. Kalenyuk, A.L. Kasatkin, V.O. Moskalyuk, A.I. Rebikov, V.L. Svechnikov, K.G. Tret’yachenko, and V.M. Pan, Low Temp. Phys., 36, No. 1: 59 (2010). https://doi.org/10.1063/1.3292938
  35. A.A. Kalenyuk, A.L. Kasatkin, S.I. Futimsky, A.O. Pokusinskiy, T.A. Prikhna, A.P. Shapovalov, V.E. Shaternik, and Sh. Akhmadaliev, Supercond. Sci. Technol., 36, No. 3: 035009 (2023). https://doi.org/10.1088/1361-6668/acb110
  36. M. Leroux, K.J. Kihlstrom, S. Holleis, M.W. Rupich, S. Sathyamurthy, S. Fleshler, H.P. Sheng, D.J. Miller, S. Eley, L. Civale, A. Kayani, P.M. Niraula, U. Welp, and W.-K. Kwok, Appl. Phys. Lett., 107, No. 19: 192601 (2015). https://doi.org/10.1063/1.4935335
  37. H. Matsui, H. Ogiso, H. Yamasaki, T. Kumagai, M. Sohma, I. Yamaguchi, and T. Manabe, Appl. Phys. Lett., 101, No. 23: 232601 (2012). https://doi.org/10.1063/1.4769836
  38. J. Halbritter, J. Appl. Phys., 68, No. 12: 6315 (1990). https://doi.org/10.1063/1.346875
  39. J. Kermorvant, C.J. van der Beek, J.-C. Mage, B. Marcilhac, Y. Lemaître, J. Briatico, R. Bernard, and J. Villegas, J. Appl. Phys., 106, No. 2: 023912 (2009). https://doi.org/10.1063/1.3079520
  40. E. Babaev, Phys. Rev. Lett., 89, No. 6: 067001 (2002). https://doi.org/10.1103/PhysRevLett.89.067001
  41. M.A. Silaev, Phys. Rev. B, 83, No. 14: 144519 (2011). https://doi.org/10.1103/PhysRevB.83.144519
  42. Y. Tanaka, Supercond. Sci. Technol., 28, No. 3: 034002 (2015). https://doi.org/10.1088/0953-2048/28/3/034002
  43. S.-Z. Lin, J. Phys.: Condens. Matter, 26, No. 49: 493202 (2014). https://doi.org/10.1088/0953-8984/26/49/493202
  44. S.-Z. Lin and L.N. Bulaevskii, Phys. Rev. Lett., 110, No. 8: 087003 (2013). https://doi.org/10.1103/PhysRevLett.110.087003
  45. A.O. Pokusinskyi and A.L. Kasatkin, Low Temp. Phys., 50, No. 2, 111 (2024). https://doi.org/10.1063/10.0024321