Hydrogen Embrittlement of Titanium: Phenomena and Main Ways of Prevention

DEKHTYARENKO V.A.$^{1,2}$, PRYADKO T.V.$^{1}$, BOSHKO О.І.$^{1}$, KIRILCHUK V.V.$^{1}$, MYKHAILOVA H.Yu.$^{1}$, and BONDARCHUK V.I.$^{1}$

$^1$G.V. Kurdyumov Institute for Metal Physics of the N.A.S. of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine
$^2$E.O. Paton Electric Welding Institute of the N.A.S. of Ukraine, 11 Kazymyr Malevych Str., UA-03150 Kyiv, Ukraine

Received 10.01.2024, final version 22.04.2024 Download PDF logo PDF

Abstract
This work deals with the issue of the deterioration of the mechanical properties of metallic materials (on an example of Ti) in the presence of hydrogen (hydrogen embrittlement). Three main forms of fracture caused by the presence of hydrogen in metallic materials are distinguished. The first one is the damage in internal pores and cracks, which appear when bubbles of gaseous hydrogen are trapped during melt solidification or hydrogen diffusion through the metal lattice. The second one is associated with hydrogen that forms hydrides and changes the type of crystal lattice of the metal. The third one includes other types of fracture associated with hydrogen in the bulk material under long-term static loads. The main methods of preventing the interaction of metallic materials with hydrogen are determined as follow: (i) alloying that reduces the rate of interaction of the metal material with hydrogen, (ii) surface modification by methods of high-energy impact, (iii) application of protective coatings, and (iv) heat treatment of final products.

Keywords: titanium, hydrogen embrittlement, protective coatings, surface modification, structure, hydride.

DOI: https://doi.org/10.15407/ufm.25.02.276

Citation: V.A. Dekhtyarenko, T.V. Pryadko, О.І. Boshko, V.V. Kirilchuk, H.Yu. Mykhailova, and V.I. Bondarchuk, Hydrogen Embrittlement of Titanium: Phenomena and Main Ways of Prevention, Progress in Physics of Metals, 25, No. 2: 276–293 (2024)


References  
  1. V.A. Dekhtyarenko, D.G. Savvakin, V.I. Bondarchuk, V.M. Shyvanyuk, T.V. Pryadko, and O.O. Stasiuk, TiMn2-Based Intermetallic Alloys for Hydrogen Accumulation: Problems and Prospects, Prog. Phys. Met., 22, No. 3: 307–351 (2021). https://doi.org/10.15407/ufm.22.03.307
  2. V.G. Gavriljuk, V.M. Shyvaniuk, and S.M. Teus, Hydrogen Embrittlement, Hydrogen in Engineering Metallic Materials (Cham: Springer: 2022). https://doi.org/10.1007/978-3-030-98550-9_5
  3. M.B. Djukic, G.M. Bakic, V.S. Zeravcic, A. Sedmak, and B. Rajicic, Hydrogen Embrittlement of Industrial Components: Prediction, Prevention, and Models, Corrosion, 72, No. 7: 943–961 (2016). https://doi.org/10.5006/1958
  4. M.L. Martin, M. Dadfarnia, A. Nagao, S. Wang, and P. Sofronis, Enumeration of the Hydrogen-Enhanced Localized Plasticity Mechanism for Hydrogen Embrittlement in Structural Materials, Acta Mater., 165: 734–750 (2019). https://doi.org/10.1016/j.actamat.2018.12.014
  5. O. Barrera, D. Bombac, Y. Chen, T.D. Daff, E. Galindo-Nava, P. Gong, D. Haley, R. Horton, I. Katzarov, J. R. Kermode, C. Liverani, M. Stopher, and F. Sweeney, Understanding and Mitigating Hydrogen Embrittlement of Steels: a Review of Experimental, Modelling and Design Progress from Atomistic to Continuum, J. Mater. Sci., 53: 6251–6290 (2018). https://doi.org/10.1007/s10853-017-1978-5
  6. T.P. Chernyaeva and A.V. Ostapov, Hydrogen in Zirconium. Part 1, Problems Atomic Sci. Technol., 5: 16 (2013) (in Russian).
  7. S. Hao and C. Dong, Surface Modification of Metallic Materials by High Current Pulsed Electron Beam, Int. J. Mod. Phys. B, 23: 1713–1718 (2009). https://doi.org/10.1142/S0217979209061512
  8. A.V. Panin, M.S. Kazachenok, O.M. Kretovaet, O.B. Perevalova, Y.F. Ivanov, A.M. Lider, O.M. Stepanova, and M.H. Kroening, The Effect of Electron Beam Treatment on Hydrogen Sorption Ability of Commercially Pure Titanium, Appl. Surf. Sci., 284: 750–756 (2013). https://doi.org/10.1016/j.apsusc.2013.07.166
  9. T.V. Pryadko, V.A. Dekhtyarenko, and A.A. Shkola, Influence of the Ambient Medium in the Course of Laser Treatment on the Resistance of Titanium to Hydrogen Embrittlement, Mater Sci., 56: 75–81 (2020). https://doi.org/10.1007/s11003-020-00399-w
  10. T.V. Pryadko, V.A. Dekhtyarenko, V.I. Bondarchuk, M.O. Vasilyev, and S.M. Voloshko, Complex Approach to Protecting Titanium Constructions from Hydrogen Embrittlement, Metallofiz. Noveishie Tekhnol., 42, No. 10: 1419–1429 (2020). https://doi.org/10.15407/mfint.42.10.1419
  11. T.M. Roshchina, Adsorption Phenomena and Surface, Soros Educational J., 2: 89–98 (1998) (in Russian).
  12. M.V. Lototskyy, New Model of Phase Equilibria in Metal–Hydrogen Systems: Features and Software, Int. J. Hydrogen Energy, 41: 2739–2761 (2016). https://doi.org/10.1016/j.ijhydene.2015.12.055
  13. I.M. Robertson, P. Sofronis, A. Nagao, M.L. Martin, S. Wang, D.W. Gross, and K.E. Nygren, Hydrogen Embrittlement Understood, Metall. Mater. Trans. A, 46: 2323–2341 (2015). https://doi.org/10.1007/s11661-015-2836-1
  14. M. Dornheim, Thermodynamics of Metal Hydrides: Tailoring Reaction Enthalpies of Hydrogen Storage Materials, Thermodynamics — Interaction Studies — Solids, Liquids and Gases (Ed. J.C. Moreno-Pirajan) (IntechOpen: 2011), Ch. 33. https://doi.org/10.5772/21662
  15. N.-E. Laadel, M. El Mansori, N. Kang, S. Marlin, and Y. Boussant-Roux, Permeation Barriers for Hydrogen Embrittlement Prevention in Metals — A Review on Mechanisms, Materials Suitability and Efficiency, Int. J. Hydrogen Energy, 47: 32707–32731 (2022). https://doi.org/10.1016/j.ijhydene.2022.07.164
  16. Hydrogen as a Future Energy Carrier (Eds. A. Zuttel, A. Borgschulte, and L. Schlapbach) (Weinheim: Wiley: 2008). https://doi.org/10.1002/9783527622894
  17. N.N. Sergeev, A.N. Sergeev, S.N. Kutepov, A.E. Gvozdev, and E.V. Ageev, Analysis of Theoretical Concepts About the Mechanisms of Hydrogen Cracking of Metals and Alloys, News of the Southwestern State University, 21, No. 3: 6–33 (2017) (in Russian).
  18. J.P. Hirth, Effects of Hydrogen on the Properties of Iron and Steel, Metall. Trans. A, 11: 861–890 (1980). https://doi.org/10.1007/BF02654700
  19. H.G. Nelson, Hydrogen Embrittlement, Treatise Mate. Sci. Technol., 25: 275–359 (1983). https://doi.org/10.1016/B978-0-12-341825-8.50014-3
  20. M.L. Martin, I.M. Robertson, and P. Sofronis, Interpreting Hydrogen-Induced Fracture Surfaces in Terms of Deformation Processes: A New Approach, Acta Mater., 59: 3680–3687 (2011). https://doi.org/10.1016/j.actamat.2011.03.002
  21. V.O. Soshko, I.P. Siminchenko, and V.S. Lyashkov, Hydrogen Brittleness and Hydrogen Plasticity of Steel, Metallofiz. Noveishie Tekhnol., 36, No. 12: 1701–1710 (2014) (in Russian). https://doi.org/10.15407/mfint.36.12.1701
  22. P. Cotterill, Hydrogen Embrittlement of Metals (Moskva: Metallurgizdat: 1963) (in Russian).
  23. V. Madina and I. Azkarate, Compatibility of Materials with Hydrogen, Particular case: Hydrogen Embrittlement of Titanium Alloys, Int. J. Hydrogen Energy, 34: 5976–5980 (2009). https://doi.org/10.1016/j.ijhydene.2009.01.058
  24. C.D. Beachem, New Model for Hydrogen Assisted Cracking (Hydrogen “Embrittlement”), Metall. Trans., 3: 437–451 (1972). https://doi.org/10.1007/BF02642048
  25. S. Lynch, Hydrogen Embrittlement Phenomena and Mechanisms, Corros. Rev., 30: 105–123 (2012). https://doi.org/10.1515/corrrev-2012-0502
  26. B. Viswanathan, Hydrogen Storage, Energy Sources. Fundamentals of Chemical Conversion Processes and Applications (Elsevier: 2017), ch. 10, p. 185–212. https://doi.org/10.1016/B978-0-444-56353-8.00010-1
  27. V.A. Dekhtyarenko, D.G. Savvakin, O.O. Stasiuk, and D.V. Oryshych, Hydrogen Absorption and Desorption by Niobium and Tantalum, Metallofiz. Noveishie Tekhnol., 44, No. 7: 887–897 (2022). https://doi.org/10.15407/mfint.44.07.0887
  28. D. Oryshych, V. Dekhtyarenko, T. Pryadko, V. Bondarchuk, and D. Polotskiy, Рrotection of Titanium Against Hydrogen Embrittlement, Machines Technologies Materials, 13, No. 12: 561 (2019).
  29. E. Tal-Gutelmacher and D. Eliezer, Hydrogen-Assisted Degradation of Titanium Based Alloys, Mater. Trans., 45, No. 5: 1594–1600 (2004). https://doi.org/10.2320/matertrans.45.1594
  30. E. Tal-Gutelmacher and D. Eliezer, The Hydrogen Embrittlement of Titanium-Based Alloys, JOM, 57: 46–49 (2005). https://doi.org/10.1007/s11837-005-0115-0
  31. E. Tal-Gutelmacher and D. Eliezer, Embrittlement of Secondary Hydrogen-containing Phases in Titanium-Based Alloys, Glass. Phys. Chem., 31: 96–101 (2005). https://doi.org/10.1007/s10720-005-0029-5
  32. V.A. Livanov, A.A. Bukhanova, and B.A. Kolachev, Hydrogen in Titanium (Moskva: Metallurgizdat: 1962) (in Russian).
  33. C.L. Briant, Z.F. Wang, and N. Chollocoop, Hydrogen Embrittlement of Commercial Purity Titanium, Corros. Sci., 44: 1875–1888 (2002). https://doi.org/10.1016/S0010-938X(01)00159-7
  34. S. Ban, Y. Iwayab, H. Kono, and H. Sato, Surface Modification of Titanium by Etching in Concentrated Sulfuric Acid, Dent. Mater., 22: 1115–1120 (2006). https://doi.org/10.1016/j.dental.2005.09.007
  35. H.J. Christ, A. Senemmar, M. Decker, and K. Prüner, Effect of Hydrogen on Mechanical Properties of -Titanium Alloys, Sadhana, 28: 453–465 (2003). https://doi.org/10.1007/BF02706443
  36. X.L. Xiong, H.X. Ma, L.N. Zhang, K.K. Song, Yu Yan, P. Qian, and Y.J. Su, The Hydrogen-resistant Surface of Steels Designed by Alloy Elements Doping: First-Principles Calculations, Comput. Mater. Sci., 216: 111854 (2023). https://doi.org/10.1016/j.commatsci.2022.111854
  37. Q. Xu and J. Zhang, Novel Methods for Prevention of Hydrogen Embrittlement in Iron, Sci. Rep., 7: 16927 (2017). https://doi.org/10.1038/s41598-017-17263-8
  38. M. Wetegrove, M.J. Duarte, K. Taube, M. Rohloff, H. Gopalan, C. Scheu, G. Dehm, and A. Kruth, Preventing Hydrogen Embrittlement: The Role of Barrier Coatings for the Hydrogen Economy, Hydrogen, 4, Nо. 2: 307–322 (2023). https://doi.org/10.3390/hydrogen4020022
  39. W. Yang, E. Hwang, H. Kim, S. Ahn, S. Kim, and H. Castaneda, A Study of Annealing Time to Surface Characteristics and Hydrogen Embrittlement on AlSi Coated 22MnB5 During hot Stamping Process, Surf. Coat. Technol., 378: 124911 (2019). https://doi.org/10.1016/j.surfcoat.2019.124911
  40. О.М. Ivasyshyn, D.H. Savvakin, V.А. Dekhtyarenko, and О.О. Stasyuk, Interaction of Ті–Al–V–Fe, Al–V–Fe, and Ті–Al–Mo–Fe Powder Master Alloys with Hydrogen, Mater. Sci., 54: 266–272 (2018). https://doi.org/10.1007/s11003-018-0182-3
  41. A.A. Shkola, Specific Features of the Absorption of Hydrogen by Polycrystalline Ті and ТіAl Alloys (Thesis of Disser. for Candidate Tech. Sci.) (Kyiv: G.V. Kurdyumov Institute for Metal Physics, N.A.S.U.: 1994) (in Russian).
  42. G.A. Merkulova, Metallurgy and Heat Treatment of Non-Ferrous Alloys (Krasnoyarsk, Sib. Federal Univ.: 2008) (in Russian).
  43. V.G. Ivanchenko, V.A. Dekhtyarenko, T.V. Pryadko, and V.I. Nychyporenko, Influence of V on the Structure and Phase Composition of Eutectic Ti0.475Zr0.3Mn0.225 Alloy, Metallofiz. Noveishie Tekhnol., 36, No. 6: 803–813 (2014) (in Russian). https://doi.org/10.15407/mfint.36.06.0803
  44. V.G. Ivanchenko, V.А. Dekhtyarenko, Т.V. Pryadko, D.G. Savvakin, and I.K. Evlash, Influence of Heat Treatment on the Hydrogen-Sorption Properties of Ti0.475Zr0.3Mn0.225 Eutectic Alloy Doped with Vanadium, Mater. Sci., 51: 492–499 (2016). https://doi.org/10.1007/s11003-016-9867-7
  45. D.I. Cherkez, A.V. Spitsyn, A.V. Golubeva, O.I. Obrezkov, S.S. Ananyev, N.P. Bobyr, and V.M. Chernov, Deuterium Permeation Through Reduced Activation V–4Cr–4Ti Alloy and V–4Cr–4Ti Alloy with AlN/Al Coatings, Phys. Atom. Nuclei, 82: 1010–1024 (2019). https://doi.org/10.1134/S1063778819070056
  46. Y. Su, L. Wang, L. Luo, X. Jiang, and H. Fu, Deoxidation of Titanium Alloy Using Hydrogen, Int. J. Hydrogen Energy, 34: 8958–8963 (2009). https://doi.org/10.1016/j.ijhydene.2009.08.053
  47. A.N. Morozov and A.I. Mikhailichenko, Preparation of Nanostructured Highly Ordered Titanium Dioxide Films, Adv. Chem. Chem.-Technol., 140: 3030–3422 (2012) (in Russian).
  48. M. Tamura and T. Eguchi, Nanostructured Thin Films for Hydrogen-Permeation Barrier, J. Vacuum Sci. Technol. A, 33: 0415031 (2015). https://doi.org/10.1116/1.4919736
  49. R.G. Song, Hydrogen Permeation Resistance of Plasma-Sprayed Al2O3 and Al2O3–13wt.% TiO2 Ceramic Coatings on Austenitic Stainless Steel, Surf. Coat. Technol., 168: 191–194 (2003). https://doi.org/10.1016/S0257-8972(03)00002-1
  50. Y. Takamura, Hydrogen Permeation Barrier Performance Characterization of Vapor Deposited Amorphous Aluminum Oxide Films Using Coloration of Tungsten Oxide, Surf. Coat. Technol., 153: 114–118 (2002). https://doi.org/10.1016/S0257-8972(01)01697-8
  51. A.V. Gapontsev and V.V. Kondratiev, Hydrogen Diffusion in Disordered Metals and Alloys. Adv. Phys. Sci., 173, No. 10: 1107–1129 (2003) (in Russian). https://doi.org/10.3367/UFNr.0173.200310c.1107
  52. R.M. Roberts, T.S. Elleman, I.H. Ralmour, and K. Verghese, Hydrogen Permeability of Sintered Aluminum Oxide, J. Am. Ceram. Soc., 62: 43 (1979). https://doi.org/10.1111/j.1151-2916.1979.tb19114.x
  53. E. Serra, H. Glasbrenner, and A. Perujo, Hot-dip Aluminium Deposit as a Permeation Barrier for MANET Steel, Fusion Eng. Des., 41: 149–155 (1998). https://doi.org/10.1016/S0920-3796(98)00224-5
  54. E. Serra, A. Calza Bini, G. Cosoli, and L. Pilloni, Hydrogen Permeation Measurements on Alumina, J. Am. Ceram. Soc., 88, No. 1: 15–18 (2005). https://doi.org/10.1111/j.1551-2916.2004.00003.x
  55. A. Pisarev, I. Tsvetkov, and S. Yarko, Hydrogen Permeation Through Membranes with Cracks in Protection Layer, Fusion Eng. Des., 82, Nos. 15–24: 2120–2125 (2007). https://doi.org/10.1016/j.fusengdes.2007.04.005
  56. A. Perujo, K.S. Forcey, and T. Sample, Reduction of Deuterium Permeation Through DIN 1.4914 Stainless Steel (MANET) by Plasma-Spray Deposited Aluminum, J. Nucl. Mater., 207: 86–91 (1993). https://doi.org/10.1016/0022-3115(93)90249-X
  57. R.A. Causey, R.A. Karnesky, and C. San Marchi, 4.16 - Tritium Barriers and Tritium Diffusion in Fusion Reactors, Comp. Nucl. Mater., 4: 511–549 (2012). https://doi.org/10.1016/B978-0-08-056033-5.00116-6
  58. K.S. Forcey, Formation of tritium permeation barriers by CVD, J. Nucl. Mater., 200: 417–420 (1993). https://doi.org/10.1016/0022-3115(93)90319-T
  59. G.W. Hollenberg, Tritium/Hydrogen Barrier Development, Fusion Eng. Des., 28: 190–208 (1995). https://doi.org/10.1016/0920-3796(95)90039-X
  60. I.L. Tazhibaeva, Hydrogen Permeation through Steels and Alloys with Different Protective Coatings, Fusion Eng. Des., 51–52: 199–205 (2000). https://doi.org/10.1016/S0920-3796(00)00314-8
  61. L. Yan, J.J. Noel, and D.W. Shoesmith, Hydrogen Absorption into Alpha Titanium in Acidic Solutions, Electrochim. Acta, 52: 1169–1181 (2006). https://doi.org/10.1016/j.electacta.2006.07.017
  62. C.H. Henager, Hydrogen Permeation Barrier Coatings, Materials for the Hydrogen Economy (Eds. R.H. Jones and G.J. Thomas) (CRC Press: 2007), ch. 8, p. 181–190 (2007). https://doi.org/10.1201/9781420006070.ch8
  63. B.J. Candel and А. Borrás, Recent Advances in Laser Surface Treatment of Titanium Alloys, J. Laser Applications, 23, No. 2: 022005 (2011). https://doi.org/10.2351/1.3574020
  64. E.V. Berezneeva, Interaction of a Water Pipeline with Modified Coatings Deposited on Zirconium Zr1%Nb Alloy and Technical Titanium VT1-0. (Thesis of Disser. for Candidate Tech. Sci.) (Tomsk: National Research Tomsk Polytechnic University: 2014) (in Russian).
  65. W. Xue, Q. Zhua, Q. Jin, and M. Hua, Characterization of Ceramic Coatings Fabricated on Zirconium Alloy by Plasma Electrolytic Oxidation in Silicate Electrolyte, Mater. Chem. Phys., 120: 656–660 (2010). https://doi.org/10.1016/j.matchemphys.2009.12.012
  66. A.M. Smyslov, A.D. Mingazhev, M.K. Smyslova, K.S. Selivanov, and A.A. Mingazheva, Nanolayer Coating for Turbomachinery Blades Made of Titanium Alloys, Vestnik USATU, 41: 109–112 (2011) (in Russian).
  67. Y. Cheng and F. Wu, Plasma Electrolytic Oxidation of Zircaloy-4 Alloy with DC Regime and Properties of Coatings, Trans. Nonferrous. Met. Soc. China, 22: 1638–1646 (2012). https://doi.org/10.1016/S1003-6326(11)61367-8
  68. L. Wang, X. Hu, and X. Nie. Deposition and Properties of Zirconia Coatings on a Zirconium Alloy Produced by Pulsed DC Plasma Electrolytic Oxidation, Surf. Coat. Technol., 221: 150–157 (2013). https://doi.org/10.1016/j.surfcoat.2013.01.040
  69. L.S. Moroz and B.B. Chechulin, Hydrogen Embrittlement of Metals (Moskva: Metallurgy: 1967) (in Russian).
  70. О.М. Ivasishin, А.В. Bondarchuk, M.М. Gumenyak, and D.G. Savvakin, Surface Phenomenon Upon Heating of Titanium Hydride Powder, Phys. Chem. Solid State, 12, No. 4: 900–907 (2011).
  71. O.M. Ivasyshyn and D.H. Savvakin, Synthesis of Zirconium- and Titanium-Based Alloys with the Use of Their Hydrides, Mater. Sci., 51: 465–474 (2016). https://doi.org/10.1007/s11003-016-9863-y
  72. S.M. Teus, D.G. Savvakin, O.M. Ivasishin, and V.G. Gavriljuk, Hydrogen Migration and Hydrogen-Dislocation Interaction in Austenitic Steels and Titanium Alloy in Relation to Hydrogen Embrittlement, Int. J. Hydrogen Energy, 42: 2424–2433 (2017). https://doi.org/10.1016/j.ijhydene.2016.09.212
  73. I.P. Chernov, E.V. Chernova, N.S. Pushilina, D.V. Berezneev, A.M. Lider, and K.V. Kryoning, Structure and Properties of Zirconium Alloy after Modification by Pulse Ion Beam, Appl. Mech. Mater., 302: 82–85 (2013). https://doi.org/10.4028/www.scientific.net/AMM.302.82
  74. I.P. Chernov, E.V. Berezneeva, P.A. Beloglazova, S.V. Ivanova, I.V. Kireeva, A.M. Lider, G.E. Remnev, N.S. Pushilina, and Yu.P. Cherdantsev, Physicomechanical Properties of the Surface of a Zirconium Alloy Modified by a Pulsed ion Beam, Tech. Phys., 59: 535–539 (2014). https://doi.org/10.1134/S1063784214040069
  75. I.P. Chernov, P.A. Beloglazova, E.V. Berezneeva, I.V. Kireeva, N.S. Pushilina, G.E. Remnev, and E.N. Stepanova, Properties of the VT1-0 Titanium Surface Modified by a Pulsed ion Beam, Tech. Phys., 60: 1039–1043 (2015). https://doi.org/10.1134/S1063784215070099
  76. I.P. Chernov, S.V. Ivanova, M.K. Krening, N. Koval, V.V. Larionov, A.M. Lider, N.S. Pushilina, E.N. Stepanova, O.M. Stepanova, and Yu.P. Cherdantsev, Properties and Structural State of the Surface Layer in a Zirconium Alloy Modified by a Pulsed Electron Beam and Saturated by Hydrogen, Tech. Phys., 57: 392–398 (2012). https://doi.org/10.1134/S1063784212030024