Corrosion Resistance of Traditional and Advanced Fuel Rod Cladding Materials for Water-Cooled Reactors

ZUYOK V.A.$^{1}$, KOVALENKO Yu.V.$^{2}$, SHTEFAN V.V.$^{2,3}$, RUD R.O.$^{1}$, TRETIAKOV M.V.$^{1}$, and KUSHTYM Ya.O.$^{1}$

$^1$National Science Centre ‘Kharkiv Institute of Physics and Technology’ of the N.A.S. of Ukraine, 1 Akademichna Str., UA-61108 Kharkiv, Ukraine
$^2$Department of Technical Electrochemistry, Educational-Scientific Institute of Chemical Technologies and Engineering, National Technical University ‘Kharkiv Polytechnic Institute’, 2 Kyrpychova Str., UA-61002 Kharkiv, Ukraine
$^3$Leibniz-Institute for Solid State and Materials Research (IFW), Helmholtzstraβe 20, D-01069 Dresden, Germany

Received 04.12.2023, final version 02.05.2024 Download PDF logo PDF

Abstract
The available literature experimental data on corrosion resistance of traditional and advanced fuel rod cladding materials for water-cooled reactors are summarized. A review of zirconium alloys, which have proven themselves in operation for more than half a century, is presented. As noted, the research work is constantly being carried out to improve zirconium alloys by optimizing their composition, in particular, the amount of tin, niobium, iron and oxygen, as well as development of the new alloys. First of all, the direction of these works is stimulated by stringent nuclear energy requirements, including maximum safety, efficiency and environmental friendliness. At the same time, in the last decade, one of the main goals of researchers around the world is the development of nuclear fuel systems, which tolerate severe accidents. Another trigger for this was the accident in 2011 in Japan at the Fukushima-1 NPP. As the most optimal possible solution, it is considered the surface modification of zirconium alloys by the development of chromium coatings. Such coatings provide an increased corrosion resistance and wear resistance, as well as hydrogen pickup reduced at operating temperatures of the primary coolant and in emergencies. A more radical way to increase the fuel rod cladding accident resistance is to replace the zirconium alloy with another one. The best candidates are FeCrAl alloys and duplex stainless steels (DSS), whose corrosion resistance can be 50 times greater than that of zirconium alloys in loss-of-coolant accident (LOCA) conditions. Unfortunately, under the nominal water-cooled reactor operating conditions, a long-term operation such as claddings will lead to the corrosion product formation and its removal to the coolant followed by their activation and formation of deposits in the core and steam generator. This will certainly entail an increase in the radiation-dose rate from the primary circuit equipment. Considering the traditional and advanced water-cooled reactors claddings, which tolerate severe accident scenarios, an optimized zirconium alloy with chromium coating can be considered as the most advanced one. The corrosion resistance of such claddings is at least five times higher compared to traditional zirconium alloys both under normal operating conditions and severe accidents, and will not cause significant neutron absorption, coolant activation or deposit formation in the primary circuit.

Keywords: zirconium alloys, fuel rod, nuclear fuel, water-cooled reactor, corrosion.

DOI: https://doi.org/10.15407/ufm.25.02.243

Citation: V.A. Zuyok, Yu.V. Kovalenko, V.V. Shtefan, R.O. Rud, M.V. Tretiakov, and Ya.O. Kushtym, Corrosion Resistance of Traditional and Advanced Fuel Rod Cladding Materials for Water-Cooled Reactors, Progress in Physics of Metals, 25, No. 2: 243–275 (2024)


References  
  1. S. Was, D. Petti, S. Ukai and S. Zinkle, J. Nucl. Mater., 527: 151837 (2019). https://doi.org/10.1016/j.jnucmat.2019.151837
  2. F.G. Reshetnikov, Ju.K. Babilashvili, and I.S. Golovnin, Razrabotka, Proizvodstvo i Ehkspluatatsiya Teplovydelyayushchikh Ehlementov Ehnergeticheskikh Reaktorov [Development, Production and Operation of Fuel Elements for Power Reactors] (Eds. F.G. Reshetnikov) (Moskva: Energoatomizdat: 1995) (in Russian).
  3. H.G. Rickover, L.D. Geiger, and B. Lustman, History of the Development of Zirconium Alloys for Use in Nuclear Reactors (USA, Washington: Energy Research and Development Administration: 1975). https://doi.org/10.2172/4240391
  4. E. Kautz, B. Gwalani, Z. Yu, T. Varga, K. Geelhood, A. Devaraj, and D. Senor, J. Nucl. Mater., 585: 154586 (2023). https://doi.org/10.1016/j.jnucmat.2023.154586
  5. A.T. Motta, A. Couet, and R.J. Comstock, Annu. Rev. Mater. Res., 45, No. 1: 311 (2015). https://doi.org/10.1146/annurev-matsci-070214-020951
  6. T.-L. Yau and V.E. Annamalai, Reference Module in Materials Science and Materials Engineering (Elsevier: 2016), Ch. Corrosion of Zirconium and Its Alloys. https://doi.org/10.1016/B978-0-12-803581-8.09220-1
  7. T.R. Allen, R.J.M. Konings, A.T. Motta, and A. Couet, Comprehensive Nuclear Materials (Elsevier: 2020), vol. 4, ch. 4.03, p. 64. https://doi.org/10.1016/B978-0-12-803581-8.11708-4
  8. M.M. Pylypenko, A.O. Drobyshevska, and V.A. Zuyok, Probl. Atom. Sci. Tech., 137, No. 1: 51 (2022). https://doi.org/10.46813/2022-137-051
  9. G. Jiang, D. Xu, W. Yang, L. Liu, Y. Zhi and J. Yang, Prog. Nucl. Energ., 154: 104490 (2022). https://doi.org/10.1016/j.pnucene.2022.104490
  10. J. Eriksson, G. Sundell, P. Tejland, H.-O. Andrén, and M. Thuvander, J. Nucl. Mater., 561: 153537 (2022). https://doi.org/10.1016/j.jnucmat.2022.153537
  11. M. Slobodyan, Nucl. Eng. Des, 382: 111364, (2021). https://doi.org/10.1016/j.nucengdes.2021.111364
  12. D.O. Northwood, Mater. Design, 6, No. 2: 58 (1985). https://doi.org/10.1016/0261-3069(85)90165-7
  13. D.J.M. King, A.J. Knowles, D. Bowden, M.R. Wenman, S. Capp, M. Gorley, J. Shimwell, L. Packer, M.R. Gilbert, and A. Harte, J. Nucl. Mater., 559: 153431 (2022). https://doi.org/10.1016/j.jnucmat.2021.153431
  14. S. Suman, M.K. Khan, M. Pathak, R.N. Singh, and J.K. Chakravartty, Int. J. Hydrogen Energ., 40, No. 17: 5976 (2015). https://doi.org/10.1016/j.ijhydene.2015.03.049
  15. J.L. Vandegrift, P.M. Price, J-P. Stroud, C.J. Parga, I.J.V. Rooyen, B.J. Jaques, and D.P. Butt, Nucl. Mater. Energ., 20: 100692 (2019). https://doi.org/10.1016/j.nme.2019.100692
  16. X. Wang, Z. Li, J. Zhou, and F. Tian, Hot Work. Technol., 41, No. 1: 71 (2012). https://doi.org/10.14158/j.cnki.1001-3814.2012.02.001
  17. I. Charit and K.L. Murty, J. Nucl. Mater., 374, No. 3: 354 (2008). https://doi.org/10.1016/j.jnucmat.2007.08.019
  18. A.V. Nikulina, Met. Sci. Heat. Treat., 46, No. 11: 458 (2004). https://doi.org/10.1007/s11041-005-0002-x
  19. T.L. Schulz, Nucl. Eng. Des, 236, No. 14-16: 1547 (2006). https://doi.org/10.1016/j.nucengdes.2006.03.049
  20. K.T. Kim, Nucl. Eng. Des, 263: 59 (2013). https://doi.org/10.1016/j.nucengdes.2013.04.013
  21. G.H. Yuan and X.M. Wei, Nuclear Power Plants Titanium Industry Progress, 28, No. 6: 22 (2011).
  22. G. Pan, C.J. Long, A.M. Garde, A.R. Atwood, J.P. Foster, R.J. Comstock, L. Hallstadius, D.L. Nuhfer, and R. Baranwal, Proc. Int. Conf. Light Water Reactor Fuel Performance (September 26–29, 2010, Orlando, Florida).
  23. W. Zhao, Y. Liu, H. Jiang, and Q. Peng, J. Alloy. Compd., 462, Nos. 1–2: 103 (2008). https://doi.org/10.1016/j.jallcom.2007.08.047
  24. K.A. Terrani, J. Nucl. Mater., 501: 13 (2018). https://doi.org/10.1016/j.jnucmat.2017.12.043
  25. Z. Duan, H. Yang, Yu. Satoh, K. Murakami, S. Kano, Z. Zhao, J. Shen, and H. Abe, Nucl. Eng. Des., 316: 131 (2017). https://doi.org/10.1016/j.nucengdes.2017.02.031
  26. M. Skocic (Photo)-Electrochemical Study of the Shadow Corrosion Phenomenon of Zirconium Alloys in Simulated Reactors (PhD Thesis) (Université Grenoble Alpes: 2016) (in France)
  27. Y.-J. Kim, R.B. Rebak, Y.-P. Lin, D. Lutz, D.C. Crawford, A. Kucuk, and B. Cheng, J. ASTM Int., 7, No. 7 (2010). https://doi.org/10.1520/JAI102952
  28. G. Jiang, D. Xu, P. Feng, S. Guo, J. Yang, and Y. Li, J. Alloy. Compd., 869: 159235 (2021). https://doi.org/10.1016/j.jallcom.2021.159235
  29. M. Steinbrück and M. Böttcher, J. Nucl. Mater., 414, No. 2: 276 (2011). https://doi.org/10.1016/j.jnucmat.2011.04.012
  30. S. Xie, B. Zhou, X. Liang, W. Liu, H. Li, Q. Li, M. Yao, and J. Zhang, Corros. Sci., 126: 44 (2017). https://doi.org/10.1016/j.corsci.2017.06.007
  31. O.N. Pierron, D.A. Koss, A.T. Motta, and K.S. Chan, J. Nucl. Mater., 322, No. 1: 21 (2003). https://doi.org/10.1016/S0022-3115(03)00299-X
  32. R.S. Daum, S. Majumdar, Y. Liu, and M.C. Billone, J. Nucl. Sci. Technol., 43: 1054 (2006). https://doi.org/10.1080/18811248.2006.9711195
  33. A.T. Motta, L. Capolungo, L.-Q. Chen, M.N. Cinbiz, M.R. Daymond, D.A. Koss, E. Lacroix, G. Pastore, P.-C.A. Simon, M.R. Tonks, B.D. Wirth, and M.A. Zikry, J. Nucl. Mater., 518: 440 (2019). https://doi.org/10.1016/j.jnucmat.2019.02.042
  34. Z. Cui, J. Liu, P. Hu, J. Qiu, S. Xie, R. Meng, W. Liu, J. Lu, Y. Cui, C. Li, G. Bai, D. He, and D. Yun, Corros. Sci., 199: 110204 (2022). https://doi.org/10.1016/j.corsci.2022.110204
  35. S.T. Barlow, D.J. Bailey, A.J. Fisher, M.C. Stennett, C. Gausse, H. Ding, V.A. Krasnov, S.Yu. Sayenko, N.C. Hyatt, and C.L. Corkhill, npj Mater Degrad, 4, No. 3 (2020). https://doi.org/10.1038/s41529-020-0108-z
  36. F.C. Iglesias, B.J. Lewis, C. Desgranges, and C. Toffolon, State-of-the-Art Report on Multi-scale Modelling of Nuclear Fuels (NEA/NSC/R-2015-5, Nuclear Energy Agency of the OECD: 2015), ch. 5, p. 108
  37. J.H. Kim, B.K. Choi, J.H. Baek, and Y.H. Jeong, Nucl. Eng. Des., 236, No. 22: 2386 (2006). https://doi.org/10.1016/j.nucengdes.2006.02.012
  38. H.-G. Kim, I.-H. Kim, B.-K. Choi, and J.-Y. Park, J. Nucl. Mater., 418, Nos. 1–3: 186 (2011). https://doi.org/10.1016/j.jnucmat.2011.06.039
  39. J.H. Baek, K.B. Park, and Y.H. Jeong, J. Nucl. Mater., 335, No. 3: 443 (2004). https://doi.org/10.1016/j.jnucmat.2004.08.007
  40. C.M. Lee, Y.-K. Mok, and D.-S. Sohn, J. Nucl. Mater., 496: 343 (2017). https://doi.org/10.1016/j.jnucmat.2017.10.013
  41. J.S. Moya, M. Diaz, J.F. Bartolomé, E. Roman, J.L. Sacedon, and J. Izquierdo, Acta Mater., 48, Nos. 18–19: 4749 (2000). https://doi.org/10.1016/S1359-6454(00)00267-6
  42. D.J. Park, J.Y. Park, Y.H. Jeong and J.Y. Lee, J. Nucl. Mater., 399, Nos. 2–3: 208 (2010). https://doi.org/10.1016/j.jnucmat.2010.01.021
  43. M. Steinbrück and M. Böttcher, J. Nucl. Mater., 414, No. 2: 276 (2011). https://doi.org/10.1016/j.jnucmat.2011.04.012
  44. M. Steinbrück, J. Nucl. Mater., 392, No. 3: 531 (2009). https://doi.org/10.1016/j.jnucmat.2009.04.018
  45. Y. Nemoto, Y. Ishijima, K. Kondo, Yu. Fujimura, and Y. Kaji, J. Nucl. Mater., 575: 154209 (2023). https://doi.org/10.1016/j.jnucmat.2022.154209
  46. Corrosion of Zirconium Alloys in Nuclear Power Plants (IAEA-TECDOC-684) (Vienna: IAEA: 1993)
  47. D. Lister and S. Uchida, J. Nucl. Sci. Technol., 52, No. 4: 451 (2015). https://doi.org/10.1080/00223131.2014.973460
  48. F. Lefebvre and C. Lemaignan, J. Nucl. Mater., 248: 268 (1997). https://doi.org/10.1016/S0022-3115(97)00123-2
  49. Z. Yu, M. Bachhav, F. Teng, L. He, M. Dubey, and A. Couet, J. Nucl. Mater., 573: 154139 (2023). https://doi.org/10.1016/j.jnucmat.2022.154139
  50. G. He. Radiation Damage and Its Impact on Corrosion in Zirconium-Niobium Alloys (PhD thesis) (University of Oxford: 2020)
  51. T.R. Allen, R.J.M. Konings, and A.T. Motta, Comprehensive Nuclear Materials (Eds. R.J.M. Konings) (Elsevier: 2012), vol. 5, ch. 5.03, p. 49. https://doi.org/10.1016/B978-0-08-056033-5.00063-X
  52. B.D.C. Bell, S.T. Murphy, R.W. Grimes, and M.R. Wenman, Acta Mater., 132: 425 (2017). https://doi.org/10.1016/j.actamat.2017.04.063
  53. P. Lai, J. Lu, H. Zhang, Q. Liu, Q. Zeng, X. Guo, and L. Zhang, J. Nucl. Mater., 532: 152079 (2020). https://doi.org/10.1016/j.jnucmat.2020.152079
  54. M.Y. Yao, C.Y. Gao, J. Huang, J.C. Peng, X. Liang, J.L. Zhang, B.X. Zhou, and Q. Li, Corros. Sci., 100: 169 (2015). https://doi.org/10.1016/j.corsci.2015.07.021
  55. S. Müller and L. Lanzani, Proc. Mat. Sci., 8: 46 (2015). https://doi.org/10.1016/j.mspro.2015.04.047
  56. Y. Ding and D.O. Northwood, J. Mater. Sci., 27, No. 4: 1045 (1992). https://doi.org/10.1007/BF01197659
  57. Y. Matsukawa, S. Kitayama, K. Murakami, Y. Shinohara, K. Yoshida, H. Maeno, H.L. Yang, T. Toyama, K. Yasuda, H. Watanabe, A. Kimura, H. Muta, S. Yamanaka, Y.F. Li, Y. Satoh, S. Kano, and H. Abe, Acta Mater., 127: 153 (2017). https://doi.org/10.1016/j.actamat.2017.01.032
  58. Y.H. Jeong, H.G. Kim, D.J. Kim, B.K. Choi, and J.H. Kim, J. Nucl. Mater., 323, No. 1: 72 (2003). https://doi.org/10.1016/j.jnucmat.2003.08.031
  59. C. Duriez, T. Dupont, B. Schmet, and F. Enoch, J. Nucl. Mater., 380, Nos. 1–3: 30 (2008). https://doi.org/10.1016/j.jnucmat.2008.07.002
  60. T. Arima, K. Miyata, K. Idemitsu, and Y. Inagaki, Prog. Nucl. Energ., 51, No. 2: 307 (2009). https://doi.org/10.1016/j.pnucene.2008.08.001
  61. R.B. Rebak, Accident-Tolerant Materials for Light Water Reactor Fuels (Eds. R.B. Rebak) (Elsevier: 2020). https://doi.org/10.1016/C2018-0-02102-7
  62. Q. Xiao, C. Kim, C. Jang, C. Jeong, H. Kim, J. Chen, and W. Heo, J. Nucl. Mater., 557: 153265 (2021). https://doi.org/10.1016/j.jnucmat.2021.153265
  63. Y. Yamamoto, B.A. Pint, K.A. Terrani K.G. Field, Y. Yang, and L.L. Snead, J. Nucl. Mater., 467, No. 2: 703 (2015). https://doi.org/10.1016/j.jnucmat.2015.10.019
  64. H. Kim, H. Jang, G.O. Subramanian, C. Kim, and C. Jang, J. Nucl. Mater., 507: 1 (2018). https://doi.org/10.1016/j.jnucmat.2018.04.027
  65. X. Huang, H. Wang, S. Qiu, Y. Zhang, K. He, and B. Wu, J. Mater. Process. Tech., 277: 116434 (2020). https://doi.org/10.1016/j.jmatprotec.2019.116434
  66. N. Birbilis, S. Choudhary, J.R. Scully, J.R. Scully, and M.L. Taheri, npj Mater Degrad., 5, No. 14 (2021). https://doi.org/10.1038/s41529-021-00163-8
  67. S.J. Zinkle and G.S. Was, Acta Mater., 61, No. 3: 735 (2013). https://doi.org/10.1016/j.actamat.2012.11.004
  68. R.B. Rebak, EPJ Nucl. Sci. Technol., 3: 34 (2017). https://doi.org/10.1051/epjn/2017029
  69. J. Bischoff, C. Vauglin, C. Delafoy, P. Barberis, D. Perche, B. Guerin, J.-P. Vassault, and J.-C. Brachet, Proc. ‘Topfuel 2016 – Light Water Reactor (LWR) Fuel Performance Meeting’ (11–15 September 2016, Boise, United States) (American Nuclear Society: 2016), p. 1165.
  70. H.B. Ma, J. Yan, Y.H. Zhao, T. Liu, Q.S. Ren, Y.H. Liao, J.D. Zuo, G. Liu, and M.Y. Yao, npj Mater Degrad, 5, No. 7 (2021). https://doi.org/10.1038/s41529-021-00155-8
  71. A.S. Kuprin, V.A. Zuyok, V.A. Belous, V.D. Ovcharenko, E.N. Reshetnyak, R.L. Vasilenko, G.N. Tolmachova, and Ya.O. Kushtym, Probl. Atom. Sci. Tech., 144, No. 2: 94 (2023). https://doi.org/10.46813/2023-144-094
  72. T. Chongchong, S. Michael, S.H. Juergen, and S. Martin, Corros. Rev., 35, No. 3: 141 (2017). https://doi.org/10.1515/corrrev-2017-0010
  73. J. Yang, M. Steinbrück, C. Tang, M. Große, J. Liu, J. Zhang, D. Yun, and S. Wang, J. Alloy. Compd., 895, 1: 162450 (2022). https://doi.org/10.1016/j.jallcom.2021.162450
  74. E.B. Kashkarov, D.V. Sidelev, N.S. Pushilina, J. Yang, C. Tang, and M. Steinbrueck, Corros. Sci., 203: 110359 (2022). https://doi.org/10.1016/j.corsci.2022.110359
  75. E. Kashkarov, B. Afornu, D. Sidelev, M. Krinitcyn, V. Gouws, and A. Lider, Coatings, 11, No. 5: 557 (2021). https://doi.org/10.3390/coatings11050557
  76. J.-C. Brachet, I. Idarraga-Trujillo, M.L. Flem, M.L. Saux, V. Vandenberghe, S. Urvoy, and E. Rouesne, J. Nucl. Mater., 517: 268 (2019). https://doi.org/10.1016/j.jnucmat.2019.02.018
  77. H.-G. Kim, I.-H. Kim, Y.-I. Jung, D.-J. Park, J.-Y. Park, and Y.-H. Koo, J. Nucl. Mater., 465: 531 (2015). https://doi.org/10.1016/j.jnucmat.2015.06.030
  78. R. Oelrich, S. Ray, Z. Karoutas, P. Xu, J. Romero, H. Shah, E. Lahoda, and F. Boylan, Proc. TOP FUEL 2018 Conference (30 September–4 October, 2018, Prague, Czech Republic).
  79. H. Liu, Y. Feng, Y. Yao, B. Li, R. Wang, X. Shi, P. Li, J. Shu, F. Huang, Q. Huang, and F. Ge, Corros. Sci., 189: 109608 (2021). https://doi.org/10.1016/j.corsci.2021.109608
  80. M. Ševeček, A. Gurgen, A. Seshadri, Y. Che, M. Wagih, B. Phillips, V. Champagne, and K. Shirvan, Nucl. Eng. Technol., 50, No. 2: 229 (2018). https://doi.org/10.1016/j.net.2017.12.011
  81. M. Yao, X. Zhang, K. Hou, J. Zhang, P. Hu, J. Peng, and B. Zhou, Acta Metall. Sin., 56, No. 2: 221 (2020). https://doi.org/10.11900/0412.1961.2019.00191
  82. B. Maier, H. Yeom. G. Johnson, T. Dabney, J. Walters, P. Xu, J. Romero, H. Shah, and K. Sridharan, J. Nucl. Mater., 519: 247 (2019). https://doi.org/10.1016/j.jnucmat.2019.03.039
  83. J.C. Brachet, M. Le Saux, M. Le Flem, S. Urvoy, E. Rouesne, T. Guilbert, C. Cobac, F. Lahogue, J. Rousselot, M. Tupin, P. Billaud, and C. Hossepied, Proc. TopFuel 2015 (13–19 September, 2015, Zurich, Switzerland), p. 13.
  84. T. Wei, R. Zhang, H. Yang, H. Liu, S. Qiu, Y. Wang, P. Du, K. He, X. Hu, and C. Dong, Corros. Sci., 158: 108077 (2019). https://doi.org/10.1016/j.corsci.2019.06.029
  85. M. Hänsel, W.J. Quadakkers, and D.J. Young, Oxid. Met., 59: 285 (2003). https://doi.org/10.1023/A:1023040010859
  86. E.B. Kashkarov, D.V. Sidelev, M.S. Syrtanov, C. Tang, and M. Steinbrück, Corros. Sci., 175: 108883 (2020). https://doi.org/10.1016/j.corsci.2020.108883
  87. H. Yeom, B. Maier, G. Johnson, T. Dabney, M. Lenling, and K. Sridharan, J. Nucl. Mater., 526: 151737 (2019). https://doi.org/10.1016/j.jnucmat.2019.151737
  88. M. Joyce, Nuclear Engineering (Eds. M. Joyce) (Butterworth-Heinemann: 2018), ch. 14, p. 323. https://doi.org/10.1016/B978-0-08-100962-8.00014-7
  89. R. Ali, T.M.N.T. Mansur, N.H. Baharudin, and S.I.S. Hassan, Electric Renewable Energy Systems (Eds. M.H. Rashid) (Academic Press: 2016), Ch. 21, p. 519. https://doi.org/10.1016/B978-0-12-804448-3.00021-9
  90. K.A. Terrani, S.J. Zinkle, and L.L. Snead, J. Nucl. Mater., 448, Nos. 1–3: 420 (2014). https://doi.org/10.1016/j.jnucmat.2013.06.041
  91. B.A. Pint, K.A. Terrani, M.P. Brady, T. Cheng, and J.R. Keiser, J. Nucl. Mater., 440, No. 1–3: 420 (2013). https://doi.org/10.1016/j.jnucmat.2013.05.047
  92. B.A. Pint, K.A. Terrani, Y. Yamamoto, and L.L. Snead, Metall. Mater. Trans. E, 2: 190 (2015). https://doi.org/10.1007/s40553-015-0056-7
  93. B.A. Pint, K.A. Unocic, and K.A. Terrani, Mater. High. Temp., 32, Nos. 1–2: 28 (2015). https://doi.org/10.1179/0960340914Z.00000000058
  94. G.R. Holcomb, Conf. Paper Superalloys 2008 (Sept. 14–18, 2008, Champion, PA, United States) (TMS: 2008), p. 601. https://doi.org/10.7449/2008/Superalloys_2008_601_608
  95. G.C. Rybicki and J.L. Smialek, Oxid. Metals, 31, Nos. 3–4: 275 (1989). https://doi.org/10.1007/BF00846690
  96. D. J. Young, D. Naumenko, L. Niewolak, E. Wessel, L. Singheiser, and W. J. Quadakkers, Mater. Corros., 61, No. 10: 838 (2010). https://doi.org/10.1002/maco.200905432
  97. E.J. Opila and D.L. Myers, J. Am. Ceram. Soc., 87, No. 9: 1701 (2004). https://doi.org/10.1111/j.1551-2916.2004.01701.x
  98. K.A. Terrani, B.A. Pint, Y.-J. Kim, K.A. Unocic, Y. Yang, C.M. Silva, H.M. Meyer, and R.B. Rebak, J. Nucl. Mater., 479: 36 (2016). https://doi.org/10.1016/j.jnucmat.2016.06.047
  99. N.M. George, K.A. Terrani, J.J. Powers, A. Worrall, and I. Maldonado, Ann. Nucl. Energy, 75: 703 (2015). https://doi.org/10.1016/j.anucene.2014.09.005
  100. D. Levchuk, H. Bolt, M. Döbeli, S. Eggenberger, B. Widrig, and J. Ramm, Surf. Coat. Tech., 202, No. 20: 5043 (2008). https://doi.org/10.1016/j.surfcoat.2008.05.012
  101. R.B. Rebak and Y.-J. Kim, Proc. ASME 2016 Pressure Vessels and Piping Conference. Materials and Fabrication (July 17–21, 2016, Vancouver, British Columbia, Canada), vol. 6B. https://doi.org/10.1115/PVP2016-63164
  102. K.A. Terrani, C.M. Parish, D. Shin, and B.A. Pint, J. Nucl. Mater., 438, No. 1–3: 64 (2013). https://doi.org/10.1016/j.jnucmat.2013.03.006
  103. H. Yeom, B. Maier, G. Johnson, T. Dabney, J. Walters, and K. Sridharan, J. Nucl. Mater., 507: 306 (2018). https://doi.org/10.1016/j.jnucmat.2018.05.014
  104. R.B. Rebak, JOM, 70: 176 (2018). https://doi.org/10.1007/s11837-017-2705-z
  105. D.J. Park, H.G. Kim, J.Y. Park, Y.I. Jung, J.H. Park, and Y.H. Koo, Corros. Sci., 94: 459 (2015). https://doi.org/10.1016/j.corsci.2015.02.027
  106. R.B. Rebak, V.K. Gupta, and M. Larsen, JOM, 70: 1484 (2018). https://doi.org/10.1007/s11837-018-2979-9
  107. T.M. Copeland-Johnson, C.K.A. Nyamekye, S.K. Gill, L. Ecker, N. Bowler, E.A. Smith, and R.B. Rebak, Corros. Sci., 171: 108598 (2020). https://doi.org/10.1016/j.corsci.2020.108598
  108. C.P. Massey, K.A. Terrani, S.N. Dryepondt, and B.A. Pint, J. Nucl. Mater., 470: 128 (2016). https://doi.org/10.1016/j.jnucmat.2015.12.018
  109. Duplex Stainless Steels: Microstructure, Properties and Applications (Eds. R.N. Gunn) (Cambridge: Abington Publishing :1997). https://doi.org/10.1533/9781845698775
  110. A.V. Jebaraj, L. Ajaykumar, C.R. Deepak, and K.V.V. Aditya, J. Adv. Res., 8, No. 3: 183 (2017). https://doi.org/10.1016/j.jare.2017.01.002
  111. A. Naceur and G. Marleau, Ann. Nucl. Energy, 113: 147 (2018). https://doi.org/10.1016/j.anucene.2017.11.016
  112. F.A. Garner, B.M. Oliver, and L.R. Greenwood, J. Nucl. Mater., 258–263, P. 2: 1740 (1998). https://doi.org/10.1016/S0022-3115(98)00297-9
  113. D. Rodriguez and D. Chidambaram, npj Mater Degrad, 1, No. 14 (2017). https://doi.org/10.1038/s41529-017-0006-1