Methods for Obtaining a Gradient Structure

VOLOKITINA I.E., DENISSOVA A.I., VOLOKITIN A.V., and PANIN E.A.

Karaganda Industrial University, Republic Ave. 30, 101400 Temirtau, Kazakhstan

Received 24.09.2023, final version 16.02.2024 Download PDF logo PDF

Abstract
The methods for fabrication of the functionally-gradient materials, which have a high complex of unique mechanical, technological and special properties, when they working on impact, wear, fatigue, experiencing increased cyclic and alternating loads, are reviewed. Considered materials are used in aerospace engineering, energy, and other industries characterized by extremely unfavourable, extreme operating conditions of critical parts, structural elements, and assemblies. Different methods for fabrication of the gradient structures are considered, in particular, the method of severe plastic deformation of metals and the process of active bending of copper. The effect of grain size, texture, and grain-growth gradients on the deformation mechanisms and mechanical properties of gradient- nanostructured nickel, as well as functionally-gradient ceramic materials are studied. The review may be of interest to researchers and scientists in the field of materials science, metallurgy, and nanotechnology.

Keywords: gradient structures, functional-gradient materials, nanostructured materials, severe plastic deformation, mechanical properties of materials.

DOI: https://doi.org/10.15407/ufm.25.01.132

Citation: I.E. Volokitina, A.I. Denissova, A.V. Volokitin, and E.A. Panin, Methods for Obtaining a Gradient Structure, Progress in Physics of Metals, 25, No. 1: 132–160 (2024)


References  
  1. I.E. Volokitina, A.V. Volokitin, M.A. Latypova, V.V. Chigirinsky, and A.S. Kolesnikov, Prog. Phys. Met., 24, No. 1: 132–156 (2023). https://doi.org/10.15407/ufm.24.01.132
  2. S.Y. Hong, Machining Sci. Technol., 10, No. 1: 133 (2006). https://doi.org/10.1080/10910340500534324
  3. A. Bychkov and A. Kolesnikov, Metallogr. Microstruct. Anal., 12, No. 3: 564–566 (2023). https://doi.org/10.1007/s13632-023-00966-y
  4. S.M. Yuan, L.T. Yan, W.D. Liu, and Q. Liu, J. Mater. Process. Technol., 211, No. 3: 356–362 (2011). https://doi.org/10.1016/j.jmatprotec.2010.10.009
  5. I.E. Volokitinа and A.V. Volokitin, Metallurgist, 67: 232–239 (2023). https://doi.org/10.1007/s11015-023-01510-7
  6. B. Sapargaliyeva, A. Agabekova, G. Ulyeva, A. Yerzhanov, and P. Kozlov, Case Studies in Construction Materials, 18: e02162 (2023). https://doi.org/10.1016/j.cscm.2023.e02162
  7. R.Z. Valiev, A.V. Sergueeva, and A.K. Mukherjee, Scripta Mater, 49, No. 7: 666–674 (2003). https://doi.org/10.1016/S1359-6462(03)00395-6
  8. M. Hawryluk, J. Ziemba, and P. Sadowski, Mater. Sci., 50, No. 3: 74–78 (2017). https://doi.org/10.1177/0020294017707161
  9. N. Vasilyeva, R. Fediuk, and A. Kolesnikov, Materials, 15: 3975 (2022). https://doi.org/10.3390/ma15113975
  10. P. Wang, L. Zhao, J. Liu, M.D. Weir, X. Zhou, and H.H.K. Xu, Bone Research., 2: 14017 (2014). https://doi.org/10.1038/boneres.2014.17
  11. I.E. Volokitina, A.V. Volokitin, and E.A. Panin, Prog. Phys. Met., 23, No. 4: 684–728 (2022). https://doi.org/10.15407/ufm.23.04.684
  12. D.A. Hughes and N. Hansen, Phys. Rev. Lett., 87, No. 13: 135503 (2001). https://doi.org/10.1103/PhysRevLett.87.135503
  13. T.H. Fang, W.L. Li, and N.R. Tao, Science, 331, No. 6024: 1587–1590 (2011). https://doi.org/10.1126/science.1200177
  14. I.E. Volokitina, Metal Sci. Heat Treat., 62: 253–258 (2020). https://doi.org/10.1007/s11041-020-00544-x
  15. K. Lu, Science, 345, No. 6203: 1455–1456 (2014). https://doi.org/10.1126/science.1255940
  16. X.L. Wu, P. Jiang, and L. Chen, Mater. Res. Lett., 2, No. 4: 185–191 (2014). https://doi.org/10.1080/21663831.2014.935821
  17. Y.J. Wei, Y.Q. Li, and L.C. Zhu, Nat. Commun., 5: 3580 (2014). https://doi.org/10.1038/ncomms4580
  18. G.I. Raab, L.A. Simonova, and G.N. Alyoshin, Metalurgija, 55: 177–180 (2016).
  19. B. Ilschner, J. de Physique IV Proc., 3: C7-763–C7-772 (1993). https://hal.science/jpa-00251740
  20. M.B. Bever and P.E. Duwez, Mater. Sci. Eng., 10: 1–8 (1972). https://doi.org/10.1016/0025-5416(72)90059-6
  21. M. Shen and M.B. Bever, J. Mater. Sci., 7: 741–746 (1972). https://doi.org/10.1007/BF00549902
  22. C. Olin, L. Durant, N. Favrot, J. Besson, G. Barrbier, and F. Dellanay, Proc. 13th Int. Plansee Seminar (24–28 May 1993, Plansee, Austria) (Ed. H. Bildstein and R. Eck), p. 522–536.
  23. M. Danilenko and V. Gorban, Materials Science Forum, 503: 787–792 (2006). https://doi.org/10.4028/www.scientific.net/MSF.503-504.787
  24. S. Ramesh Kumar, K. Gudimetla, B. Tejaswi, and B. Ravisankar, Trans. Indian. Inst. Met., 70: 639–648 (2017). https://doi.org/10.1007/s12666-017-1073-2
  25. I.E. Volokitina, Metal Sci. Heat Treat., 61: 234–238 (2019). https://doi.org/10.1007/s11041-019-00406-1
  26. K.O. Kostyk, V.O. Kostyk, and V.D. Kovalev, Prog. Phys. Met., 22, No. 1: 78 (2021). https://doi.org/10.15407/ufm.22.01.078
  27. H. Tian, H.L. Suo, O.V. Mishin, Y.B. Zhang, D. Jensen, and J.-C. Grivel, J. Mater. Sci., 48: 4183–4190 (2013). https://doi.org/10.1007/s10853-013-7231-y
  28. E.V. Galieva, V.A. Valitov, R.Ya. Lutfullin, and A.A. Bikmukhametova, Defect Diffus. Forum, 385: 150–154 (2018). https://doi.org/10.4028/www.scientific.net/DDF.385.150
  29. M. Kawasaki, B. Ahn, H.J. Lee, A.P. Zhilyaev, and T.G. Langdon, J. Mater. Res., 31: 88–99 (2016). https://doi.org/10.1557/jmr.2015.257
  30. A.V. Volokitin, I.E. Volokitina, and E.A. Panin, Prog. Phys. Met., 23, No. 3: 411–437 (2022). https://doi.org/10.15407/ufm.23.03.411
  31. A.P. Zhilyaev, G. Ringot, Y. Huang, J.M. Cabrera, and T.G. Langdon, Mater. Sci. Eng. A, 688: 498 (2017). https://doi.org/10.1016/j.msea.2017.02.032
  32. G. Langford and M. Cohen, Trans. ASM, 62: 623–637 (1969).
  33. V.M. Segal, Mat. Sci. Eng. A, 338: 331–344 (2002). https://doi.org/10.1016/S0921-5093(02)00066-7
  34. Y. Beygelzimer, V. Varyukhin, D. Orlov, B. Efros, A. Salimgareyev, and V. Stolyarov, Ultrafine Grained Materials: Processing and Structure (Washington: 2002), pp. 137–142.
  35. A.W. Thompson, Met. Trans. A, 7: 833–842 (1977). https://doi.org/10.1007/bf02661564
  36. V. Rybin, Zakonomernosti Formirovaniya Mezostruktur v Khode Razvitoy Plasticheskoy Deformatsii [Regularities of Mesostructure Formation during Developed Plastic Deformation] (Materials Science: 2002) (in Russian).
  37. N.I. Noskova and A.V.Korznikov, Phys. Metals Metallogr., 94: 24–29 (2002).
  38. M. Nemoto, Z. Horita, M. Furukawa, and T.G. Langdon, Mater. Sci. Forum, 304–306: 59–66 (1999). https://doi.org/10.4028/www.scientific.net/msf.304-306.59
  39. A.V. Belotskii and A.I. Yurkova, Metallofiz. Noveishie Tekhnol., 23, No. 4: 551–557 (2001).
  40. A. Dzubenko, A. Lapunov, and I. Radomiselsky, Powder Metallurgy, 9: 43–48 (1986). https://doi.org/10.1016/0026-0657(93)92883-7
  41. S. Takaki, Mater. Sci. Forum, 426–432: 215–222 (2003). https://doi.org/10.4028/www.scientific.net/MSF.426-432.215
  42. N. Tao, Z. Wang, W. Tong, M. Sui, J. Lu, and K. Lu, Acta Mater., 50, No. 18: 4603–4616 (2002). https://doi.org/10.1016/S1359-6454(02)00310-5
  43. K. Lu and J. Lu, Mater. Sci. Eng. A, 375–377: 38–45 (2004). https://doi.org/10.1016/j.msea.2003.10.261
  44. A. Naizabekov, A. Volokitin, and E. Panin, J. Mater. Eng. Perform., 28, No. 3: 1762–1771 (2019). https://doi.org/10.1007/s11665-019-3880-6
  45. W. Tong, N. Tao, Z. Wang, J. Lu, and K. Lu, Science, 299, No. 5607: 686–688 2003. https://doi.org/10.1126/science.1080216
  46. I. Volokitina, A. Volokitin, A. Denissova, Y. Kuatbay, and Y. Liseitsev, Case Studies in Construction Materials, 19: e023462023. https://doi.org/10.1016/j.cscm.2023.e02346
  47. N. Zhangabay, B. Sapargaliyeva, U. Suleimenov, K. Abshenov, A. Utelbayeva, A. Kolesnikov, K. Baibolov, R. Fediuk, D. Arinova, B. Duissenbekov, A. Seitkhanov, and M. Amran, Materials, 15: 5732 (2022) https://doi.org/10.3390/ma15165732
  48. T. Tursunkululy, N. Zhangabay, U. Suleimenov, K. Abshenov, A. Utelbayeva, A. Moldagaliyev, Z. Turashova, G. Karshyga, and P. Kozlov, Case Studies in Construction Materials, 18: e02019 (2023). https://doi.org/10.1016/j.cscm.2023.e02019
  49. S.M. Hassani-Gangaraj, K.S. Cho, H.J.L. Voigt, M. Guagliano, and C.A. Schuh, Acta Mater., 97: 105–115 (2015). https://doi.org/10.1016/j.actamat.2015.06.054
  50. O. Kolesnikova, N. Vasilyeva, A. Kolesnikov, and A. Zolkin, Mining Inf. Anal. Bull., 10, No. 1: 103–115 (2022). https://doi.org/10.25018/0236_1493_2022_101_0_103
  51. G.I. Raab and R.Z. Valiev, Non-Ferrous Metallurgy, 5: 50–53 (2000).
  52. A.G. Raab, A.P. Zhilyaev, I.S. Kodirov, and G.N. Aleshin, Mater. Sci. Non-Equilibrium Phase Transformations, 1: 11–12 (2019).
  53. R. Yuan, Acta Mechanica, 234: 4147–4181 (2023). https://doi.org/10.1007/s00707-023-03606-2
  54. V.A. Tatarenko, T.M. Radchenko, A.Yu. Naumuk, and B.M. Mordyuk, Prog. Phys. Met., 25, No. 1: 3 (2024). https://doi.org/10.15407/ufm.25.01.003
  55. D.S. Leonov, T.M. Radchenko, V.A. Tatarenko, and Yu.A. Kunitsky, Defect Diffus. Forum, 273–276: 520–524 (2008). https://doi.org/10.4028/www.scientific.net/DDF.273-276.520
  56. T.M. Radchenko and V.A. Tatarenko, Defect Diffus. Forum, 273–276: 525–530 (2008). https://doi.org/10.4028/www.scientific.net/DDF.273-276.525
  57. P. Szroeder, I.Yu. Sagalianov, T.M. Radchenko, V.A. Tatarenko, Yu.I. Prylutskyy, and W. Strupiński, Appl. Surf. Sci., 442: 185–188 (2018). https://doi.org/10.1016/j.apsusc.2018.02.150
  58. P. Szroeder, I. Sahalianov, T. Radchenko, V. Tatarenko, and Yu. Prylutskyy, Optical Mater., 96: 109284 (2019). https://doi.org/10.1016/j.optmat.2019.109284
  59. A.G. Solomenko, R.M. Balabai, T.M. Radchenko, and V.A. Tatarenko, Prog. Phys. Met., 23, No. 2: 147–238 (2022). https://doi.org/10.15407/ufm.23.02.147
  60. A.G. Solomenko, I.Y. Sahalianov, T.M. Radchenko, and V.A. Tatarenko, Sci. Rep., 13: 13444 (2023). https://doi.org/10.1038/s41598-023-40541-7
  61. O.S. Skakunova, S.I. Olikhovskii, T.M. Radchenko, S.V. Lizunova, T.P. Vladimirova, and V.V. Lizunov, Sci. Rep., 13, 15950 (2023). https://doi.org/10.1038/s41598-023-43269-6
  62. Y. Lin, J. Pan, H.F. Zhou, H.J. Gao, and Y. Li, Acta Mater., 153: 279–289 (2018). https://doi.org/10.1016/j.actamat.2018.04.065
  63. Y. Lin, J. Pan, Z. Luo, Y. Lu, K. Lu, and Y. Li, Nano Mater. Sci., 2, No. 1: 39–49 (2020). https://doi.org/10.1016/j.nanoms.2019.12.004
  64. H. Ni, L. Wang, Zh. Wang, and J. Zhu, Rev. Adv. Mater. Sci., 59: 144–150 (2020). https://doi.org/10.1515/rams-2020-0105
  65. P. Shanmugavel, G.B. Bhaskar, M. Chandrasekaran, P.S. Mani, and S.P. Srinivasan, Eur. J. Sci. Res., 68. No. 3: 412–439 (2012).
  66. B. Kieback, A. Neubrand, and H. Riedel, Mater. Sci. Eng. A, 362, Nos. 1–2: 81–105 (2003). https://doi.org/10.1016/S0921-5093(03)00578-1
  67. T. Liu, Q. Wang, A. Gao, C. Zhang, C.J. Wang, and J.C. He, Scripta Mater., 57, No. 11: 992–995 (2007). https://doi.org/10.1016/j.scriptamat.2007.08.011
  68. T. Knoppers, J.W. Gunnink, J. Van den Hout, and W. Van, TNO Science and Industry, p. 38–43.
  69. J.J. Lannutti, Composites Engineering, 4, No. 1: 81–94 (1994). https://doi.org/10.1016/0961-9526(94)90010-8
  70. M. Niino, T. Hirai, and R. Watanabe, J. Jap. Soc. Compos. Mat., 13: 257–264 (1987). https://doi.org/10.6089/jscm.13.257
  71. L. Marin, Int. J. Solids Struct., 42, No. 15: 4338–4351 (2005). https://doi.org/10.1016/j.ijsolstr.2005.01.005
  72. Y.W. Gu, K.A. Khor, Y.Q. Fu, and Y. Wang, Surf. Coat. Technol., 96, Nos. 2–3: 305–312 (1997). https://doi.org/10.1016/S0257-8972(97)00185-0
  73. C.Q. Hong, X.H. Zhang, W.J. Li, J.C. Han, and S.H. Meng, Mater. Sci. Eng. A, 498, Nos. 1–2: 437–441 (2008). https://doi.org/10.1016/j.msea.2008.08.032
  74. L.J. Zhang, Y.-Q. Wang, B.L. Zhou, and X.-Q. Wu, J. Mater. Sci. Lett., 17: 1677–1679 (1998). https://doi.org/10.1023/A:1006635221379
  75. D. Dimitrov, K. Schreve, and N. De Beer, Rapid Prototyping J., 12, No. 3: 136–147 (2006). https://doi.org/10.1108/13552540610670717
  76. J. Costakis, M.L. Rueschhoff, I. Andres Diaz-Cano, P.J. Youngblood, and W. Rodney, J. Eur. Ceramic Society, 36, No. 14: 3249–3256 (2016). https://doi.org/10.1016/j.jeurceramsoc.2016.06.002