Statistical-Thermodynamic Models of the Ni–Al-Based Ordering Phases (L12, L10, B2): Role of Magnetic Ni-Atoms’ Contribution

TATARENKO V.A., RADCHENKO T.M., NAUMUK A.Yu., and MORDYUK B.M.

G.V. Kurdyumov Institute for Metal Physics of the N.A.S. of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine

Received 17.11.2023, final version 01.12.2023 Download PDF logo PDF

Abstract
Among known aircraft metal materials, Ni–Al is identified as an ordering intermetallic alloy with several attractive properties including low density (≈ 6 g/cm3), high melting point (≈ 1911 K), excellent oxidation resistance (up to 1573 K), and good thermal conductivity. These and other physical properties are caused by not only the chemical composition, but also the atomic distribution over the crystal-lattice sites. The interactions between atoms of different kinds lead to deviations from their random distribution and the appearance of short-range (correlation) or even long-range (as in the case of Ni–Al) orders. The possible types of ordered phases in Ni–Al alloys are analysed through the obtained expressions for the occupation probability functions of the distribution of Ni (Al) atoms over the sites of the f.c.c. and b.c.c. lattices. The obtained expressions for the configurational free energy of ordering structures of the L12, L10, and B2 take into account both the interaction of substitutional atoms on all (and not only the nearest) co-ordination spheres and the magnetism of Ni atoms. As ascertained after evaluation of the Ni–Ni exchange-interaction energy parameters for the f.c.c.-Ni–Al, the ordering of the subsystem of interacting magnetic moments of Ni atoms somewhat counteracts the long-range order.

Keywords: Ni–Al, statistical thermodynamics, long-range atomic order, ‘mixing’ energy, exchange interaction, magnetization.

DOI: https://doi.org/10.15407/ufm.25.01.003

Citation: V.A. Tatarenko, T.M. Radchenko, A.Yu. Naumuk, and B.M. Mordyuk, Statistical-Thermodynamic Models of the Ni–Al-Based Ordering Phases (L12, L10, B2): Role of Magnetic Ni-Atoms’ Contribution, Progress in Physics of Metals, 25, No. 1: 3–26 (2024)


References  
  1. D.H. Okamoto, Al–Ni (Aluminum–Nickel), J. Phase Equilibrium, 14, No. 2: 257 (1993). https://doi.org/10.1007/BF02667823
  2. D.P. Pope and J.L. Garin, The temperature dependence of the long-range order parameter of Ni3Al, J. Appl. Crystallogr., 10, Pt. 1: 14 (1977). https://doi.org/10.1107/S0021889877012709
  3. R.W. Cahn, P.A. Siemers, J.E. Geiger, and P. Bardhanm, The order–disorder transformation in Ni3Al and Ni3Al Fe alloys—I. Determination of the transition temperatures and their relation to ductility, Acta Metall., 35, No. 11: 2737 (1987). https://doi.org/10.1016/0001-6160(87)90273-2
  4. F.J. Bremer, M. Beyss, and H. Wenzl, The order–disorder transition of the intermetallic phase Ni3Al, Phys. Status Solidi A, 110, No. 1: 77 (1988). https://doi.org/10.1002/pssa.2211100107
  5. Max Hansen and Kurt Anderko, Constitution of Binary Alloys (New York: McGraw-Hill: 1965).
  6. S.V. Kositsyn and I.I. Kositsyna, Phase and structural transformations in the alloys based on monoaluminide of nickel, Usp. Fiz. Met., 9, No. 2: 195 (2008) (in Russian). https://doi.org/10.15407/ufm.09.02.195
  7. T.M. Radchenko and V.A. Tatarenko, Atomic-ordering kinetics and diffusivities in Ni–Fe permalloy, Defect Diffus. Forum, 273–276: 525 (2008). https://doi.org/10.4028/www.scientific.net/DDF.273-276.525
  8. I.M. Melnyk, T.M. Radchenko, and V.A. Tatarenko, Semi-empirical parameterization of interatomic interactions, which is based on statistical-thermodynamic analysis of data on phase equilibriums in b.c.c.-Fe–Co alloy. I. Primary ordering, Metallofiz. Noveishie Tekhnol., 32, No. 9: 1191 (2010) (in Ukrainian).
  9. H. Thomas, Zeitschrift für Metallkunde, 41: 185 (1950) (in German).
  10. H. Thomas, Über Widerstandslegierungen, Zeitschrift für Physik, 129: 219 (1951) (in German). https://doi.org/10.1007/BF01333398
  11. B.G. Livshits and M.P. Ravdel, Doklady Akad. Nauk SSSR. Ser.: Tekh. Fiz., 93, No. 6: 1033 (1953) (in Russian).
  12. B.G. Livshits, Physical Properties of Metals and Alloys (Moskva: Mashgiz: 1959 (in Russian).
  13. W. Gaudig, P. Okamoto, G. Schans, G. Tromas, and H. Warlimont, Ordered Alloys: Structure, Applications and Physical Metallurgy: Proc. III. Bolton Landing Conference (Baton Rouge, Louisiana: Clayton’s Publ. Co.: 1970), р. 347.
  14. J.E. Spruiell and E.E. Stansbury, X-ray study of short-range order in nickel alloys containing 10.7 and 20.0 at.% molybdenum, J. Phys. Chem. Solids, 26, No. 5: 811 (1965). https://doi.org/10.1016/0022-3697(65)90256-8
  15. E. Ruedl, P. Delavignette, and S. Amelinckx, Electron diffraction and electron microscopic study of long- and short-range order in Ni4Mo and of the substructure resulting from ordering, Phys. Status Solidi B, 28: 305 (1968). https://doi.org/10.1002/pssb.19680280132
  16. А.А. Katsnelson and P.Sh. Dazhaev, Izv. VUZov SSSR. Ser.: Fiz., No. 4: 23 (1970) (in Russian).
  17. А.А. Katsnelson, Izv. VUZov SSSR. Ser.: Fiz., No. 10: 17 (1977) (in Russian).
  18. А.G. Khachaturyan, Fiz. Tverd. Tela, 13, No. 8: 2417 (1971) (in Russian).
  19. V.N. Bugayev, V.G. Gavrilyuk, V.M. Nadutov, and V.A. Tatarenko, Carbon distribution in Fe–Ni–C and Fe–Mn–C with FCC lattice, Fiz. Met. Metalloved., 68, No. 5: 931 (1989) (in Russian).
  20. V.N. Bugayev, V.G. Gavrilyuk, V.M. Nadutov, and V.A. Tatarenko, Carbon distribution in Fe–Ni–C and Fe–Mn–C with FCC lattice, Phys. Metals Metallogr., 68, No. 5: 93 (1989).
  21. T.M. Radchenko, V.A. Tatarenko, and H. Zapolsky, Statistical thermodynamics and ordering kinetics of D019-type phase: application of the models for H.C.P.-Ti–Al alloy, Solid State Phenom., 138: 283 (2008). https://doi.org/10.4028/www.scientific.net/ssp.138.283
  22. T.M. Radchenko, V.A. Tatarenko, H. Zapolsky, and D. Blavette, Statistical-thermodynamic description of the order–disorder transformation of D019-type phase in Ti–Al alloy, J. Alloys Compd., 452, No. 1: 122 (2008). https://doi.org/10.1016/j.jallcom.2006.12.149
  23. T. Radchenko, H. Zapolsky, D. Blavette, and V. Tatarenko, Computation of kinetic and thermodynamic characteristics for close-packed crystalline solutions from diffuse scattering and phase diagram data, Acta Cryst., A60: s71 (2004). https://doi.org/10.1107/S0108767304098599
  24. E. Hornbogen and M. Roth, Die Verteilung kohärenter Teilchen in Nickellegierungen, Zeitschrift für Metallkunde, 58: 842 (1967) (in German). https://doi.org/10.1515/ijmr-1967-581203
  25. V.A. Tatarenko and T.M. Radchenko, Parameters of the short-range order relaxation kinetics and interactions of atoms in binary substitutional f.c.c. solid solutions according to the data about time evolution of diffuse scattering of radiations, Metallofiz. Noveishie Tekhnol., 24, No. 10: 1335 (2002) (in Ukrainian).
  26. D.S. Leonov, T.M. Radchenko, V.A. Tatarenko, and Yu.A. Kunitsky, Kinetic parameters of migration of atoms and relaxation of scattering of different-type waves in the ordering f.c.c.-Ni–Al alloy, Metallofiz. Noveishie Tekhnol., 29, No. 12: 1587 (2007) (in Russian).
  27. D.S. Leonov, T.M. Radchenko, V.A. Tatarenko, and Yu.A. Kunitsky, Kinetics parameters of atomic migration and diffuse scattering of radiations within the f.c.c.-Ni–Al alloys, Defect Diffus. Forum, 273–276: 520 (2008). https://doi.org/10.4028/www.scientific.net/DDF.273-276.520
  28. S.M. Bokoch, D.S. Leonov, M.P. Kulish, V.A. Tatarenko, and Yu.A. Kunitsky, Influence of a relaxation of the atomic order in f.c.c.-Ni–Al alloys on x-ray diffuse scattering, electrical resistance and microhardness, Metallofiz. Noveishie Tekhnol., 30, No. 12: 1677 (2008) (in Russian).
  29. S.M. Bokoch, D.S. Leonov, M.P. Kulish, V.A. Tatarenko, and Yu.A. Kunitsky, Influence of relaxation of the atomic order in f.c.c.-Ni–Al alloys on x-ray diffuse scattering, Phys. Status Solidi A, 206, No. 8: 1766 (2009). https://doi.org/10.1002/pssa.200881604
  30. V.A. Tatarenko and T.M. Radchenko, Direct and indirect methods of the analysis of interatomic interaction and kinetics of a relaxation of the short-range order in close-packed substitutional (interstitial) solid solutions, Usp. Fiz. Met., 3, No. 2: 111 (2002) (in Ukrainian). https://doi.org/10.15407/ufm.03.02.111
  31. Т.М. Radchenko and V.А. Tatarenko, Fe–Ni alloys at high pressures and temperatures: statistical thermodynamics and kinetics of the L12 or D019 atomic order, Usp. Fiz. Met., 9, No. 1: 1 (2008) (in Ukrainian). https://doi.org/10.15407/ufm.09.01.001
  32. V.A. Tatarenko, O.V. Sobol’, D.S. Leonov, Yu.A. Kunyts’kyy, and S.M. Bokoch, Statistical thermodynamics and physical kinetics of structural changes of quasi-binary solid solutions based on the close-packed simple lattices (according to the data about evolution of a pattern of scattering of waves of various kinds), Usp. Fiz. Met., 12, No. 1: 1 (2011) (in Ukrainian). https://doi.org/10.15407/ufm.12.01.001
  33. V.A. Tatarenko and C.L. Tsynman, Strain-induced and blocking effects in thermodynamics of the ordering and precipitation reactions within the off-stoichiometric close-packed-metal hydrides, Solid State Ionics, 101–103: 1061 (1997). https://doi.org/10.1016/s0167-2738(97)00376-7
  34. A.G. Khachaturyan, Theory of Structural Transformations in Solids (Mineola, NY: Dover Publications, Inc.: 2008).
  35. A. Aharoni, Introduction to the Theory of Ferromagnetism (New York: Oxford University Press Inc.: 2000).
  36. T. Moriya, Spin Fluctuations in Itinerant Electron Magnetism (Berlin–Heidelberg: Springer-Verlag: 1985).
  37. J. Kübler, Theory of Itinerant Electron Magnetism (New York: Oxford University Press Inc.: 2009).
  38. P. Mohn, Magnetism in the Solid State: An Introduction (Berlin–Heidelberg: Springer-Verlag: 2003).
  39. S.V. Semenovskaya, The application of x-ray diffuse scattering to the calculation of the Fe–Al equilibrium diagram, Phys. Status Solidi B, 64, No. 1: 291 (1974). https://doi.org/10.1002/pssb.2220640134
  40. G. Inden, The role of magnetism in the calculation of phase diagrams, Physica B, 103, No. 1: 82 (1981). https://doi.org/10.1016/0378-4363(81)91004-4
  41. J.S. Smart, Effective Field Theories of Magnetism (Philadelphia: Saunders: 1966).
  42. M.I. Darby, Tables of the Brillouin function and of the related function for the spontaneous magnetization, British J. Appl. Phys., 18, No. 10: 1415 (1967). https://doi.org/10.1088/0508-3443/18/10/307
  43. H.Y. Geng, M.H.F. Sluiter, and N.X. Chen, Order-disorder effects on the equation of state for fcc Ni–Al alloys, Phys. Rev. B, 72: No. 1: 014204 (2005). https://doi.org/10.1103/PhysRevB.72.014204
  44. М.А. Krivoglaz, Zh. Eksp. Teor. Fiz., 32, No. 6: 1368 (1957) (in Russian).
  45. P.C. Clapp and S.C. Moss, Correlation functions of disordered binary alloys. I, Phys. Rev., 142: 418 (1966). https://doi.org/10.1103/PhysRev.142.418
  46. A. Semwal and S.N. Kaul, Low-lying magnetic excitations in Ni3Al and their suppression by a magnetic field, Phys. Rev. B, 60, No. 18: 12799 (1999). https://doi.org/10.1103/PhysRevB.60.12799
  47. V.A. Tatarenko, V.V. Odnosum, Yu.M. Koval’, and G.E. Monastyrs’ky, Magnetic interatomic interactions and atomic ordering in nonstoichiometric L12-type Ni–Al alloys, Metallofiz. Noveishie Tekhnol., 25, No. 9: 1111 (2003) (in Russian).
  48. A.G. Khachaturyan, Ordering in substitutional and interstitial solid solutions, Progr. Mater. Sci., 22, Nos. 1–2: 1 (1978). https://doi.org/10.1016/0079-6425(78)90003-8