Development of High-Entropy Shape-Memory Alloys: Structure and Properties

G. S. Firstov$^{1}$, Yu. M. Koval$^{1}$, V. S. Filatova$^{1}$, V. V. Odnosum$^{1}$, G. Gerstein$^{2}$, and H. J. Maier$^{2}$

$^1$G. V. Kurdyumov Institute for Metal Physics of the N.A.S. of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine
$^2$Institut für Werkstoffkunde Leibniz Universität Hannover, An der Universität 2, D-30823 Garbsen, Germany

Received 01.12.2023; final version — 12.12.2023 Download PDF logo PDF

Abstract
Amongst functional materials shape memory alloys occupy a special position. After their discovery, these alloys attracted substantial attention because of the possibility to restore significant deformation amounts under certain stress-temperature conditions due to the martensitic diffusionless phase transformation involved. It was possible to exploit not only so-called ‘shape memory’ but also superelasticity and high damping capacity. Over the years, more than 10 000 patents on shape memory alloys were filed appreciating not only the possibility to exploit the effect for energy transformation while changing independent thermodynamic parameters (temperature, stress, pressure, electric or magnetic field etc.) but the significant work output as well. The envisaged shape memory components covered applications in the automotive, aero-space, machine-building and civil construction industries. Unfortunately, structural and functional fatigue restricted successful business application mostly to the medical sector, with the Nitinol shape memory alloy dominating applications such as different implants, stents or cardiovascular valves. Emerging high entropy shape memory alloys can be considered as a chance to overcome the fatigue problems of today’s shape memory alloys due to their specific structure that ensures superior resistance to irreversible plastic deformation.

Keywords: high-entropy shape-memory alloys, martensitic transformation, structure, multiple principal element intermetallic compounds, mechanical properties, shape memory and related phenomena.

DOI: https://doi.org/10.15407/ufm.24.04.819

Citation: G. S. Firstov, Yu. M. Koval, V. S. Filatova, V. V. Odnosum, G. Gerstein, and H. J. Maier, Development of High-Entropy Shape-Memory Alloys: Structure and Properties, Progress in Physics of Metals, 24, No. 4: 819–837 (2023)


References  
  1. J.W. Yeh, S.K. Chen, S.G. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, and S.Y. Chang, Adv. Eng. Mater., 6: 299–303 (2004); https://doi.org/10.1002/adem.200300567
  2. Y. Zhang, T.T. Zuo, Z. Nang, M.C. Cao, K.A. Dahmen, P.K. Liaw, and Z.P. Lu, Prog. Mater. Sci., 61: 1–93 (2014); https://doi.org/10.1016/j.pmatsci.2013.10.001
  3. B.S. Murty, J.-W. Yeh, and S. Ranganathan, High Entropy Alloys (Amsterdam, The Netherlands–Oxford, UK: Elsevier Science & Technology–Butterworth-Heinemann Ltd.: 2014), p. 204.
  4. B. Cantor, Entropy, 16: 4749–4768 (2014); https://doi.org/10.3390/e16094749
  5. Y.F. Ye, Q. Wang, J. Lu, C.T. Liu, and Y. Yang, Mater. Today, 19: 349–362 (2016); https://doi.org/10.1016/j.mattod.2015.11.026
  6. V.F. Gorban’, N.A. Krapivka, and S.A. Firstov, Phys. Met. Metallogr., 118: 970–981 (2017); https://doi.org/10.1134/S0031918X17080051
  7. O.N. Senkov, J.M. Scott, S.V. Senkova, D.B. Miracle, and C.F. Woodward, J. Alloys Compd., 509: 6043–6048 (2011); https://doi.org/10.1016/j.jallcom.2011.02.171
  8. S.A. Firstov, T.G. Rogul’, N.A. Krapivka, S.S. Ponomarev, V.N. Tkach, V.V. Kovylyaev, V.F. Gorban’, and M.V. Karpets, Russ. Metall., 2014: 285–292 (2014); https://doi.org/10.1134/S0036029514040028
  9. G.S. Firstov, J. Van Humbeeck, and Y.N. Koval, Mater. Sci. Eng. A, 378: 2–10 (2004); https://doi.org/10.1016/j.msea.2003.10.324
  10. G.S. Firstov, J. Van Humbeeck, and Y.N. Koval, J. Intel. Mater. Sys. Struct., 17: 1041–1047 (2006); https://doi.org/10.1177/1045389X06063922
  11. J. Ma, I. Karaman, and R.D. Noebe, Int. Mater. Rev., 55: 257–315 (2010); https://doi.org/10.1179/095066010X12646898728363
  12. T. Niendorf, P. Krooß, E. Batyrsina, A. Paulsen, Y. Motemani, A. Ludwig, P. Buenconsejo, J. Frenzel, G. Eggeler, and H.J. Maier, Mater. Sci. Eng. A, 620: 359–366 (2015); https://doi.org/10.1016/j.msea.2014.10.038
  13. G. Firstov, Y. Koval, J. Van Humbeeck, A. Timoshevskii, T. Kosorukova, and P. Verhovlyuk, Shape Memory Alloys: Properties, Technologies, Opportunities (Eds. N. Resnina and V. Rubanik) (Zurich, Switzerland: Trans. Tech. Publications Inc.: 2015), pp. 207–232; https://doi.org/10.4028/www.scientific.net/MSFo.81-82.207
  14. G.S. Firstov, T.A. Kosorukova, Yu.N. Koval, and V.V. Odnosum, Mater. Today Proc., 2S: S499–S504 (2015); https://doi.org/10.1016/j.matpr.2015.07.335
  15. G.S. Firstov, T.A. Kosorukova, Y.N. Koval, and P.A. Verhovlyuk, Shape Memory and Superelasticity, 1, No. 4: 400–407 (2015); https://doi.org/10.1007/s40830-015-0039-7
  16. G. Fu, X. Liu, X. Yi, S. Zhang, X. Cao, X. Meng, Z. Gao, and H. Wang, Metals 13: 1279 (2023); https://doi.org/10.3390/met13071279
  17. J.I. Lee, K. Tsuchiya, W. Tasaki et al., Sci. Rep., 9: 13140 (2019). https://doi.org/10.1038/s41598-019-49529-8
  18. S. Guo and C.T. Liu, Progress in Natural Science: Materials International, 21, No. 6: 433-446 (2011); https://doi.org/10.1016/S1002-0071(12)60080-X
  19. A. Sato, Y. Yamaji, and T. Mori, Acta metallurgica, 34: 287–294 (1986); https://doi.org/10.1016/0001-6160(86)90199-9
  20. Q. Gu, J. Van Humbeeck, and L. Delaey, Journal de Physique IV. Proceedings, C3, No. 4: C3-135–C3-144 (1994); http://dx.doi.org/10.1051/jp4:1994319
  21. I. Ferretto, D. Kim, W.J. Lee, E. Hosseini, N.M. della Ventura, A. Sharma, C. Sofras, J. Capek, E. Polatidis, and C. Leinenbach, Materials & Design 229: 111928 (2023); https://doi.org/10.1016/j.matdes.2023.111928
  22. Q. Liao, T. Jing, Y. Wang, H. Peng, and Y. Wen, J. Alloys Compd., 926: 166803 (2022); https://doi.org/10.1016/j.jallcom.2022.166803
  23. L. Wang, C. Fu, Y. Wu, R. Li, X. Hui, and Y. Wang, Scripta Materialia, 162: 112–117 (2019); https://doi.org/10.1016/j.scriptamat.2018.10.035
  24. J. Fu, A. Yamamoto, H.Y. Kim, H. Hosoda, and S. Miyazaki, Acta Biomaterialia, 17: 56–67 (2015); http://dx.doi.org/10.1016/j.actbio.2015.02.001
  25. G. Firstov, A. Timoshevski, T. Kosorukova, Y. Koval, Y. Matviychuk, and P. Verhovlyuk, MATEC Web Conf., 33: 06006 (2015); https://doi.org/10.1051/matecconf/20153306006
  26. P. Villars and S. Iwata, Chemistry of Metals and Alloys, 6: 81–108 (2013); https://doi.org/10.30970/cma6.0269
  27. S. Guo, Q. Hu, Chun Ng, and C.T. Liu, Intermetallics, 41: 96–103 (2013); https://doi.org/10.1016/j.intermet.2013.05.002
  28. B.S. Murty, J.-W. Yeh, S. Ranganathan, and P.P. Bhattacharje, High Entropy Alloys. Second Edition (Amsterdam, The Netherlands–Oxford, UK: Elsevier–Cambridge, US: 2019), p. 363.
  29. H. Wang, Q.-F. He, and Y. Yang, Rare Met., 41, No. 6: 1989–2001 (2022); https://doi.org/10.1007/s12598-021-01926-7
  30. Yu.N. Koval, G.S. Firstov, J.V. Humbeeck, L. Delaey, and W.J. Jang, J. Phys. IV, 5, No. C8: 1103–1108 (1995); https://doi.org/10.1051/jp4/1995581103
  31. Y.N. Koval, G.S. Firstov, and A.V. Kotko, Scripta metallurgica et materialia 27, No. 11: 1611–1616 (1992); https://doi.org/10.1016/0956-716X(92)90153-6
  32. G.S. Firstov, A.N. Timoshevski, T.A. Kosorukova, and Yu.N. Koval (to be published).
  33. https://luttero.github.io/maud
  34. G. Firstov, A. Timoshevski, Yu. Koval, S. Yablonovski, and J. Van Humbeeck, Materials Science Forum, 738–739: 15 (2013); https://doi.org/10.4028/www.scientific.net/MSF.738-739.15
  35. G. Firstov, Yu. Koval, A. Timoshevski, S. Yablonovski, and J. Van Humbeeck, Chemistry of Metals and Alloys, 6: 205–208 (2013); https://doi.org/10.30970/cma6.0277
  36. S. San, S. Hasan, P. Adhikari, and W.-Y. Ching, Metals, 13: 1953 (2023); https://doi.org/10.3390/met13121953
  37. G. Gerstein, G.S. Firstov, T.A. Kosorukova, Y.N. Koval, and H.J. Maier, Shape Mem. Superelasticity, 4: 360–368 (2018); https://doi.org/10.1007/s40830-018-0180-1
  38. T.A. Kosorukova, G. Gerstein, Y.N. Koval, H.J. Maier, and G.S. Firstov (to be published).
  39. K. Otsuka and X. Ren, Progress in Materials Science, 50: 511–678 (2005); https://doi.org/10.1016/j.pmatsci.2004.10.001
  40. T. Kosorukova, G. Gerstein, V.V. Odnosum, Y.N. Koval, H.J. Maier, and G.S. Firstov, Materials, 12: 4227 (2019); https://doi.org/10.3390/ma12244227
  41. C.-H. Chen and Y.-J. Chen, Scr. Mater., 162: 185–189 (2019); https://doi.org/10.1016/j.scriptamat.2018.11.023
  42. J. Yaacoub, W. Abuzaid, F. Brenne, and H. Sehitoglu, Scripta Materialia, 186: 43–47 (2020); https://doi.org/10.1016/j.scriptamat.2020.04.017
  43. I.U. Rehman, S. Li, and T.-H. Nam, J. Alloys Compd., 884: 161108 (2021); https://doi.org/10.1016/j.jallcom.2021.161108
  44. S. Li, D. Cong, Z. Chen, S. Li, C. Song, Y. Cao, Z. Nie, and Y. Wang, Mater. Res. Lett., 9: 263–269 (2021); https://doi.org/10.1080/21663831.2021.1893233
  45. S. Li, D. Cong, X. Sun, Y. Zhang, Z. Chen, Z. Nie, R. Li, F. Li, Y. Ren, and Y. Wang, Mater. Res. Lett., 7: 482–489 (2019); https://doi.org/10.1080/21663831.2019.1659436
  46. G. Zhao, H. Zou, D. Fang, C. Huang, Y. Ye, and X. Ye, J. Alloys Compd., 965: 171504 (2023); https://doi.org/10.1016/j.jallcom.2023.171504