New Approach for Manufacturing Ti–6Al–4V+40%TiC Metal-Matrix Composites by 3D Printing Using Conic Electron Beam and Cored Wire. Pt. 2: Layered MMC/Alloy Materials, Their Main Characteristics, and Possible Application as Ballistic Resistant Materials

P. E. Markovsky$^{1}$, D. V. Kovalchuk$^{2}$, J. Janiszewski$^{3}$, B. Fikus$^{3}$, D. G. Savvakin$^{1}$, O. O. Stasiuk$^{1}$, D. V. Oryshych$^{1}$, M. A. Skoryk$^{1}$, V. I. Nevmerzhytskyi$^{2}$, and V. I. Bondarchuk$^{1}$

$^1$G. V. Kurdyumov Institute for Metal Physics of the N.A.S. of Ukraine, 36 Acad. Vernadsky Boulevard, UA-03142 Kyiv, Ukraine
$^2$JSC NVO ‘Chervona Hvylya’, 28 Dubrovitska Str., UA-04114 Kyiv, Ukraine
$^3$General Jarosław Dąbrowski Military University of Technology, 2 General Sylwester Kaliski Str., PL-00-908 Warsaw, Poland

Received 21.09.2023; final version — 31.10.2023 Download PDF logo PDF

Abstract
Bilayer samples comprised of hard metal-matrix composite top layer and ductile 10 mm Ti–6Al–4V plate are produced with 3D printing by conical electron-beam method using specially prepared core (powder) wire that allows forming hard top layer of metal-matrix (Ti–6Al–4V) composite (MMC) reinforced by means of fine TiC particles with thickness up to 4 mm. Ballistic tests performed with 7.62×51 AP ammunition show a good ballistic resistance of this protective structure, i.e., it is not perforated. Only minor penetration and partial fracture are occurred exclusively in the surface MMC layer. Either no traces of plastic deformation are found at the boundary with the base layer or inside it that indicates that the MMC layer absorbs the entire impact energy of the projectile. Based on studies of the fine structure and texture of the interface between the layers, a reasonable assumption is made that wavy geometry of MMC layer provides additional deflection and scattering of stress waves generated during impact. Comparing the results of ballistic tests of various metallic materials, it is concluded that the 3D-printed bilayer material consisting of the upper Ti–6Al–4V + 40% TiC layer and the base Ti–6Al–4V layer has an undeniable advantage in ballistic performance when it is tested with cartridges of this type.

Keywords: additive manufacturing, 3D printing, titanium alloys, metal-matrix composite, microstructure, texture, ballistic performance.

DOI: https://doi.org/10.15407/ufm.24.04.741

Citation: P. E. Markovsky, D. V. Kovalchuk, J. Janiszewski, B. Fikus, D. G. Savvakin, O. O. Stasiuk, D. V. Oryshych, M. A. Skoryk, V. I. Nevmerzhytskyi, and V. I. Bondarchuk, New Approach for Manufacturing Ti–6Al–4V+40%TiC Metal-Matrix Composites by 3D Printing Using Conic Electron Beam and Cored Wire. Pt. 2: Layered MMC/Alloy Materials, Their Main Characteristics, and Possible Application as Ballistic Resistant Materials, Progress in Physics of Metals, 24, No. 4: 741–763 (2023)


References  
  1. L.E. Murr, Metallogr. Microstruct. Anal., 7, No. 2: 103–132 (2018); https://doi.org/10.1007/s13632-018-0433-6
  2. N. Li, S. Huang, G. Zhang, R. Qin, W. Liu, H. Xiong, G. Shi, and J. Blackburn, J. Mater. Sci. & Technol. 35, No. 2: 242–269 (2019); https://doi.org/10.1016/j.jmst.2018.09.002
  3. A. Bandyopadhyay and B. Heer, Mater. Sci. Eng., 129: 1–16 (2018); https://doi.org/10.1016/j.mser.2018.04.001
  4. K. Markandan, R. Lim, P. Kumar Kanaujia, I. Seetoh, M.R. bin Mohd Rosdi, Z.H. Tey, J.S. Goh, Y.C. Lam, and C. Lai, J. Mater. Sci. & Technol., 47: 243–252 (2020); https://doi.org/10.1016/j.jmst.2019.12.016
  5. S. Liu and Y.C. Shin, Mater. & Des., 164: 107552 (2019); https://doi.org/10.1016/j.matdes.2018.107552
  6. A.R. Balachandramurthi, J. Olsson, J. Ålgårdh, A. Snis, J. Moverare, and R. Pederson, Results Mater., 1, 100017 (2019); https://doi.org/10.1016/j.rinma.2019.100017
  7. D.V. Kovalchuk, V.I. Melnik, I.V. Melnik, and B.A. Tugaj, Automatic Welding, 2017, No. 12: 26–33 (2017); https://doi.org/10.15407/as2017.12.03
  8. D. Kovalchuk, and O. Ivasishin, Profile Electron Beam 3D Metal Printing, Additive Manufacturing for the Aerospace Industry (Elsevier: 2019), p. 213–233; https://doi.org/10.1016/b978-0-12-814062-8.00012-1
  9. M.O. Vasylyev, B.M. Mordyuk, and S.M. Voloshko, Prog. Phys. Met., 24, No. 1: 5–37 (2023); https://doi.org/10.15407/ufm.24.01.005
  10. M.O. Vasylyev, B.M. Mordyuk, and S.M. Voloshko, Prog. Phys. Met., 24, No. 1: 38–74 (2023); https://doi.org/10.15407/ufm.24.01.038
  11. A.V. Zavdoveev, T. Baudin, D.G. Mohan, D.L. Pakula, D.V. Vedel, and M.A. Skoryk, Prog. Phys. Met., 24, No. 3: 561–592 (2023); https://doi.org/10.15407/ufm.24.03.561
  12. D. Kovalchuk, O. Ivasishin and D. Savvakin, MATEC Web Conf., 321: 03014 (2020); https://doi.org/10.1051/matecconf/202032103014
  13. D. Kovalchuk, V. Melnyk, I. Melnyk, D. Savvakin, O. Dekhtyar, O. Stasiuk, and P. Markovsky, J. Mater. Eng. Perform 30, No. 7: 5307–5322: (2021); https://doi.org/10.1007/s11665-021-05770-9
  14. D. Kovalchuk, V. Melnyk, and I. Melnyk, J. Mater. Eng. Perform., 31, No. 8: 6069–6082 (2022); https://doi.org/10.1007/s11665-022-06994-z
  15. P.E. Markovsky, D.G. Savvakin, O.O. Stasiuk, S.H. Sedov, V.A. Golub, D.V. Kovalchuk, and S.V. Prikhodko, Metallofiz. Noveishie Tekhnol., 43, No. 12: 1573–1588 (2021); https://doi.org/10.15407/mfint.43.12.1573
  16. P.E. Markovsky, D.G. Savvakin, O.M. Ivasishin, V.I. Bondarchuk, and S.V. Prikhodko, J. Mater. Eng. Perform., 28, No. 9: 5772–5792 (2019); https://doi.org/10.1007/s11665-019-04263-0
  17. P.E. Markovsky, O.M. Ivasishin, D.G. Savvakin, O.O. Stasiuk, V.I. Bondarchuk, D.V. Oryshych, D.V. Kovalchuk, S.H. Sedov, V.A. Golub, and V.V. Buznytskyi, Metallofiz. Noveishie Tekhnol., 44, No. 10: 1361–1375 (2022); https://doi.org/10.15407/mfint.44.10.1361
  18. O.M. Ivasishin and V.S. Moxson, Low-Cost Titanium Hydride Powder Metallurgy, Titanium Powder Metallurgy: Past, Present and Future (New York: Elsevier: 2015), p. 117–148; https://doi.org/10.1016/B978-0-12-800054-0.00008-3
  19. O.M. Ivasishin, P.E. Markovsky, D.G. Savvakin, O.O. Stasiuk, M.N. Rad, and S.V. Prikhodko, J. Mater. Process. Technol., 269: 172–181 (2019); https://doi.org/10.1016/j.jmatprotec.2019.02.006
  20. P. Markovsky, J. Janiszewski, D. Savvakin, O. Stasiuk, B. Fikus, V. Samarov, and S. Prikhodko, Materials (2023) (in press).
  21. P.E. Markovsky, D.V. Kovalchuck, S.V. Akhonin, S.L. Schwab, D.G. Savvakin, O.O. Stasiuk, D.V. Oryshych, D.V. Vedel, M.A. Skoryk, and V.P. Tkachuk, Prog. Phys. Met., 24, No. 4: 715–740 (2023); https://doi.org/10.15407/ufm.24.04.715
  22. A.E. Davis, J.R. Kennedy, D. Strong, D. Kovalchuk, S. Porter, and P.B. Prangnell, Materialia, 20: 101202: (2021); https://doi.org/10.1016/j.mtla.2021.101202
  23. Nammo: 7.62 mm × 51 Armor Piercing 8 (M993); https://www.nammo.com/product/our-products/ammunition/small-caliber-ammunition/7-62mm-series/7-62-mm-x-51-armor-piercing-8-m993/
  24. I. Szachogłuchowicz, B. Fikus, K. Grzelak, J. Kluczyński, J. Torzewski, and J. Łuszczek, Materials, 14, No. 10: 2681 (2021); https://doi.org/10.3390/ma14102681
  25. R.D. Woods, J. Soil Mech. Found. Div., 94, No. 4: 951–979 (1968); https://doi.org/10.1061/jsfeaq.0001180
  26. J.K. Lee, Analysis of Multi-Layered Materials under High Velocity Impact Using CTH (PhD Thesis on Master of Science in Aeronautical Engineering, Air Force Institute of Technology: 2008); https://scholar.afit.edu/etd/2685
  27. P.E. Markovsky, J. Janiszewski, D.G. Savvakin, O. Stasiuk, Kamil Cieplak, P. Baranowski, and S.V. Prikhodko, Materials & Design, 223: 111205–111205 (2022); https://doi.org/10.1016/j.matdes.2022.111205
  28. J.C. Fanning, J. Mater. Eng. Perform., 14, No. 6: 686–690 (2005); https://doi.org/10.1361/105994905x75457
  29. J. Fanning, Proceedings of Titanium World Conference ‘Titanium 99, Science and Technology’ (1999).
  30. I. Horsfall, N. Ehsan, W. Bishop, J. Battlefield Technology, 3: 5–8 (2000).
  31. P. Peralta and C. Laird, Fatigue of Metals, Physical Metallurgy (Elsevier: 2014), p. 1765–1880; https://doi.org/10.1016/b978-0-444-53770-6.00018-6
  32. T.L. Jones, Ballistic Performance of Titanium Alloys: Ti–6Al–4V Versus Russian Titanium, US Army Research Laboratory Report ARL-CR-0533, p. 19 (2004).
  33. S.E. Alkhatib and T.B. Sercombe, Mater. & Des., 217: 110664 (2022); https://doi.org/10.1016/j.matdes.2022.110664
  34. P.E. Markovsky, D.G. Savvakin, S.V. Prikhodko, O.O. Stasyuk, S.H. Sedov, V.A. Golub, V.A. Kurban, and E.V. Stecenko, Metallofiz. Noveishie Tekhnol., 42, No. 11: 1509–1524 (2020); https://doi.org/10.15407/mfint.42.11.1509
  35. O.M. Іvasishin, P.E. Markovsky, D.G. Savvakin, O.O. Stasiuk, V.A. Golub, V.I. Mirnenko, S.H. Sedov, V.А. Kurban, and S.L. Antonyuk, Prog. Phys. Met., 20, No. 2: 285–309 (2019); https://doi.org/10.15407/ufm.20.02.285
  36. D.E. Carlucci, Ballistics: Theory and Design of Guns and Ammunition (New York: CRC Press: 2007).
  37. L. Ding, C. Li, B. Pang, and W. Zhang, Int. J. Impact Eng., 35, No. 12: 1490–1496 (2008); https://doi.org/10.1016/j.ijimpeng.2008.07.005
  38. M. Walicki, J. Janiszewski, and K. Cieplak, J. Theor. Appl. Mech., 60, No. 1: 129–140 (2022); https://doi.org/10.15632/jtam-pl/144793
  39. J.P.F. Broos, S.N. van Trigt, and M.C.P. Peijen, Specialists’ Meeting on Cost Effective Application of Titanium Alloys in Military Platforms, for NATO AVT Panel (2001); https://www.researchgate.net/publication/268740375
  40. M.L. Bekci, B. H. Canpolat, E. Usta, M. S. Güler та Ö.N. Cora, Eng. Sci. Technol. Int. J., 24, No. 4: 990–995 (2021); https://doi.org/10.1016/j.jestch.2021.01.001
  41. SSAB, Armox Protection Plate, Protection Steel Buildings Data Sheet; https://ssabwebsitecdn.azureedge.net/-/media/files/en/armox/armox-protectionsteel-in-buildings-en.pdf?m=20170619110513
  42. O.M. Ivasishin, D.V. Kovalchuk, P.E. Markovsky, D.G. Savvakin, O.O. Stasiuk, V.I. Bondarchuk, D.V. Oryshych, S.G. Sedov, and V.A. Golub, Prog. Phys. Met., 24, No. 1: 75–105 (2023); https://doi.org/10.15407/ufm.24.01.075
  43. M.E. Backman and W. Goldsmith, Int. J. Eng. Sci., 16, No. 1: 1–99 (1978); https://doi.org/10.1016/0020-7225(78)90002-2
  44. L. Jones, R.D. DeLorme, M.S. Burkins, and W.A. Gooch, 23rd Int. Symposium on Ballistics (Tarragona, Spain, 16–20 April 2007); https://www.researchgate.net/publication/268379604
  45. B. Cheeseman, W. Gooch, and M. Burkins, Preprint 24th Int. Ballistics Symposium (New Orleans, LA, USA, 22–26 September 2008); https://www.researchgate.net/publication/292393974_Ballistic_Evaluation_of_Aluminum_2139-T8
  46. E. Medvedovski, Ceram. Int., 36, No. 7: 2103–2115 (2010); https://doi.org/10.1016/j.ceramint.2010.05.021
  47. F. Cui, G. Wu, T. Ma, and W. Li, Def. Sci. J., 67, No. 3: 260 (2017); https://doi.org/10.14429/dsj.67.10664
  48. E. Medvedovski, Ceram. Int., 36, No. 7: 2117–2127 (2010); https://doi.org/10.1016/j.ceramint.2010.05.022
  49. Chobham Armour, Wikipedia (2022); https://en.wikipedia.org/wiki/Chobham_armour