New Approach for Manufacturing Ti–6Al–4V+40%TiC Metal-Matrix Composites by 3D Printing Using Conic Electron Beam and Cored Wire. Pt. 1: Main Features of the Process, Microstructure Formation and Basic Characteristics of 3D Printed Material

P. E. Markovsky$^{1}$, D. V. Kovalchuk$^{2}$, S. V. Akhonin$^{3}$, S. L. Schwab$^{3}$, D. G. Savvakin$^{1}$, O. O. Stasiuk$^{1}$, D. V. Oryshych$^{1}$, D. V. Vedel$^{4}$, M. A. Skoryk$^{1}$, and V. P. Tkachuk$^{2}$

$^1$G. V. Kurdyumov Institute for Metal Physics of the N.A.S. of Ukraine, 36 Acad. Vernadsky Boulevard, UA-03142 Kyiv, Ukraine
$^2$JSC NVO ‘Chervona Hvylya’, 28 Dubrovitska Str., UA-04114 Kyiv, Ukraine
$^3$E. O. Paton Electric Welding Institute of the N.A.S. of Ukraine, 11, Kazymyr Malevych Str., UA-03150 Kyiv, Ukraine
$^4$I. M. Frantsevych Institute for Problems of Materials Science of the N.A.S. of Ukraine, 3 Omeljan Pritsak Str., UA-03142 Kyiv, Ukraine

Received 25.08.2023; final version — 30.10.2023 Download PDF logo PDF

Abstract
In this paper, a new approach for additive manufacturing metal-matrix composites based on Ti–6Al–4V titanium alloy reinforced with titanium carbide particles, as well as layered structures consisted of such composite and Ti–6Al–4V alloy layers is considered. The approach is based on 3D printing with a conical electron beam using a special cored wire, whose composition corresponds to metal-matrix composite. The issues of production such a wire, the features of the 3D printing process, when using it, as well as the features of formation of the microstructure and phase composition of the printed composite material are described. The issues of titanium-carbide particles’ wetting with Ti–6Al–4V melt during process of 3D printing, as well as possible thermogravitational effects (floating or drowning) for solid TiC particles within the melt are considered in detail with additional experiments. The influence of individual components of the wire composition on the formation of the microstructure and its uniformity over the cross section of the printed layer is shown. The possibility of controlling the formation of homogeneous structural state and obtaining sufficiently high values of the hardness (of above 600 HV) of the metal-matrix composite layer printed on the Ti–6Al–4V baseplate is shown.

Keywords: additive manufacturing, 3D printing, titanium alloys, metal-matrix composite, microstructure, texture, hardness.

DOI: https://doi.org/10.15407/ufm.24.04.715

Citation: P. E. Markovsky, D. V. Kovalchuk, S. V. Akhonin, S. L. Schwab, D. G. Savvakin, O. O. Stasiuk, D. V. Oryshych, D. V. Vedel, M. A. Skoryk, and V. P. Tkachuk, New Approach for Manufacturing Ti–6Al–4V+40%TiC Metal-Matrix Composites by 3D Printing Using Conic Electron Beam and Cored Wire. Pt. 1: Main Features of the Process, Microstructure Formation and Basic Characteristics of 3D Printed Material, Progress in Physics of Metals, 24, No. 4: 715–740 (2023)


References  
  1. U. Zwicker, Titan und Titanlegierungen (Berlin: Springer-Verlag: 1974).
  2. G. Luetjering and J.C. Williams, Titanium. 2nd Ed. (Berlin: Springer: 2007); https://doi.org/10.1007/978-3-540-73036-1
  3. R.I. Jaffee and H.M. Burte, Titanium Science and Technology (Berlin: Springer: 1973); https://doi.org/10.1007/978-1-4757-1346-6
  4. D. Miracle, Compos. Sci. Technol., 65, Nos. 15–16: 2526–2540 (2005); https://doi.org/10.1016/j.compscitech.2005.05.027
  5. Z.X. Du, S.L. Xiao, P.X. Wang, L.J. Xu, Y.Y. Chen, and H.K.S. Rahoma, Mater. Sci. Eng. A, 596, No. 71: 2526–2540 (2014); https://doi.org/10.1016/j.msea.2013.12.043
  6. M. Eriksson, D. Salamon, M. Nygren, and Z. Shen, Mater. Sci. Eng. A, 475, Nos. 1–2: 101–104 (2008). https://doi.org/10.1016/j.msea.2007.01.161
  7. P. Wanjara, R.A.L. Drew, J. Root, and S. Yue, Acta Mater., 48, No. 7: 1443–1450 (2000); https://doi.org/10.1016/s1359-6454(99)00453-x
  8. K. B. Panda and K. S. Ravi Chandran, Metall. Mater. Trans. A 34, No. 9: 1993–2003 (2003); https://doi.org/10.1007/s11661-003-0164-3
  9. D. Zhu, L. Zhang, W. Wu, L. Lu, J. Song, X. Ni, W. Zhu, J. Zhao, S. Gu, and X. Shan, J. Phys., 1838, No. 1: 012039 (2021); https://doi.org/10.1088/1742-6596/1838/1/012039
  10. O.M. Ivasishin and V.S. Moxson, Low-Cost Titanium Hydride Powder Metallurgy, Titanium Powder Metallurgy: Past, Present and Future (New York: Elsevier: 2015), p. 117–148; https://doi.org/10.1016/B978-0-12-800054-0.00008-3
  11. O.M. Ivasishin, V.M. Anokhin, A.N. Demidik, and D.G. Savvakin, Key Eng. Mater., 188: 55–62 (2000); https://doi.org/10.4028/www.scientific.net/kem.188.55
  12. M. Qian, L. Junjie, and G. Mingyuan, J. Lake Sci., 22, No. 1: 29–34 (2010); https://doi.org/10.18307/2010.0104
  13. O.M. Ivasishin, P.E. Markovsky, D.G. Savvakin, O.O. Stasiuk, M.N. Rad and S.V. Prikhodko, J. Mater. Process. Technol., 269: 172–181 (2019); https://doi.org/10.1016/j.jmatprotec.2019.02.006
  14. P.E. Markovsky, D.G. Savvakin, O.M. Ivasishin, V.I. Bondarchuk, and S.V. Prikhodko, J. Mater. Eng. Perform., 28, No. 9: 5772–5792 (2019); https://doi.org/10.1007/s11665-019-04263-0
  15. S.V. Prikhodko, P.E. Markovsky, D.G. Savvakin, O.O. Stasiuk, M.N. Rad, C. Choi, and O.M. Ivasishin, Microsc. Microanal., 24, No. S1: 2218–2219 (2018); https://doi.org/10.1017/s1431927618011571
  16. P.E. Markovsky, D.G. Savvakin, O.O. Stasyuk, M. Mecklenburg, M. Pozuelo, C. Roberts, V. Ellison, and S.V. Prikhodko, Mater. & Des., 234: 112208 (2023); https://doi.org/10.1016/j.matdes.2023.112208
  17. S. Prikhodko, D. Savvakin, P. Markovsky, O. Stasiuk, N. Enzinger, F. Deley, B. Flipo, A. Shirzadi, H. Davies, P. Davies, J. Penny, K. Bozhilov, and O. Ivasishin, Microsc. Microanal., 25, No. S2: 812–813 (2019); https://doi.org/10.1017/s1431927619004793
  18. S. Liu and Y. C. Shin, Mater. & Des., 164: 107552 (2019); https://doi.org/10.1016/j.matdes.2018.107552
  19. A.H. Chern, P. Nandwana, T. Yuan, M.M. Kirka, R.R. Dehoff, P.K. Liaw, and C. E. Duty, Int. J. Fatigue, 119, 173–184: (2019); https://doi.org/10.1016/j.ijfatigue.2018.09.022
  20. T. Nagase, T. Hori, M. Todai, S.-H. Sun, and T. Nakano, Mater. & Des., 173, 107771: (2019); https://doi.org/10.1016/j.matdes.2019.107771
  21. L.E. Murr, Metallogr. Microstruct. Anal., 7, No. 2: 103–132: (2018); https://doi.org/10.1007/s13632-018-0433-6
  22. Patent of the USA No.10,695,835 B2 ‘Method and Apparatus for Manufacturing of Three Dimensional Objects’ (June 30, 2020).
  23. D. Kovalchuk, V. Melnyk, I. Melnyk, and B. Tugai, Ehlektrotekhnika & Ehlektronika E+E, 51, Nos. 5–6: 37 (2016); https://epluse.ceec.bg/wp-content/uploads/2018/08/20160506-full.pdf
  24. D. Kovalchuk and O. Ivasishin, Profile Electron Beam 3D Metal Printing, Additive Manufacturing for the Aerospace Industry (Elsevier: 2019), p. 213–233; https://doi.org/10.1016/b978-0-12-814062-8.00012-1
  25. D. Kovalchuk, V. Melnyk, I. Melnyk, D. Savvakin, O. Dekhtyar, O. Stasiuk, and P. Markovsky, J. Mater. Eng. Perform., 30, No. 7: 5307–5322 (2021); https://doi.org/10.1007/s11665-021-05770-9
  26. D. Kovalchuk, V. Melnyk, and I. Melnyk, J. Mater. Eng. Perform., 31: 6069–6082 (2022); https://doi.org/10.1007/s11665-022-06994-z
  27. A.E. Davis, J.R. Kennedy, D. Strong, D. Kovalchuk, S. Porter, and P.B. Prangnell, Materialia, 20: 101202 (2021); https://doi.org/10.1016/j.mtla.2021.101202
  28. J. Hu, J. Zhang, Y. Wei, H. Chen, Y. Yang, S. Wu, D. Kovalchuk, E. Liang, X. Zhang, H. Wang, and A. Huang, JOM, 73, No. 7: 2241–2249 (2021); https://doi.org/10.1007/s11837-021-04712-z
  29. O.M. Ivasishin, D.V. Kovalchuk, P.E. Markovsky, D.G. Savvakin, O.O. Stasiuk, V.I. Bondarchuk, D.V. Oryshych, S.G. Sedov, and V.A. Golub, Prog. Phys. Met., 24, No. 1: 75–105 (2023); https://doi.org/10.15407/ufm.24.01.075
  30. M.O. Vasylyev, B.M. Mordyuk, and S.M. Voloshko, Prog. Phys. Met., 24, No. 1: 5–37 (2023); https://doi.org/10.15407/ufm.24.01.005
  31. M.O. Vasylyev, B.M. Mordyuk, and S.M. Voloshko, Prog. Phys. Met., 24, No. 1: 38–74 (2023); https://doi.org/10.15407/ufm.24.01.038
  32. S. Schwab, R. Selin, and M. Voron, Weld. World, 67: 981–986 (2023); https://doi.org/10.1007/s40194-023-01464-z
  33. S.V. Akhonin and S.L. Schwab, Paton Weld. J., 2019, No. 6: 34–37 (2019); https://doi.org/10.15407/tpwj2019.06.06
  34. V.P. Prilutsky, S.V. Akhonin, S.L. Schwab, and I.K. Petrychenko, Mater. Sci. Forum, 927: 119–125 (2018); https://doi.org/10.4028/www.scientific.net/msf.927.119
  35. A.V. Zavdoveev, T. Baudin, D.G. Mohan, D.L. Pakula, D.V. Vedel, and M.A. Skoryk, Prog. Phys. Met., 24, No. 3: 561–592 (2023); https://doi.org/10.15407/ufm.24.03.561
  36. H.O. Pierson, Handbook of Refractory Carbides & Nitrides: Properties, Characteristics, Processing and Applications (Westwood, NJ, USA: Noyes Publications: 1996); https://www.sciencedirect.com/book/9780815513926/handbook-of-refractory-carbides-and-nitrides#book-description
  37. O.N. Grigoriev, A.V. Stepanenko, V.B. Vinokurov, I.P. Neshpor, T.V. Mosina, and L. Silvestroni, J. Eur. Ceram. Soc., 41, No. 9: 4720–4727 (2021); https://doi.org/10.1016/j.jeurceramsoc.2021.02.053
  38. D. Vedel, M. Storozhenko, P. Mazur, V. Konoval, M. Skoryk, O. Grigoriev, M. Heaton, and A. Zavdoveev, Open Ceram., 15: 100393 (2023); https://doi.org/10.1016/j.oceram.2023.100393
  39. M.D. Abramoff, P.J. Magalhaes, and S.J. Ram, Biophotonics Int., 11, No. 7: 36 (2004).
  40. I.L. Shabalin, Ultra-High Temperature Materials I (Dordrecht: Springer: 2014); https://doi.org/10.1007/978-94-007-7587-9
  41. I. Spiridonova, A. Panasyuk, E. Sukhovaya, and А. Umanskiy, Stability of Composite Materials (Dnipropetrovsk: Svidler: 2011) (in Russian).
  42. A.D. Panasyuk, V. Fomenko, and G. Glebova, Resistance of Non-Metallic Materials in Melts (Kiev: Naukova Dumka: 1986) (in Russian).
  43. A.F. Lisovsky, Migration of Metal Melts in Sintered Composite Bodies (Kiev: Naukova Dumka: 1984) (in Russian).
  44. A. Salmasi, S.J. Graham, I. Galbraith, A.D. Graves, M. Jackson, S. Norgren, D. Guan, H. Larsson, and L. Höglund, Calphad, 74: 102300 (2021); https://doi.org/10.1016/j.calphad.2021.102300
  45. P.G. Clites and E.D. Calvert, Laboratory-Scale Casting Furnaces for High-Melting-Point Metals (Washington: US Department of the Interior Bureau of Mines: 1961).
  46. P. Wanjara, R.A.L. Drew, J. Root, and S. Yue, Acta Mater., 48, No. 7: 1443–1450 (2000); https://doi.org/10.1016/s1359-6454(99)00453-x
  47. T.O. Mapoli, K.A. Annan, C.W. Siyasiya, and K. Mutombo, IOP Conf. Ser., 655: 012028 (2019); https://doi.org/10.1088/1757-899x/655/1/012028
  48. S.V. Prikhodko, P.E. Markovsky, S.D. Sitzman, M.A. Gordillo, J.M.K. Wiezorek, and O.M. Ivasishin, Proceedings of the 13th World Conference on Titanium (Eds. V. Venkatesh, A.L. Pilchak, J.E. Allison, S. Ankem, R. Boyer, J. Christodoulou, H.L. Fraser, M. Ashraf Imam, and Y. Kosaka) (USA: The Minerals, Metals & Materials Society: 2016), Ch. 64, p. 415; https://doi.org/10.1002/9781119296126.ch64
  49. H. Yu, Q. Fan, and X. Zhu, Materials, 13, No. 17: 3886 (2020); https://doi.org/10.3390/ma13173886
  50. P.E. Markovsky, D.V. Kovalchuk, J. Janiszewski, B. Fikus, D.G. Savvakin, O.O. Stasiuk, D.V. Oryshych, M.A. Skoryk, V.I. Nevmerzhytskyi, and V.I. Bondarchuk, Prog. Phys. Met., 24, No. 4: 741–763 (2023); https://doi.org/10.15407/ufm.24.04.741